Matematický časopis

Zuzana Ladzianska
Chain Conditions in the Distributive Product of Lattices

Matematický časopis, Vol. 24 (1974), No. 4, 349--356

Persistent URL: http://dml.cz/dmlcz/126558

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CHAIN CONDITIONS IN THE DISTRIBUTIVE PRODUCT OF LATTICES

ZUZANA LADZIANsKA

This paper is concerned with a generalization of the distributive free product and the ordinal sum of distributive lattices, so-called the $\int-$ poproduct of distributive lattices. The noti n of the \mathscr{L}-- poproduct was first introduced by Balbes and Horn [1] und re the name of the order sum. Generally, the notion of the \mathscr{K} - poproduct for an arbitrary equational class of lattices was introduced in [7].

We begin with some preliminary notions.
Let P be a poset and let $L_{p}, p \in P$ be pairwise disjoint lattices.
Let $Q \quad \bigcup_{p \in L} L_{p}$ be partially rdered in the following way: $a, b \in Q, a \leqq b$ if and only if one of the conditions (1) and (2) holds:
(1) there is a $p \in P$ such that $a, b \in L_{p}$ and the relation $a \leqq b$ in L_{p} holds;
(\because) there are $p, r \in P$ such that $a \in L_{p}, b \in L_{r}$ and the relation $p<1$ in the poset P holds.
If f is a mapping from Q into M then f_{p} denotes its restriction on L_{p}.
Definition (see [7]). Let \mathscr{K} be an equational class of lattices. Let $L_{p}, L \in \mathscr{K}$ Itt P be a poset. A lattice L is the \mathscr{K} - poproduct of the lattices $L_{p}, p \in P$, if:

1. there is an isotone injection $i: Q \rightarrow L$ such that for each $p \in P, i_{p}$ is a lattice homomorphism;
$\xrightarrow[-]{-}$ if $M \in \mathscr{K}$, then for every isotone mapping $f: Q \rightarrow M$. such that for cach $\rho \in P$, f_{p} is a lattice homomorphism, there exists uniquely a lattice homomorphism $\Psi: L \rightarrow I I$ such that $\Psi . i-f$
W'e denote by \mathscr{Z} the class of all distributive lattices. The \mathbb{Z} - poproduct will be called also the distributive poproduct.

Theorem I from [7] says that the \mathscr{K} - poproduct is a generalization of the \mathscr{H} free product and the ordinal sum of lattices: the \mathscr{K} - poproduct forms the \mathscr{K} free product iff P is an anti-chain and the ordinal sum iff P is a chain.

Remark. If $\not \mathscr{K}_{1} \subseteq \mathscr{Z}$ a are two equational classes of lattices and L is

Q
Fig. 2

L

Fig. .
the \mathscr{K}_{2} - poproduct of lattices $L_{p} \in \mathscr{H}_{1}(p \in P)$, then L need not be in a- the following example shows.

Example. Let $P \quad\{\alpha, \beta, \gamma, \delta\}, \beta \quad \gamma \quad \alpha, \beta \gamma \quad \delta$ (see fig. 1.). Let $L_{\chi}\{o\}, L_{\beta} \quad\{a, b\}, a<b, L_{\gamma} \quad\{c\}, L_{\delta}-\{i\}$ (see fig. 2). Then L (ぃat fig. 3) i, the L poproduct of $L_{p}, p \in P$, but not the S poproduct.

In this paper the word problem for the poproduct is solved and the following theorem about the chain condition is proved: if nt is a reguln cardinal greater than \mathbb{N}_{0}, then the $\left(\gamma \quad\right.$ poproduct of $L_{p}, p \quad l$ doen not contain a chain of the cardinality $\geqq \mathfrak{m}$ iff P and every $L_{p}, p \in P$ doc- not ontain a chain of the cardinality $\geqq m$. The existence of the \mathscr{Z} poproluct follows from [1].

We shall consider distributive lattices with 0,1 . We shall use the met od of [6]. Similarly to [6]. all results are applicable to the category of distribu ive lattices.

1. The word problem

Lemma 1. Let L be a distributive lattice with 0,1 and let $x, y \in L$. Let II be a two clement chain $\{0,1\}$. If $x \neq y$, then there exists a lattice homomor 1 his, $\Phi: L>I I$ such that $\Phi(x) \quad$ I, $\Phi(y) \quad 0$. The proof follows from the sto ne theorem ([3], Theorem 7.15).

Let L be the $\because \quad$ poproduct of the family $\left(L_{p}, p \in P\right)$. The lattice operations m L will be denoted by \wedge, Let $Q \quad \bigcup_{p \in S^{\prime}} L_{j}$. A finite nonempty subset $I \quad l_{l}$ is caid to be reduced if for every two distinct elements $x, y \in X$ holds. if $x \quad L_{p}, y L_{r}, p, r \in P$, then $p r$. For evrry finite nonempty set X there are unique reduced sets $X^{\wedge}, \Lambda^{\vee}$ such that $\wedge X-\wedge\left(X^{\wedge}\right), \vee X \vee\left(X^{\vee \vee}\right)$. If X^{\prime} in given, let $X^{\prime} \quad\left\{\wedge\left(X \cap L_{i}\right) \mid i \in P_{X}\right\}$, where $P_{X} \quad\left\{p \in P X \cap L_{p} \neq \Gamma\right\}$, Then X^{\wedge} is the set of $x \in X^{\prime}$ uch that if $x \in L_{\rho}$, there is no $y \in L_{r} \cap X^{\prime}$ $r \quad p$. The set X^{\vee} is constructed dually.

Since L is a distributive lattice generated by Q, ρ_{ε} ch element a of L can be written (in a nonunique manner) as a $\quad(V X \mid X \in J)$, where J is a finite family of finite reduced subsets of Q. Conversely any such family yield, an element $\quad(/ X X \neq J)$ of L.

Theorem 1. Let L be a distrib itive lattice generated ly the poset $Q \bigcup_{p \in \mathcal{L}} L_{\mu}$. Then L is the ' - poproduct of the $L_{p}, p \in P$ if and only if in L there holds

Let P_{1}, P_{2} be finite subsels of I^{\prime}. Let $x_{i} \in L_{i}$ for $i \in P$ and $y_{j} \in L_{j}$ for $j \quad P_{2}$ Then $\bigwedge_{l} r_{i}<\bigvee_{k \in P_{2}} y_{j}$ implies that there is at lea.t one pair $i, j(i \leq \jmath), i \in P_{1}$, $j \in P_{2}$ a selch that $x_{i} \leqq y_{j}$.

Proof. The part ,only if" of the theor m has been proved in [1], Lemma 1.9. We shall prove the sufficiency (f the condition. Denote by L^{*} the poproduct of $L_{p} \cdot p \quad l$. We shall show $L^{*} \quad L$. Let f be the identity mapping $Q>L$, then there exists a homomorpl ism $\Phi: L^{*} \rightarrow L$ extending f, hence for $q \in Q$ there holds $\Phi(q) \quad f(q) \quad q$. We shall show that Φ is an isomorphism. Φ maps L^{*} onto L, because L is generated by Q. To prove that Φ is one-to-one it is enough to prove that $a, b \in L^{*} . \Phi(a) \leqq \Phi(b)$ implies $a \leqq b$. Let $a, b \in L^{*}$, $\phi(a)<\Phi(b)$. The elements a, b could be written in the form $a \quad J(\wedge X X \in$ $J) . b \quad(, Z Z \in K)$, where Σ^{\prime}, Z are reduced subsets of Q, hence $\Phi(X)$
Λ. $\Phi(Z) \quad Z$. Because Φ is a homomorphism, for every pair X, Z we have
$\mathrm{I}<\Phi(r) \leqq \Phi(b) \leqq \vee Z$ in L, therefore according to the assumption there are $x \in X, z Z$ such that $x \leqq 2$ Then in L^{*} there holds $\wedge X \leqq x \leqq z \leqq \vee Z$ for every pair $X . Z$. Therefore $a \leqq b$ in L^{*}. The theorem is proved.

Definition 1. A finite family J of finite reduct d subsets of Q is said to be a rpiesentation of $a \in L$ if a $V(\backslash X \mid X \in J)$. The family J is said to be a 'ppesentation of $\quad a \in L$ if $a-\quad(\vee X X \in J)$.

Given a \wedge representation J of an element $a \in L$ we can write, using the distributivity, a $\vee\left(\wedge(F(J)) I^{\top} \in C(J)\right)$, where $C(J)$ denotes the set of choice functions on J, that is, the set of functions $F: J \rightarrow \cup J$ such that $F^{\prime}(X) \in X$ for each $X \in J$. Hence $a \quad \vee\left(\Lambda\left(F(J)^{\wedge}\right) F \in C(\cdot J)\right)$ holds. Since the set $C(J)$ is finite we can col sider a subset $C_{\text {red }}(J)=C(\cdot J)$, the set of re-
tuccel choice functions such that the set $\left\{\wedge\left(F(J)^{\wedge}\right) \mid F \in C_{\text {red }}(J)\right\}$ is the net of all maximal elements of the set $\left\{\wedge\left(F(J)^{\wedge}\right) \mid F \in C(J)\right\}$. Thus $a-\vee\left({ }^{\wedge}\left(F(\cdot J)^{\wedge}\right) F\right.$ $\left.\in C_{\text {red }}(J)\right)$. The family $\left\{F(J)^{\wedge} \mid F \in C_{\text {red }}(J)\right\}$ is said to be a normal - rep'tsentation of a. A normal - representation is defined dually.

Each element $a \in L$ has a normal v - representation and a normal representation. From the definition it follows that if J_{1} is a normal - representation of $a, a=\vee\left(\wedge X \mid X \in J_{1}\right)$, then $X, X^{\prime} \in J_{1}$ implies $\quad X \quad X^{\prime}$.

Lemma 2. Let L be the distributive poproduct of the distributive lattires (L_{p}, , $p \in P)$. If $X . Y$ are finite reduced subsets of Q, then $\wedge X \leqq / Y$ in L if and onl! if for each $y \in Y$ there is an $x \in X$ such that $x \leqq y$.

Proof. The sufficiency is clear and the necessity follows from Theorem 1. Let $y \in Y$, then $\wedge X \leqq y, X$ is reduced. so there exists $x \in X$ such that,$\leq \%$.

Theorem 2. Let L be the distributive poproduct of the distributive latticts $\left(L_{p}, p \in P\right)$. Let $a, b \in L$ and let J_{1} be a - representation of a and J_{2} a normal \vee - representation of b. Then $a \leqq b$ if and only if the following condition holds:

For each $X \in J_{1}$ there is a $Y \in J_{2}$ such that $\wedge X \leqq / I$, that in. for (rech $y \in Y$ there is an $x \in X$ such that $x \leqq y$.

Corollary. The normal - representation of any element of L is "riquily defined.

Proof of Theorem 2. The sufficiency is clear. Now let $a, b \subseteq L$. $a \leqq b$. $a \quad \vee\left(\wedge X \mid X \in J_{1}\right), b-\vee\left(\wedge Y \mid Y \in J_{2}\right)$. Because J_{2} is a normal - repre sentation, it has arised from some 1 - representation $K: b$ ($Z Z \quad K$). where K is such that $J_{2}=\left\{F(K)^{\wedge} \mid F \in C_{\text {red }}(K)\right\}$ holds. Thus $\downarrow\left(/ X X \in J_{1}\right) \leq$ $\leqq \backslash(\vee Z \mid Z \in K)$. It follows that for every pair $X \in J_{1}, Z \subset K$ holds $X \leq$ $\leqq \neg\left(\wedge X \mid X \in J_{1}\right) \leqq \wedge(\vee Z Z \in K) \leqq \vee Z$. Let $X \in J_{1}$. By Theorem I there are $x \in X$ and $G(Z) \in Z$ such that $x \leqq G(Z)$. Then $\wedge X \leqq x \leqq(Z(Z)$. Therefore for each $Z \in K$ there is $G(Z) \in Z$ such that $\wedge X \leqq G(Z)$. It follows ' $X<$ $\leqq \backslash\left(G(Z)^{\prime} Z \in K\right)=\wedge\left(G^{\prime}(K)^{\wedge}\right)$. By the definition of $C_{\text {red }}(K)$ there is $F \in C_{r}^{\prime}$ (K) such that $\wedge\left(G(K)^{\wedge}\right) \leqq \wedge\left(F(K)^{\wedge}\right)$. Therefore to each $X^{\prime} \in J_{1}$ there exist, $Y \quad F(K)^{\wedge} \in J_{2}$ so that $/ \mathrm{X} \leqq \wedge Y$. The rest of the condition follow b_{a} Lemma 2. Thus the theorem is proved.

Proof of corollary. Let $a-V\left(\wedge X X \in J_{1}\right)-/\left(/ Y Y \in J_{2}\right)$ an l let J_{1}, J_{2} be normal - representations. Let $X \in J_{1}$. Then there exists $I \in J_{2}$ such that $/ X \leqq / I$. Similarly there is $X^{\prime} \in J_{1}$ such that $Y \leqq X$ Then $\wedge X \leqq \wedge I \leqq \wedge X^{\prime}$, but because of the normality of J_{1} we have Λ^{\prime}
$X^{\prime}=Y$. Similar arguments prove that to every $J \subset Y_{2}$ there in $X \quad J_{1}$ such that $X \quad Y$. Thus $J_{1}-J_{2}$.

2. The chain conditions for regular cardinals

Let 1 t be an infinite cardinal. A poset P is said to satisfy the strong (weak) chrin condition for m , if every (hain in P has cardinality $<\mathrm{m}(\leqq \mathrm{m})$. It will be denoted $R(\mathrm{nt})\left(R^{\prime}(\mathrm{mt})\right.$).

Theorem 3. Let L be the distributive poproduct of the distributive lattices L_{p}, $p \quad l$. Let mt be a regular cardir al, $\mathrm{m}>\mathbf{N}_{0}$. Then there holds: L obeys $R(\mathrm{~m})$ if and only if P and each $L_{p}(p \in P)$ obey $R(\mathfrak{m})$. L obeys $R\left(\mathbf{N}_{0}\right)$ if and only if P i., fimite and each $L_{p}(p \in P)$ obe. $R\left(\mathbf{N}_{0}\right)$, i.e. I and each $L_{p}(p \in P)$ are finite.

Corollary 1. Let m be an infinite cardinal. Then there holds: L obeys $R^{\prime}(\mathrm{nt})$ if rucl only if P and each $L_{p} \quad p \in P$) obey $R^{\prime}(n t)$.
('orollary I immediately follows from Theorem 3, because $\mathrm{in}^{\prime}>\mathbf{N}_{0}$ is regulur for m^{\prime} the succesor of 1 n .

Corollary 2. Let \mathfrak{m} be a regula cardinal, $\mathfrak{m}>\mathfrak{N} 0$. Then the following holds: The distributive free product of the distributine lattices $L_{i}, i \in I$ obeys $R(\mathrm{~m})$ if ard only if each $L_{i}(i \in I)$ obeys $R(m)$.
('orollary 2 implies Theorem 4 from $\mid 5]$.
Proof of the Theorem 3.

1) the necessity is clear: if we take the ordinal sum of \mathfrak{n} lattices, $\mathfrak{n} \geqq m$ and if P is a chain with $P \quad \mathbf{n}$, or the free product of lattices at least one of which does not obey $R(m)$, then in $L, R(m)$ fails to hold.
$2)$ the sufficiency: Throughout the proof, the following lemma proved in |3] and [4] will be useful:

Lemma 3. Let Λ be a chain ard let $\mathscr{H}=\left(I_{\lambda} \mid \lambda \in \Lambda\right)$ be a family of finite sets. F'or carh pair λ, μ such that $\lambda \leqq \mu$ let there be a relation $\Phi_{2, \mu} \leqq H_{\lambda} \times H_{\mu}$ with the domain (codomain) H_{λ} satisfying the two conditions:
(i) $\Phi_{2 \lambda,}$ is equality for all $\lambda \in \Lambda$;
(ii) if $\lambda \leqq \mu \leqq v$, then $\Phi_{\mu \nu} . \Phi_{2 \mu} \leqq \Phi_{\lambda \nu}$.

Then there is a family $\left(x_{2} \in H \mid \lambda \in \Lambda\right)$ such that $\left\langle x_{\lambda}, \sim_{\mu} \in \Phi_{\lambda_{\mu}}\right.$ if $\lambda \leqq \mu$.
Now let L be the distributive poproduct of the distributive lattices L_{p} $(p \in P)$ with 0 , I. Let P obey $R(\mathfrak{m})$ and let each $L_{p}(p \in P)$ obey $R(\mathrm{mt})$ for $m>\mathbf{N}_{0}$ and regular.

If J is a - representation of $a \in L$, we call $\overline{\bar{J}}$ the runk of the representation and $\sum_{X \in, J} X$ the length of the rej resentation $(a=V(\wedge X \mid X \in J))$.

If $I I \subseteq L$, then a - representation of $I I, J(H)$, is a family $\left(J_{a_{1}} a \in H\right)$, whele J_{a} is a - representation of a. If n is an integer and the rank of J_{a} is n for each $a \in H$, then $J(H)$ is aid to have the rank n. A - representation $J(I I)$ of H is said to be special of for each $a . b \in H$, the following conditions
hold $\left(J_{d} \in J(H)\right.$ and $J_{b} \in J(I I)$ are - representations of 4 and b. respectı vely):
(1) if $J_{a} \quad 1$, then $x, y \in X_{a},\left\{X_{a}\right\}-J_{a}$ and $x \leqq y$ imply that $x \quad y$: if $J_{0}=-1$, then $X, Y \in J_{a}$ and $\wedge X \leqq \wedge Y$ imply that $X \quad Y^{\prime}$;
(2) if $J_{a}-1, J_{b}-1$, then $a \leqq b$ imply that for each $!y \in Y,\{Y\} \quad J_{l}$ there is an $\quad . \in X,\{X\} \quad J_{a}$ such that $x \leqq y$;
if $. J_{a}>1$ or $. J_{b}>1$, then $a \leqq b$ imply that for each $X \in \cdot J_{a}$ there is $Y . J_{1}$ such that $\backslash X \leqq Y$.

Each $H \subseteq L$ has a special - representation: by Theorem 2 a normal representation is special. A special representation need not be nommal athe example in [6| shows.

We shall show that if C is a chain in L. then $C<m$. Let $J(C)$ be a spectal representation of C. For each $n<\mathbb{N}_{0}$ let $C_{n} \quad\left\{a \quad C\right.$ rank $J_{a} \quad n_{\text {; }}$ Then $J\left(C_{n}\right)-\left(J_{a} a \in C_{n}\right)$ is a special / - representation of C_{n} of rank " We shall show by induction according to a rank of the representation thit $C_{n}<\mathrm{m}$.

Lemma 4. Let C be a chain in L that has a special - represtntation of raml. 1 Then $\mathrm{C}<\mathrm{m}$.

Proof. Let $J\left(C^{\prime}\right)$ be a special v representation of C of rank 1. For each integer n let $C^{(n)}=\left\{a \in C\right.$ |length $\left.J_{a} \quad n\right\}$. Then $J\left(C^{(n)}\right) \quad\left(J_{a} a \in C^{(n \prime)}\right.$ ia special representation of $C^{(n)}$ of length n. We shall show by induction according to the length of the representation that $C^{(\prime \prime)}<\mathrm{m}$.

If $n \quad 1$, then $C^{(1)}$ is a chain in Q, so $C \overline{\overline{(1)}}<\mathrm{m} . \mathrm{mt} \quad \mathrm{m}$.
Now suppose that for all $k<n$ there is $C^{\overline{(\bar{i})}}<\mathrm{m}$ and $C^{(}(\prime) \geq m$.
For $a \in C^{(n)}, J_{a}=\left\{X_{a}\right\}, a \quad \wedge X_{(}$. We use Lemma 3 for $\Lambda \quad C^{(n)}, H_{\text {; }}$;

- $X_{a} . a \leqq b: \Phi_{a b}=\left\{\langle x, y\rangle \mid x \in X_{a}, y \in X_{b}, x \leqq y\right\}$. Then there is a famil! $\Psi-\left(x_{a} x_{a} \in X_{a}, a \in C\right)$ such that $\left.x_{a}, x_{b}\right\rangle \in \Phi_{a b}$ if $a \leqq b$. Since Ψ 'is a se cial - representation of rank 1 and length 1 of a chain in $L, \Psi<$ m. Be cause m is regular, there is a subset $C^{(n)^{\prime}} \subseteq C^{(n)}$ such that $C^{(n)^{\prime}} \geqq M$ and if $a, b \in C^{(n)^{\prime}}$ and $x_{a}, x_{b} \in \Psi$, then $x_{a}-x_{b}$. The family $\mathscr{G} \quad\left(\left\{X_{a} \quad\left\{x_{a}\right\} ; \not{ }^{\prime}\right.\right.$ $\in C^{\left.(u)^{\prime}\right)}$ has cardinality $\geqq \mathrm{m} . \mathscr{G}$ is a representation of rank 1 , length $u \quad 1$ of some subset $G \subseteq L$. It is a special representation - condition (1) follow. from the speciality of $J\left(C^{(n)}\right)$) and condition (2) as well: let $a \leqq b, a, b \in C^{(}(1)$ and $y \in X_{b}-\left\{x_{b}\right\}$. Then there is $x \in X_{a}$ such that $x \leqq y$. If $x x_{u}$, then $x_{b}=x_{a}=x$, hence $x_{b} \leqq y$ and the speciality of $\left.J\left(C^{(n)}\right)\right), y \in C^{\prime}(n)$ implic-$x_{b}-y$. Thus $x \neq x_{a}$ and \mathscr{G} is a special representation of the chain (i. Thu$\mathrm{C}_{\dot{t}}<\mathrm{m}$, which is a contradiction. Therefore $C^{(\overline{(\bar{n}})}<\mathrm{m}$. Wince $\mathrm{ml}>\mathfrak{N}_{0}$ and regular, there holds $C-\sum_{\| N_{0}} C \bar{m}$. Lemma 4 is proved.

Lemma 5. Let C be a chain in L that has a special - representation of remi: n. Then $C<\mathrm{mt}$.

Proof. Let n be the smallest integer such that there is a chain $C \subseteq L$ where $C \geq m$ and C has a spucial representation $J(C)$ of rank u. Note that by Lemma $+n>1$. We use Lemma 3 for $A C, H_{2} J_{a}, a<b$. .$\Phi_{d b} \quad\left\{X, Y \quad X \in J_{a}, Y \subset J_{l} \wedge X \leqq \wedge Y\right\}$. Then there is a family χ
$\left(X_{a} X_{a} J_{a}, J_{a} \in J(C), a \in C^{\prime}\right)$ such that $\wedge X_{a} \leqq \wedge X_{b}$, whenever $a \leqq b$ Siner $\%$ is a special - repres ntation of rank 1 of a chain in L, by lemma 4 $\% \quad \mathrm{~m}$. Since m is regular, th re is a subset $C^{\prime} \cong C^{\prime}$ such that $C^{\prime} \geqq m$ and if $a, b \in C^{\prime}$ and $X_{a}, X_{b} \in \chi$, th ${ }^{\prime} n X_{a} \quad X_{b}$. The family $\mathscr{H} \quad\left(J_{a} \quad\left\{X_{a}\right\}\right.$ a
(") has a cardinality $\geqq m$. $/ /$ is a representation of rank $n \quad 1$ of sume subset $I I \subseteq L$. It is a special representation, condition (I) follows from the speriality of $J(C)$ and condition (2) in the first case from Lemma 2 and in the second one as follows: let $a \leqq b, a, b \in C^{\prime}$ and $X \in J_{a}-\left\{X_{a}\right\}$. Then there is $Y \in J_{b}$ such that $\wedge V \leqq \wedge Y$. If $Y-X_{b}$, then $X_{a} X_{b} Y$, hence $X_{\text {a }} \quad Y, \wedge X \leqq \wedge Y-\backslash X_{a}$ and the speciality of $J(C), a \in C$ implies $X \quad X_{a}$. Thus $Y \in J_{b}-\left\{X_{b}\right\}$ und so H is a chain with a special - representation \mathscr{H}. However, rank $\mathscr{H} \quad n \quad \mathrm{l}$ and $\overline{\bar{H}} \geqq \mathrm{~m}$, contradicting the minimality of π. Lemma $\tilde{5}$ is proved.

Now let C be a chain in L that has a special / - representation C. Then $C \quad \bigcup_{s} U_{n}$, where $C_{n} \quad\left\{a \in C^{\prime}\right.$ rank $\left.J_{a} \quad n\right\}$. It was shown that $C_{n} \quad \mathrm{~m}$. since $\mathrm{mt} \quad \boldsymbol{N}_{0}$ and regular, $C \quad \sum_{\mathrm{N}_{0}} C_{n}<\mathrm{m}$ holds. The first part of theorem 3 is proved.

To prove the second part of the theorem, we note that an infinite distri butive lattice contains an infinte chain. Let P be firite and each $L_{p}(p \quad I)$ contain only finite chains, then each L_{p} is finite, $Q-\bigcup_{p \in I^{\prime}} L_{p}$ is a finite set and $L \leq 2$. . Conversely, if sorre L_{p} contain an infirite chain or P is infinite. then Q is infinite and $L \subseteq Q$ is infinite. Theorem 3 is proved.

REFERENCEN

[1] BALBES, R., HORN, A.: Orde sums of distributive lattıces. Pacif. J. Math. $2 /$. 1967, 421 435.
|O〕 DEAN, R. A.: Fıee lattices gent ated by partially ordered sets. Canad. J. Math. 16 . 1964. 136148.

14|(iRÄTZER, (.$:$ Unversal Alg, bra. London 1968.
it (iRÄTZER, (\&. LAKSER, H., PLATT, ('. R.: Freo product of lattices. Fundam.

[6] GRÄTZER, G.. LAKSER, H.: Chain conditıms in the distributıe fete preduct of lattices. Transactions AMS 144, 1969, 301-312.
[7] LADZIANSKA, Z.: Poproduct of lattices and Sorkin's theorem. Mat. ('a-. .), 197t. 2'7-251.
Received Apral 11, 1973

Matematick!y z.s+ar M. 1 I Obrancor mier" $\$ 1$
Sta !.j Broctolar I

