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CHAIN CONDITIONS IN THE DISTRIBUTIVE 
PRODUCT OF LATTICES 

ZUZANA LADZIANSKA 

This paper is concerned with a generalization of the distributive free product 
and the ordinal sum of distribulive lattices, so-called the Q — poproduct 
of distributive lattices. The noti )n of the Q1 -- poproduct was first introduced 
by B a l b e s and H o r n [1] und T the name of the order sum. Generally, the 
notion of the ,/f — poproduct for an arbitrary equitional class of lattices 
was introduced in [7]. 

We begin with some preliminary notions. 
Let P be a poset and let Lv, p e P be pairwise disjoint lattices. 
Let Q | J Lv be partially >rdered in the following way: a, b EQ, a ^ b 

if and only if one of the conditions (1) and (2) holds: 
(1) there is a p E P such that o, b E Lp and the relation a ^ b in LJP holds; 
(2) there are p, r e P such that a E LJV, be Lr and the relation p < t in the 

poset P holds. 
If / is a mapping from Q into 31 then fv denotes its restriction on Lp. 

Definition (see [7]). LM <// be an equational class of lattices. Let LJV, L e ,/f 
Id P be a poset. A lattice LJ is the Jf — poproduct of the lattices Lv<p e P, if: 
1. tin re is an isotone injection i : Q -> L such that for each p e P, iv is a lattice 

homomorphism\ 
2. if 31 e .//, then for every isotone mapping f : Q — 31. such that for each p e P, 

fp is a lattice homomorphism, there exists uniquely a lattice homoinorphisrn 
HJ : L -> 31 such that W . i — j 

We denote by Q the class of all distributive lattices. The Q — poproduct 
will be called also the distributive poproduct. 

Theorem 1 from [7] says that the Jf — poproduct is a generalization of 
the .'/T free product and the ordinal sum of lattices: the J f — poproduct 
forms the ;//' free product iff P is an anti-chain and the ordinal sum iff P 
is a chain. 

R e m a r k . If ;//\ £ ;/> •> are two equational classes of lattices and L is 
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the ./< •> — poproduct of lattices Lpc .// \ (p e P) , then L need not be in 
IN the following example shows. 

E x a m p l e . Let P {x,fi,y,d}, ft y oc, /) y d (see tig. i.). L ( t 

R Lß {a,Ъ}, a < Ь, Ly {c}, Lð — {i} (see fij Then £ (.cc 
fig. 3) i-, the L poproduct of Lp, p c P, but not the Q poproduct. 

In this paper the word problem for the Q poproduct is solved and the 
following theorem about the chain condition is proved: if m is a re mil u 
cardinal greater than s$o- then the Q poproduct of Lp, p P doe^ not 
contain a chain of the cardinality ^ m iff P and every Lp, p c P docs not 
•ontain a chain of the cardinality ^ m. The existence of the Q popro luct 

follows from [I]. 
We shall consider distributive lattices with 0,1. We shall use the met ocK 

of [(>]. Similarly to [u]. all results are applicable to the category of distribu i\ c 
lattices. 

1. The word problem 

Lemma 1. Let L be a distributive lattice with 0,1 and let ,\, y e L. Let M In 
a two element chain {0,1}. Jf x ^ y, then there exists a lattice homomo)} hii/n 
0:L >M such that &(x) \, 0(H) 0. The proof follows from the Sto 
no theorem ([3], Theorem 7.15). 
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Let L be the r/ poproduct of the family (Lv, p e P). The lattice operations 
m Jj v\ ill be denoted by \, Let Q ( J Lp. A finite nonempty subset 

X Q is said to be reduced if for e\ery two distinct elements x, y e X holds, 
if x LJV, y LJY, p, reP, then p r. For every finite nonempty set X there 
are unique reduced sets XA, A v such that A X - A(XA), \JX V(Xy). 
If X is oiven, let X ' { A(X n Lfi\i e P A } , where Px {p e P X n Lp # 0}, 
rriien XA is the set of x e X' uch that if XGLJP, there is no /y e Lr n X' 
>• p. The set Xv is construct d dually. 

Since L is a distributive lattice generated by Q, o£ch element a of K can 
be written (in a nonunique manner) as a (\/X\X e J), where J is a finite 
family of finite reduced subsets of Q. Conversely any such family yields an 
element ( / X X (= J) of L. 

Theorem 1. Ljet L be a distrib dire lattice generated by the poset Q ( J ^ . 
pel> 

Thai L i* tJi( ry — poproduct oj iJie Lp, p e P if and only if in L there holds 
Ljtt P\, Po be finite subsets of J*. Let xi t_ Lt for i G P and yj e L; for j P2 

TJun /\ xi < \ / //; implies that iJiere is at ha,*t one pair i, j (i < j), i e P\, 

j t- Po sitcJi tJiat Xi g ijj. 

Proof . The part ,,only if" of the theorc m has been pioved in [1], Lemma 1.9. 
We shall prove the sufficiency ( f the condition. Denote by L* the poproduct 
of IJV. p P. We shall show IV L. Let / be the identity mapping Q > L, 
then there exists a homomorpl ism 0 : L* -> LJ extending / , hence for g <EQ 
there holds 0(g) f(g) g. Wre shall show that 0 is an isomorphism. 0 maps 
L': onto LJ, because L is generated by Q. To prove that 0 is one-to-one it is 
enoimh to prove that a,hcL' . 0(a) <; 0(b) implies a <, b. Let a,bcJj*, 
0(a) < 0(b). The elements a, b could be A\ritten in the form a J(/\X X G 

J), h ( jZ Z c K), where u T, Z are reduced subsets of Q, hence 0(X) 
X. 0(Z) Z. Because 0 is a homomorphism, for every pair X, Z we have 

X < 0(a) ^ 0(b) <£ \/Z in LJ, therefore according to the assumption there 
are x e X, z Z such that x 5, z Then in LJ* there holds AX S x <, z ^ \/Z 
for every pair X. Z. Therefore a <; b in J7'\ The theorem is proved. 

Definition 1. A finite family J of finite reducid svbsefs of Q is said to be a 
upresentation of a e LJ if a \J ( \X\X e J). The family J is said to be a 
H presentation of neL if a— (\JXXEJ). 

Given a A representation J of an element a E LJ WC can write, using the 
distributivity, a V ( \(F{J))\P e C(J)), where C(J\ denotes the set of 
choice functions on J, that is, the set of functions F : J -> u J such that 
F(X)eX for each X G J. Hence a y (J,(F(J)A) F e C(J)) holds. Since 
the set C(J) is finite we can coi sider a subset Crea(J) = C(J), the set of re-
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ducccl choice functions such that the set {/\(F(J)A)\F c Crea(J)} is the set of 
all maximal elements of the set { /\(F(J)A)\F c C(J)}. Thus a — V( A (F(J)A) F 
cCrva(J)). The family {F(J)A\F c Crea(J)} is said to be a normal — reptc-
sentation of a. A normal — representation is defined dually. 

Each element a c L has a normal v — representation and a normal 
representation. From the definition it follows that if J\ is a normal — re
presentation of a, a= \J (/\X\X c J\), then X,X'cJ\ implies X X . 

Lemma 2. Lei L be the distributive poproduct of the distributive lattices (L;>, 
p c P). If X. Y are finite reduced subsets of Q, then /\X <, / Y in L if and only 
if for each y c Y there is an x c X such that x <, y. 

Proof . The sufficiency is clear and the necessity follows from Theorem \. 
Let y c Y, then /\X <, y, X is reduced, so there exists x c X such that A < //. 

Theorem 2. Let IJ be the distributive poproduct of the distributive lattices 
(Lp,pc P). Let a, b c L and let J\ be a — representation of a and J2 a normal 
V — representation of b. Then a <, b if and only if the following condition 
holds: 

For each X c J\ there is a Y cJ2 such that f\X <, / Y, that is. for each 
y c Y there is an x c X such that x <, y. 

Corollary. The normal — representation of any element of L is uniquely 
defined. 

P r o o f of T h e o r e m 2. The sufficiency is clear. Now let a, bcL. a <, b, 
a ^ (/\X\X cJ\), b — V( A Y\Y c J2). Because J2 is a normal — repre 
sentation, it has arised from some / — representation K: b ( Z Z K). 
where K is such that J2 = {F(K)A\F c Crea(K)} holds. Thus \(f X X c J\) < 
<: \(\JZ\Z c K). I t follows that for every pair XcJ\, Zc K holds X < 
<: J(/\X\XcJ\) <_ /\{WZZeK) < \jz". Let XcJ\. By Theorem 1 there 
are x e X and G(Z)cZ such that x ^ G(Z). Then /\X <, .r ^ G(Z). There
fore for each ZcK there is G(Z) cZ such that A A" <: G(Z). It follows ' X < 
:g \(G(ZyZ c K) = /\(G(K)A). By the definition of Crea(K) there is F e Cri 

(K) such that /\(G(K)A) ^ A(F(K)A). Therefore to each XcJ\ there exists 
Y F(K)AcJ2 so that / A <; A Y. The rest of the condition follows b\ 
Lemma 2. Thus the theorem is proved. 

P r o o f of c o r o l l a r y . Let a — \J(/\X XcJ\) — / ( / Y Y cJ2) an 1 let 
Ji, J2 be normal — representations. Let XcJ\. Then there exists Y e J2 

such that / X <, / Y. Similarly there is X' c J\ such that Y <, X 
Then /\X <, / Y <. / X\ but because of the normality of J\ we have A' 

X' = Y. Similar arguments prove that to every J <= Y2 there N A' J\ 
such that A Y. Thus ,/L — J2. 
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2. The chain conditions for regular cardinals 

Let m be an infinite cardinal. A poset P is said to satisfy the strong (weak) 
chain condition for m, if every chain in P has cardinality < m ( ^ m ) . I t will 
be denoted B(m) (ff'(m)). 

Theorem 3. Let L be the distributive poproduct of the distributive lattices Lp, 
p P. Let m be a regidar cardii al, m > No- Then there holds: L obeys i?(m) 
if and only if P and each Lp(p e P) obey ff(m). L obeys -ff(Xo) if and only if P 
i* finite and each Lp (p E P) obey .ff(Xo), i.e. P and eacli Lp (p e P) are finite. 

Corollary 1. Let m be an infinite cardinal. Then there holds: L obeys -ff'(m) 
if and only if P and eacJi Lp p e P) obey ff'(m). 

Corollary 1 immediately follows from Theorem 3, because m' > Xo is 
re^uhr for m' tlie succesor of it. 

Corollary 2. Let m be a regula cardinal, rrt > No- Then the following Jwlds: 
Thf distributive free product of tJie distributive lattices L[, iel obeys ff(m) 
if a) d only if each Lt (i e I) obeys R(m). 

Corollary 2 implies Theorem 4 from |5]. 

P r o o f of t h e T h e o r e m 3. 
1) the necessity is clear: if we take the ordinal sum of U lattices, n § m and 

if P is a chain with p \\, oi* the free product of lattices at least one of 
which does not obey .ff(m), then in L, ll(m) fails to hold. 

2) the sufficiency: Throughout the proof, the following lemma proved in 
[3] and [4] will be useful: 

Lemma 3. Let A be a chain a) d let :/f = (II?\X e A) be a family of finite sets. 
For each pair ?., /u such that }, <; ju let tfiere be a relation &?4l ^ H? x Hft witJi 
th( domain (codomain) II?, satisfying the two conditions: 
(i) 0;.;. is equality for all / EA\ 

(ii) if I ^ JU ^ v, then &MV . @?^ % 0Xv. 
Thai tJitre is a family (x?,e H\?,eA) siicJi tJiat (x?,, s^ eO?4L if / ^ /i. 

Now let L be the distr ibutee poproduct of the distributive lattices Lp 

(p <= P) with 0, 1. Let P obey Jr(m) and let each Lp (p e P) obey II(m) for 
m > No and regular. 

If J is a — representation of a e L, we call J the rank of the representation 
and y X the length of the re] resentation (a = \/(/\ X\X e J)). 

If JI q L, then a — representation of II, J(H), is a family (Jala e II), 
wheie Ja is a — representation of a. If n is an integer and the rank of Ja 

is n for each a e II, then J(H) is aid to have the rank n. A — representation 
J(JJ) of II is said to be special if for each a. b e H, the following conditions 
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hold (JaeJ(H) and Ji»eJ(TI) are — representa t ions of a and h. respec t i 

ve ly ) : 

( l ) i f Ja 1, then x,yeXa, {Xa} — Ja and x <, y imply t h a t x //: if 

Ja > 1, t hen A , y e , / f l and fX <, AY imply t h a t X Y; 

(2) if J(l — 1, J6 — 1, t h e n a <, b imply that for each // G Y, {Y} J/ there 

is an x e X, {X} Ja such t h a t x <^ y; 

if Jo > 1 or J ft > 1, t h e n O <: b imply t h a t for each X e J a t he re is Y J} 

such t h a t \ A <, Y. 

Each H g= L has a special — represen ta t ion : by Theorem 2 a no rma l 

represen ta t ion is special. A special represen ta t ion need no t be normal a^ 

t h e example in [C| shows. 

W e shall show t h a t if G is a chain in L. t h en C < in. Le t J(C) be a special 

r ep re sen t a t i on of C. For each H < Xo lot Cn {a C r ank Ja n) 

Then J(Cl}) — (Ja O G O?i) is a special / — represen ta t ion of Cn of r a n k n 

W e shall show b y induct ion according to a r ank of the represen ta t ion tha t 

Cn < m. 

Lemma 4. Let C he a chain in L that has a special — representation of ranL ! 

Then C < m . 

P r o o f . Lei J(G) be a special v represen ta t ion of C of r ank 1. Foi each 

integer n let GOO = {a e G | length J a %}. Then «/(£<")) (J f f l r /eCC") i-

a s])ecial representa t ion of (700 of length n. W e shall show by induc t ion 

according to t h e length of t he represen ta t ion t h a t C(») <^ m. 

If n I, then G^1) is a chain in Q, so Con < m . rn m. 

Now suppose t h a t for all h < n t he re is CW) < rrt and Cl») > m. 

F o r a e L7(">, Ja = {Xa}, a /\X0. W e use L e m m a 3 for A f <">, / / ; . 

- A a . a <, b : 0(lf} = {<<r, y}\x e A"a, ?y e l ^ , T <, y}. T h e n the re is a famih 

V — (Ta xa G A a , O G C) such t h a t T ^ , Tft> G 0aft if O g b. Since Vy is a s )e 

cial — represen ta t ion of r ank 1 a n d length 1 of a chain in L, *F <^ nt. Be 

eause m is regular , the re is a subset COO' g (7<w) such t h a t f u r ^ lit and 

if a, b G Coo' a n d .ra, .r& G V7, t h e n Ta — . iv The family <& ({Xa [xa\\ a 

G COO') has cardinal i ty ^ m. ^ is a represen ta t ion of r a n k 1, l ength n 1 

of some subse t G g; L . I t is a special represen ta t ion — condit ion (1) follows 

from t h e speciali ty of J(G^)) a n d condit ion (2) as wel l : le t a <? b, a. be Coo 

and y e XIJ — {T&}. Then t he re is xeXa such t h a t x <. y. If x xu, t hen 

xh = xa = x, hence xb ^ ?/ a n d the special i ty of J(C^l))), y G COD implies 

xb _ y. T h u s «r 4= Ta and ^ is a special r epresen ta t ion of t h e chain (7. T I U N 

(7 < m, which is a contradict ion. Therefore Coo < m. Since m ^ Xo and 

regular , t he re holds ( 7 - 2 ^^ < Tn* -Lemma ^ ^s p roved . 
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Lemma 5. Ljet C be a chain in L that has a special . — representatioi* of 
rani: n. Thai (J < m. 

P r o o f . Let n be the smallest integer such that there is a chain C g L 
"where C ~1 m and C lias a special representation J(C) of rank v. Note 
that by Lemma 4 n > 1. We use Lemma 3 for A C, Hi Ja, a < b • 
.<I>lh { X, Y XeJd, YcJi AX ^ AY}. Then there is a family % 

(Xa Xa Ja, JaeJ(C), a e C) such that AXa S AXb, whenever a <, b 
^inc* y is a special — repres ntation of rank 1 of a chain in JJ, b y lemma 4 
/ m. Since m is regular, th *re is a subset C g C such that C ^ m and 
if a.b KZ C and Xa, Xb e %, th m Xa Xb. The family M (Ja {Xa} a 

C) ha-> a cardinality ^ m. /r is a representation of rank n 1 of 
sume subset H g F. I t is a special representation, condition (I) follows from 
the speciality of <J(C) and condition (2) in the first case from Lemma 2 and 
in the second one as follows: let a < b, a,beC and XeJa — {Xaj. Then 
there is Y e Jb such that A ^ A Y. If Y — Xb, then Xa Xb Y, 
IK nee Xa Y, A^ ^ A T - \Xa and the speciality of J(C), aeC implies 
A" Xa. Thus Y G Jb — {-X"&} tnd so If is a chain with a special — repre
sentation //. However, rank J/ n 1 and Jf ^ m, contradicting the 
minimality of n. Lemma 5 is proved. 

No\\ let C be a chain in F that has a special / - representation C. Then 

^ U ('» ' A v n e r e Gn {ft e (̂  rank ./ff /*}. I t was shown that Cn m. 

N'nce m Xo and regular, O 2 ^ < m holds. The first part of theorem 3 
So 

is proved. 

To prove the second part of the theorem, we note that an infinite distri 

butive lattice contains an infinite chain. Let P be finite and each Lp (p P) 

contain only finite chains, then each LJP is finite, Q — j j TJP is a finite set 
peP 

and J, < 2-v. Conversely, if son e LJP contain an infirile chain or P is infinite, 
then Q is infinite and F g Q is infinite. Theorem 3 is proved. 
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