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Matematický časopis 19 (1969), No.4 

ON THE GENERAL PROBLEM OF ADJUSTMENT 
OF MEASURED VALUES 

LUBOMIR KUBACEK, Bratislava 

The aim of the present paper is the determination of the estimation ([1], [3]) 
of components of the N dimensional vector y and the ^-dimensional vector z 
which satisfy q conditions 

(1) x 0 + Xy + Xxz - 0 . 

I t is assumed that the vector xo and the matrices X and Xi are known. 
The rank of the matrix (X, Xi) is A(X, Xi) = q and for the matrix Xi we 
have A(Xi) = k < q, analogously. The condition N > q — k > 0 holds for N*). 

The components of the vector y can be measured and results of the measure
ment l±, ..., IN of the components y\, ..., y^ are the components of realization 
of the random vector / . . . N(y, o-2P-1). A diagonal matrix P is the matrix 
of weights pi > 0 of the results k, i = 1, . . . , N. The components zj, j = 1, 
. . . , k of the vector z cannot be measured. 

The above problem is sometimes called the adjustment of conditions with 
parameters ([2], [4]). The next problem is to determine how the statistical 
properties of calculated estimations are or how connections among them are. 

Lemma 1. Let A be a matrix of a positive definite quadratic form of the order 
N X N and let R be a matrix of the order q X N with the rank s ^ min (q, N). 
Then RAR' is of the rank s. 

(Proof in [1], p. 41.) 

Corollary. The matrix X P ^ X ' is of the rank A(X). 

Lemma 2. The matrix 

* If N = q — k, the system (1) would be a system of q equations with q unknows. 
According to the assumption that the matrix of system (1) is regular, the problem of the 
determination of the maximum likelihood estimation would be trivial. Therefore this 
possibility, will not be dealt with. * 
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(2) 
/XP-iX' x л 

l x; o) 
is of the rank q + k and is therefore regular. 

Proof . A(Xi) = k, A(X, Xi) = q hence A(X) ^ q — k. According to 
Lemma 1, A(XP- : LX') ^ q — k therefore 7&(XP_1X', Xi) ^ q, since linearly 
independent columns of the first submatrix remain linearly independent on 
the columns of the other submatrix. According to the first size of submatrices, 
A(XP _ 1X', Xi) = q holds. Analogously in a matrix 

/XPiX'\ 
\ Xx ) 

k rows of the submatrix X^ are linear independent on linearly independent 
rows of the submatrix X P _ 1 X ' hence all rows of the whole matrix (2) are 
linearly independent. 

Theorem 1. The conditional local extreme of a likelihood function holds for 
y =z I and z = z, resp., which satisfy equations 

o, 

m = x0 + XJ, 
v = p-iX'k , 
f =l + v. 

Proof . The likelihood function gains its local extreme when the corrections 
vi, i = 1, . . . , N, i. e. components of the vector v and values Zj,j=l,...,ki.e. 
components of the vector z, provide the minimum of the function . 

0{vl9 ...,vN;z!, ...,zk) = v'Pv — 2k'(Xv + XiZ + m) , 

where k is the g-dimensional vector of the Lagrange coefficients. 

&4> = 2(v'P, O') d j — j - 2k'(X, X i) d (—j = OJVH*,I, 

which shows that (v'P, O') = k'(X, Xi) and therefore v = P ^ X ' k ; X[k = O. 
If the two last relationships are considered in the system of conditions (1), 
then 

xo + X(/ + P-iX'k) + Xiz = Offfi 
X[k = Oui 

holds, which completes the proof. 
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Theorem 2. The extreme from Theorem 2 is the minimum of the function 0. 
Proof . Let 

(3) = / f i u , Q12V 
\ Q 2 I , Q22/ 

be a reciprocal matrix of (2). 
Then 

GQ11 + X1Q21 = \qq , 
(4) GQ12 + XiQ 2 2 = Oqk, 

X^Qn = Ofcg, 

XxQi2 = hk 

holds, where G = X P ^ X ' . 

Further the following holds: 

v'Pv = k'Ck = m'QnGQiim = (Xv + Xiz ) 'Qn(Xv + Xiz ) = v 'X 'QnXv. 

Theorem 1 and the first and third equality in (4) were applied. 
Now it will be shown that for another choice of vectors v and z, which 

obviously have to satisfy the conditions (1), v'Pv ^ v ' X ' Q n X v = m'Qnm = 
v'Pv will hold. 

The following holds: 

v 'X 'QnXv = v'P*p-*X'QnXP *P*v ; P*v = w ; 

p-*X'QnXP-* = U ; U' = U ; U2 = U. There is such an orthogonal 
matrix F, for which the following holds: FUF' = D, where D is a diagonal 
matrix and D2 = D, which means that the diagonal elements of the matrix D 
are only zeros or unities. If Fw is denoted by t, the following holds: 
v 'X 'Q nXv = w'F'FUF'Fw = t 'Dt . For the rank of the matrix D we have: 
h(D) = Sp(D) = S p ( F P - X ' Q n X P - F ' ) = Sp(XP-F'FP-*X'Qii) = Sp(lOT -
— X1Q21) = q — Sp(Q2iXi) = q — Sp(l**) = q — k. 
The relationships (4) and the rule &j>(ApqBqP) = Sp(BqpApq) were applied. 
For v'Pv we have: v'Pv = v'P^F'FP^v = t ' t and always v'Pv = t ' t ^ t 'Dt = 
= v ' X ' Q n X v = m'Qnm = v'Pv. 

Theorem 3. The vector k is a normal vector with at least q-k independent 
components k ... N(0, or2Qn). 

Proof . The vector A = / — y will be called an error vector. Obviously 
A...N(0, cr2?-1). For k we have: k = — Qu(x0 + Xy + XA) = 
— Qn(— Xiz + XA) = — QnXzl (with regard to Q11X1 = Off*). The 
mean value M(k) = — QnXJf(zl) = O and for the covariance matrix of the 
vector k the following holds: 2* = Q n X . M(AA') X ' Q n = a a Q n G Q n . 
With regard to Lemma 1 we have for the rank of the matrix Q n : 
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A(QnX) = A(Qn). Further, with regard to (4), Q 2 iX iQ 2 i = Q2i and 
XiQ 2 iX i = X i , which shows 7&(Q2i) = h(X±) = k. As the matrix Q is regular, 
A(Qn, Q12) = q and therefore A(Qn) ^ q — k. 

Theorem 4. The vector z is a normal vector with at most k independent com
ponents z ... N(z; G%(— Q22)). 

Proof, z = — Q2i(x0 + Xy + XA) = Q 2 iXiz — Q2iXzI. With regard to 
the last equation of (4) the following holds 

z —z= — Q2iXzJ; S^ = Q2iXo-2P-iX'Qi2 = c/2Q2iGQi2 = — cr2Q22, 

with regard to the second equation of (4). With regard to Lemma 1 A(Q2iX) = 
= A(Q22) ^ k. 

Lemma 3. / / s = Ax and t = Bx, where x ... N(ju, Sx), then A 2XB' = O 
is the sufficient and necessary condition for the statistical independence of the 
vectors s and t. (proof see in [3] p. 57.) 

Theorem 5. The vector i = / + v and the vector v are statistically independent. 
Proof . 7 - y = (I - P- iX'QnX)zJ; v = - P- iX 'QnXzL Next we have 

(I - P - i X ' Q i i X ) P - i X ' Q n X P - i = P - i X ' Q i i X P - i - P - i X ' Q i i G Q n X P - i = 

= 0-/V.ZV, with respect to the equation Q n G Q n = Q n which proves this 
theorem with regard to Lemma 3. 

Theorem 6. The vector z and the vector v are statistically independent. 

Proof, z —z= — Q2iXzJ; v = — P- iX 'QnXzL With regard to the 
relationships Q2iG = — Q22X^ and X^Qn = O, the following holds Q2 iXa2 

P - i X ' Q u X P - i = O, which proves this theorem with regard to Lemma 3. 

Theorem 7. Vector i is a singular normal vector with N — (q — k) independent 
components! . . . N(y; a2(P-i — P ^ X ' Q n X P - 1 ) ) . 

P r o o f . 7 - y = (I - P - i X ' Q n X ) z J , therefore 27 = a2(P-i - P - i X ' Q n X P - i ) . 
The rank of the matrix I — P - i X ' Q u X is denoted by h. We have h = 
= h(\ - P - i X ' Q n X ) = h[P*(\ - P-iX'QiiX)P"»] = h(\ — U), where U 
is the matrix from the proof of Theorem 2. There is such an ortogonal matrix 
F that FUF' is a diagonal matrix D, which satisfies the condition D2 = D. 
Since we can easily obtain h = &(l — U) = N — Sp(D) = N — (q — k). 

Theorem 8. The covariance matrix of the vector (i , z ') ' is 

2 7 9 - a 2 P- iX 'Qi 2 \ m 

*( i ) \ - a2Q 2 1 XP-i , S ž 

Proof . I t is sufficient to show that M[(l — y)(z — z)'] = — o--P--X'Qi2; 
/ _ y = (I _ p - iX 'QnX)z l , (z - z) ' = - J ' X ' Q w ; M(l - y)(2 - z)' = 
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— a
2[— p-iX'Qi2 + P-iX'QnXP-iX'Qia] . With regard to the relationships 

G = XP _ 1 X' and QnGQi2 = O from (4) the proof is obvious. 

Corollary. If u — /o + (f[ : f2) I•••) and u = /o + f'J + f2z, then u ... N(u\ 

a*(u)),wherea*(u) = a*(ffi^fi -fJP-iX'QnXP-ifi _ 2fiP-iX'Qi2f2 - f2Q22f2) . 

Theorem 9. The random variable v'Pv/a2 has the ^-distribution whith q—h 
degrees of freedom. 

Proof. Analogously as in the proof of Theorem 2 we have: 
v ' P V = (v'X'QnXP-1) P(P-1X'QnXv) . With regard to Theorems 1 
and 3 v = - P- iX'QiiXJ, therefore P- iX'QuX? = - P-OC'QuXJ. Since 
we have v'Pv = d ' X ' Q i i X P - W - i X ' Q i i X J = zJ'X'QnXzl . Let us denote 
Pvl = d . . . N ( 0 ; o-2l) Since v'Pv = d'Ud where U is a matrix from the 
proof of Theorem 2. If we denote F<5 = d ... N(0; a%\), then v'Pv = y'Dy 
where h(D) = Sp(D) = q—h, which proves this theorem. 

Theorem 10. For a weighted sumation of a posteriori dispersions of measured 
N N 

values 2 PiG2(h) the following holds ^ PiG2(h) = cr2(N — q + h). 
i=l i=l 

N 

Proof. 2 Pi°2{U) - Sp(P S7) = Sp[Pa2(P-! _ P-iX'QnXP"1)] = Sp[o-2(l -

- X'QnXP"1)] = a*[N _ Sp(XP-1X'Qn)] = a*(N - Sp(GQn)) = a*(N -
— q + 1c). Theorem 7, the rule of the trace of the product of matrices and 
results in the proof of Theorem 2 were utilized. 

Theorem 11. Let X be a matrix of the order q X N, where N ^ q (this case 
occurs often) andh(Y.) = q. Then for Q from Theorem 2 

Q u — G-1 _ G-iXi(XiG-iXi)- iXiG-i , 
Q i 2 = G-iXi(X;C-iXi)-i , 
Q22 - _ ( X ^ - i X i ) - 1 

Proof. With regard to Lemma 1 the matrices G and X^G^Xi are regular. 
By substituting (5) into (3) and by multiplication with (2) we can confirm 
that the statement is true. 

Corollary 1. In this case the vector h has q — h independent components. 

Proof. With regard to Lemma 1 and Theorem 3, 

ft(QnX) = A(QnXP-iX'Qii) = MQnGQn) = ft(Qii) = A(GQU) = q-h 

(see the proof of Theorem 2). 

Corollary 2. In this case the vector z is regular. With regard to Theorem 11 Q22 is 
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namely regular and therefore with regard to Theorem 4 we have A(Q2iX) = 
= A(Q22) = k. 

REFERENCES 

[1] Aндepcoн T.iBвeдeнue в мнoгoмepный cmamucmuчecкuй aнaлuзy Гocyдapcтвeннoe 

издaтeльcтвoфизикo-мaтeмaтичecкoйлитepaтypы,Mocквa, 1963 (пepeвoд c aнглийc-
кoгo). 

[2] Bj r h a m m a r A., Rectangular reciprocal matrices with special reference to geodetгc 
calculation, Bull. geodésiqu 20 (1951), 188 — 220. 

[3] Л и н н и к Ю. B.: Memoд нauмeнъшux квaдpamoв u ocнoвы мameмamuкocmamucmu-
чecкoй meopuu oбpaбomкu нaблюђeнuщ Гocиздaт физикo-мaтeмaтичecкoй литepaтypы 
Mocквal962. * J ť ' 

[4] S t e a r n J . L., R i c h a r d s o n H., Adjustment of conditions гvith parameters and error 
analysis, Bull. géodésiqu 64 (1962), 117—135. 

Received Jun 20, 1967. 

Ustav teórie merania 
Slovenskej akadémie vied 

Bratislava 

275 


		webmaster@dml.cz
	2012-07-31T17:16:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




