## Matematický časopis

## Joseph E. Kuczkowski

On the Frattini Ideal in a Certain Class of Semigroups

Matematický časopis, Vol. 22 (1972), No. 1, 3--5
Persistent URL: http://dml.cz/dmlcz/126794

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# ON THE FRATTINI IDEAL IN A CERTAIN CLASS OF SEMIGROUPS 

JOSEPH E. KUCZKOWSKI, Purdue University - Indianapolis, Indianapolis, Indiana

Let $S$ be a semigroup and consider the law $x y z y x=y x z x y$ for all $x, y, z \in S$. The commutative semigroups and all subsemigroups of class 2 nilpotent groups (see Neumann-Taylor [3]) satisfy this law. Accordingly, this law will be called the $C_{2}$ law and any subsemigroup of a group which satisfies it will be referred to as a class 2 semigroup.

The Frattini ideal, $\Phi(S)$, of a semigroup $S$ is the intersection of all the maximal ideals of $S$. According to $S$. Schwarz [4], $\Phi(S)$ is always non-empty, provided that $S$ has maximal ideals. A. D. Kacman [2] and, more recently, P. A. Grillet [1] and S. Schwarz [4] discuss several aspects of this ideal in their respective papers and the reader is referred to their articles for relevant definitions. Kacman concentrates his efforts on invariant subsemigroups of groups, which, of course, includes the commutative case.

The purpose of this note is to expand on some of Kacman's existence theorems by showing that the Frattini ideal exists: (1) if $S$ is a finitely generated, pure, class 2 semigroup and (2) if $S$ is a centerless, class 2 semigroup with a minimal (though not necessarily finite) set of generators. It may be recalled that a pure subsemigroup of a group is a semigroup without pairs of mutually inverse elements.

1. Theorem. Let $S$ be a finitely generated, pure, class 2 semigroup. Then, $S$ possesses a maximal ideal.

Proof. Let $S=$ sem $\left\{s_{1}, \ldots, s_{n}\right\}$ be the semigroup generated by the elements $s_{1}, \ldots, s_{n}$ of $S$. Consider the ideal generated by $s_{1}^{3}, i\left(s_{1}^{3}\right)$. It will be shown that $i\left(s_{1}^{3}\right)$ is a proper ideal of $S$. If $i\left(s_{1}^{3}\right)$ is not a proper ideal of $S$, then $s_{1} \in i\left(s_{1}^{3}\right) . s_{1}$ is of the form $s s_{1}^{3}, s_{1}^{3} s$ or $s s_{1}^{3} t$ for some $s, t \in S$. Using the last representation of $s_{1}$ as an element of $i\left(s_{1}^{3}\right)$, the contradiction that 1 , the identity element of the group, belongs to $S$ will be drawn. The other representations of $s_{1}$ as an element of $i\left(s_{1}^{3}\right)$ require similar arguments. Thus, suppose $s_{1}=s s_{1}^{3} t$ for some $s, t \in S$. Then by the $C_{2}$ law, $s_{1}^{3}=s s_{1}^{3} t . s s_{1}^{3} t . s s_{1}^{3} t=s s_{1}^{3} . s s_{1}^{3} t^{3} s s_{1}^{3}$ so that $1=s s_{1}^{3} s s_{1}^{3} t^{3} s$ and 1 belongs to $S$. Since $S$ is pure, this is not possible.

The above argument proves the existence of a proper ideal $J$ which does
not meet $s_{1}$. Let $K_{1} \supseteq J$, where $K_{1}$ is an ideal maximal with respect to the property of not containing $s_{1}$, and consider $i\left(K_{1}, s_{1}\right)=J_{1}$, the ideal generated by $K_{1} \cup\left\{s_{1}\right\}$. If $J_{1}=S$, then $K_{1}$ is the maximal ideal sought. If not, choose $K_{2} \supseteq J_{1}$, where $K_{2}$ is an ideal maximal with respect to the property of not containing $t_{2}$, the first of $s_{2}, \ldots, s_{n}$ not contained in $J_{1}$. Since $S=\operatorname{sem}\left\{s_{1}, \ldots, s_{n}\right\}$, by continuing this process a $K_{j} \supseteq J_{j-1} \supseteq \ldots \supseteq J$ must be reached where $i\left(K_{j}, t_{j}\right)=S$ and $K_{j}$ is the maximal ideal sought.

Remark. The following statement, Theorem 2, comes as a consequence of Theorem 1 and the previously mentioned theorem of Schwarz. However, an alternate proof for Theorem 2 is given which also illustrates what $\Phi(S)$ is equal to.
2. Theorem. If $S$ is a finitely generated, pure, class 2 semigroup, then $\Phi(S)$ is non-empty.

Proof. Since $S$ is finitely generated, there exists a set $\beta=\left\{b_{j} \mid j=1, \ldots, n\right\}$ which generates $S$. As in the proof of Theorem $1, i\left(b_{j}^{3}\right)$ avoids $b_{j}$. Thus, for each $j$, there exists an ideal $M_{j}$, maximal in that it avoids $b_{j}$. According to Theorem 1, $S$ possesses at least one maximal ideal. Any maximal ideal avoids some $b_{j}$ and consequently is equal to $M_{j}$. Let $J=\left\{j^{\prime} \mid j^{\prime}\right.$ is some $j$ for which $M_{j}$ is maximal $\}$ and $\beta^{\prime}=\left\{b_{j^{\prime}} \mid j^{\prime} \in J\right\} . \Phi(S)=\bigcap_{j^{\prime} \in J} M_{j^{\prime}}$. It will be shown that $\Phi(S)$ is not empty and, in fact, exhibit what it is equal to. $i\left(\prod_{j^{\prime} \in J} b_{j^{\prime}}^{3}\right)$ is, as in the proof of Theorem 1, an ideal which avoids $\beta^{\prime}$. This implies the existence of an ideal $M_{\Phi}$ which is maximal with respect to the property of avoiding $\beta^{\prime}$. Clearly, $M_{\Phi} \subseteq \Phi(S)$. On the other hand, for any $x \in \Phi(S), i(x) \subseteq M_{j^{\prime}}$, for each $j^{\prime} \in J$ and, consequently, $b_{j^{\prime}} \notin i(x)$ for each $j^{\prime} \in J$. Thus, $i(x) \subseteq M_{\Phi}$ and $x \in M_{\Phi}$. In view of the above, $\Phi(S)=M_{\Phi}$.
3. Theorem. Let $S$ be a centerless, class 2 semigroup with a minimal set of generators $\beta$. Then $\Phi(S)=S-\beta$.

Proof. Let $\beta=\left\{b_{\alpha} \mid \alpha \in A\right\}$. Each $b_{\alpha}$ is non-decomposable in $S$, that is, $b_{\alpha}$ cannot be presented as a product of two elements in $S$. For, suppose $b \in \beta$ and $b=s t$, with $s, t \in S$. Since $b$ is a member of a minimal generating set, $s$ or $t$ must contain $b$ as a factor. If $s=b s_{1}$ or $t=t_{1} b$, with $t_{1}, s_{1} \in S \cup\{1\}$, then $S$ possesses an identity element, contrary to hypothesis. On the other hand, suppose $b=s t=s_{1} b t_{1}$, with $s_{1}, t_{1} \in S$. Then, $b^{-1} s_{1}^{-1} b s_{1}=t_{1} s_{1} \in S$. Since $S$ is a class 2 semigroup, it generates a class 2 group (see NeumannTaylor [3]) so that the commutator $b^{-1} s_{1}^{-1} b s_{1}$ is central in the group generated by $S$. Thus, $S$ possesses a central element, also contrary to hypothesis.

Since $b_{\alpha}$ is non-decomposable, $S-b_{\alpha}$ is clearly an ideal of $S$, and all maximal ideals are of such a form. It is now apparent that $\Phi(S)$ exists and is equal to $S-\beta$.

## REFERENCES

[1] GRILLET, P. A.: Intersections of maximal ideals in semigroups, Amer. Math. Monthly 76 (1969), 503-509.
[2] KACMAN, A. D.: On generators and non-generators of semigroup invariant in a group, Ucen. Zap. Ural. Gos. Univ. 19 (1956), 43-50. (Russian.)
[3] NEUMANN, B. H. - TAYLOR, T.: Subsemigroups of nilpotent groups, Proc. Roy. Soc. Ser. A, 274 (1963), 1-4.
[4] SCHWARZ, Š.: Prime ideals and maximal ideals in semigroups, Czechoslovak Math. J. 19 (94) 1969, 72-79.

Received January 23, 1970
Purdue University - Indianapolis
Indianapolis, Indiana, U.S.A.

