Matematický časopis

Juraj Bosák; Pál Erdös; Alexander Rosa
Decompositions of Complete Graphs into Factors with Diameter Two

Matematický časopis, Vol. 21 (1971), No. 1, 14--28
Persistent URL: http://dml.cz/dmlcz/126805

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DECOMPOSITIONS OF COMPLETE GRAPHS INTO FACTORS WITH DIAMETER TWO

JURAJ BOSÁK, Bratislava, PÁL ERDÖS, Budapest (Hungary) and ALEXANDER ROSA, Hamilton (Canada)

In the present paper the question is studied from three points of view whether to any natural number $k \geqslant 2$ there exists a complete graph decomposable into k factors with diameters two. The affirmative answer to this question is given and some estimations for the minimal possible number of vertices of such a complete graph are deduced. As a corollary it follows that given k diameters $d_{1}, d_{2}, \ldots, d_{k}$ (where $k \geqslant 3$ and $d_{i} \geqslant 2$ for $i-1,2,3, \ldots, k$), there always exists a finite complete graph decomposable into k factors with diameters $d_{1}, d_{2}, \ldots, d_{k}$. Thus Problem 1 from [1] is solved.

In this paper we deal only with nonoriented graphs. By a factor of a graph G^{*} we mean any subgraph of G containing all the vertices of G. By a diameter of G we understand the supremum of the set of all distances between the pairs of vertices of G (e.g. a disconnected graph has the diameter ∞). The symbol $\langle n\rangle$ denotes the complete graph with n vertices.

Let k be a natural number. By a decomposition of a graph G into k factors we mean a finite system $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}\right\}$ of factors of G such that every edge of G belongs to exactly one of the factors $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$. The symbol $F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ denotes the smallest natural number n such that the complete graph $\langle n\rangle$ can be decomposed into k factors with diameters $d_{1}, d_{2}, \ldots, d_{k}$; if such an n does not exists, we put $F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right)=\infty$. Further, put $f_{k}(d)=F_{k}(d, d, \ldots, d)$. The main aim of the present paper is to find estimations for $f_{k}(2)$. From [1] it follows that $f_{2}(2)=5,12 \leqslant f_{3}(2) \leqslant 13$.

Theorem 1. For any integer $k \geqslant 3$ we have:

$$
4 k-1 \leqslant f_{k}(2) \leqslant\binom{ 6 k-7}{2 k-2}
$$

Proof. To prove the upper estimation it suffices to decompose the graph

$$
G=\left\langle\binom{ 6 k-7}{2 k-2}\right\rangle
$$

into k factors with diameters two. The vertices of G can be represented by $(2 k-2)$-tuples formed from elements $1,2,3, \ldots, 6 k-7$. The i th factor ($i \quad 1,2, \ldots, k$) consists of all edges joining ($2 k-2$)-tuples with just $i-1$ common elements. The remaining edges can be added to any factor. It is easy to prove that all the factors have diameter two.

Suppose that for some $k \geqslant 4$ we have $f_{k}(2) \leqslant 4 k-2$. Then, according to Theorem 1 of [1], $\langle 4 k-2\rangle$ is decomposable into k factors $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$ with diameter two. Put $n=4 k-2$. None of the factors $\varphi_{i}(i=1,2, \ldots, k)$ may have a vertex of degree $n-1$ (otherwise the other factors are not con1 ected), therefore, by [4], φ_{i} has at least $2 n-5$ edges. The number of all edges of n is

$$
\binom{n}{2} \geqslant k(2 n-5)
$$

whence it follows that

$$
\begin{equation*}
n^{2}+10 k \geqslant 4 k n+n . \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
n^{2}+10 k & =16 k^{2}-6 k+4 \\
4 k n+n & =16 k^{2}-4 k-2
\end{aligned}
$$

thus for $k \geqslant 4$ we have $n^{2}+10 k<4 k n+n$, which contradicts (1). For $k \quad 3$ our assertion follows from [1], Theorem 7.

Remark. The upper estimation given in Theorem 1 is too high. Therefore we later present some methods enabling to improve it, namely for a ,small" k in the second part of this article, and for a ,,great" k in the third part.

Lemma 1. Let $k \geqslant 2,2-d_{1} \leqslant d_{2} \leqslant d_{3} \leqslant \ldots \leqslant d_{k}<\infty$. We have: $F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right) \leqslant f_{k}(2)+d_{1}+d_{2}+\ldots+d_{k}-2 k$.

Proof. From Theorem 1 it follows that $f_{k}(2)$ is a natural number. If d_{1} $d_{2} \quad \ldots=d_{k}=2$, the assertion of the lemma is evident. Thus we can suppose that there exists an integer $i(1 \leqslant i \leqslant k-1)$ such that $d_{1}=d_{2}$
$\ldots \quad d_{i} \quad 2<d_{i+1} \leqslant \ldots \leqslant d_{k}$. Let us construct a decomposition of the graph

$$
G=\left\langle f_{k}(2)+d_{1}+d_{2}+\ldots+d_{k}-2 k\right\rangle
$$

'nto k factors with diameters $d_{1}, d_{2}, \ldots, d_{k}$.

The vertex set of G consists (as we may suppose) of vertices u_{1}, u_{2}, $u_{3}, \ldots, u_{f_{k}(2)}$ and of vertices $v_{j, 1}, v_{j, 2}, v_{j, 3}, \ldots, v_{j, d_{j} 2}(i+1 \leqslant j \leqslant k)$. Obviously, the total number of vertices is $f_{k}(2)+d_{1}+d_{2}+\ldots+d_{k}-2 k$. The complete subgraph of G generated by the vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{f_{k}(2)}$ according to the definition of $f_{k}(2)$ can be decomposed into k factors $\varphi_{1}, \varphi_{2}, \ldots$, φ_{k} with diameter two. Define a decomposition of G into factors φ_{m}^{\prime} (m $=1,2, \ldots, k$) thus: Into φ_{m}^{\prime} there belong (i) all the edges of φ_{m}; (ii) all the edges $u_{s} v_{j, t}\left(1<s \leqslant f_{k}(2), i+1 \leqslant j \leqslant k, 1 \leqslant t \leqslant d_{j}-2\right)$ such that the edge $u_{s} u_{1}$ belongs to φ_{m} and $j \neq m$; (iii) all the edges of the path $u_{1} v_{m, 1} v_{m, 2} \ldots$ $v_{m, d_{m}-2}\left(\right.$ if $m \geqslant i+1$). All the remaining edges are placed into φ_{1}^{\prime}.

It is easy to show that φ_{m}^{\prime} has diameter $d_{m}(m=1,2, \ldots, k)$. The lemma follows.

Lemma 2. Let $k \geqslant 3,2 \leqslant d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{k}<\infty$. Then we have:
$F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right) \leqslant\binom{ 6 k-7}{2 k-2}+d_{1}+d_{2}+\ldots+d_{k}-2 k$.
Proof. Distinguish two cases:
I. $d_{1}=2$. Then the assertion follows from Lemma 1 and Theorem 1 .
II. $d_{1}>2$. By [1], Theorem 4, we have:

$$
F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right) \leqslant d_{1}+d_{2}+\ldots+d_{k}-k
$$

Since for any $k \geqslant 2$ we have

$$
k \leqslant\binom{ 6 k-7}{2 k-2}
$$

the lemma follows.
Corollary. Let $k \geqslant 3,2 \leqslant d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{k} \leqslant \infty$. Then $F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ is a natural number.

Proof. If $d_{k}<\infty$, our assertion follows from Lemma 2. If $d_{2}=\infty$, the assertion follows from [1], Theorem 3. Therefore we may suppose that $d_{2}<\infty$, $d_{k}=\infty$, i. e. there is an integer $i(2 \leqslant i \leqslant k-1)$ such that $2 \leqslant d_{1} \leqslant d_{2} \leqslant$ $\leqslant \ldots \leqslant d_{i}<\infty=d_{i+1}=d_{i 2}=\ldots=d_{k}$.

If $i \geqslant 3$, according to Lemma $2, F_{i}\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a natural number. Therefore the finite complete graph

$$
G=\left\langle F_{i}\left(d_{1}, d_{2}, \ldots, d_{i}\right)\right.
$$

is decomposable into i factors with diameters $d_{1}, d_{2}, \ldots, d_{i}$. If we add $k-i$ null factors (i. e., factors without edges), we obtain a decomposition of G into k factors with diameters $d_{1}, d_{2}, \ldots, d_{i}, d_{i}, \ldots, d_{k}$.

If $i \quad 2$, then according to Theorem 8 of $[1] F_{3}\left(d_{1}, d_{2}, d_{3}=\infty\right)$ is a natural number. Since

$$
F_{k}\left(d_{1}, d_{2}, d_{3}=\infty, \ldots, d_{k}=\infty\right) \leqslant F_{3}\left(d_{1}, d_{2}, d_{3}=\infty\right)
$$

then $F_{k}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ is also a natural number. The corollary follows.
Remark. As the supposition $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{k}$ is not essential, the preceding corollary completely solves Problem 1 from [1], p. 53.

Let a natural number n and a set $A \subseteq\{1,2, \ldots, n\}$ be given. A is called an S_{n}-set if each $x \in\{1,2, \ldots, n\}, x \notin A$ can be written in at least one of the following forms

$$
\begin{aligned}
& x=a+b \\
& x=a-b \\
& x=2 n+1-(a+b)
\end{aligned}
$$

where $a, b \in A$.
Let k be a natural number. Denote by $g(k)$ the least natural number l such that the set $\{1,2, \ldots, l\}$ can be partitioned into k disjoint S_{l}-sets. (If such \imath natural number l does not exist, put $g(k)=\infty$.)

Lemma 3. $f_{k}(2) \leqslant 2 g(k)+1$ for any integer $k \geqslant 2$.
Proof. Let natural numbers m and n be given. We shall call a finite graph (without loops or multiple edges) with m labelled vertices $v_{1}, v_{2}, \ldots, v_{m}$ cyclic, if it contains with each edge $v_{i} v_{j}(i, j \in\{1,2, \ldots, m\})$ the edge $v_{i}{ }_{1} v_{j+1}$ (the indices taken modulo m) as well. By the length of an edge $v_{i} v_{j}$ we mean the number

$$
\min \{i-j|, m-|i-j|\}
$$

Evidently, a cyclic graph contains either every or no edge of length i for each $i \in\{1,2, \ldots,[m / 2]\}$.

Assign to a given S_{n}-set A a cyclic graph with $2 n+1$ vertices containing edges of length i if and only if $i \in A(i=1,2, \ldots, n)$. It is clear that thus a one-to-one correspondence between cyclic graphs with $2 n+1$ labelled vertices with diameter two and S_{n}-sets is defined. Further, it is obvious that to different [disjoint] S_{n}-sets different [edge-disjoint, respectively] cyclic factors with diameter two of $\langle 2 n+1\rangle$ are assigned. Therefore the assertion of the lemma follows immediately from the definitions of $f_{k}(2)$ and $g(k)$.

Let natural numbers n, i, integers c, d and a set $A \subseteq\{1,2, \ldots, n\}$ be given. Denote by red ${ }_{n} c$ the (uniquely determined) integer r such that

$$
\begin{aligned}
r & \equiv c(\bmod 2 n+1) \\
|r| & \leqslant n
\end{aligned}
$$

Further, put

$$
\begin{aligned}
r^{(i)} & =\left|\operatorname{red}_{n} r^{i}\right| \\
c \circ d & =\left|\operatorname{red}_{n} c d\right| \\
c \circ A & =\{c \circ d ; d \in A\}
\end{aligned}
$$

Evidently, we always have

$$
\begin{align*}
& 0 \leqslant c \circ d \leqslant n \tag{*}\\
& c \circ A \subseteq\{0,1,2, \ldots, n\}
\end{align*}
$$

Lemma 4. If n and r are such natural numbers that the greatest common divisor $(2 n+1, r)=1$ and A is an S_{n}-set, then $r \circ A$ is an S_{n}-set as well.

Proof. Choose $x \in\{1,2, \ldots, n\}$. It suffices to prove that either $x \in r \quad A$ or there exist $a, b \in A$ such that one of the equalities

$$
\begin{aligned}
& x=r \quad a+r \circ b, \\
& x=r \circ a-r \circ b \\
& x=(2 n+1)-(r \circ a+r \circ b),
\end{aligned}
$$

holds.
It is easy to see that there is a $y \in\{1,2, \ldots, n\}$ such that $r \circ y-x$. In fact as $(r, 2 n+1)=1$, the congruence

$$
r z \equiv x(\bmod 2 n+1)
$$

has a solution $z \in\{1,2, \ldots, 2 n\}$. If $1 \leqslant z \leqslant n$, we put $y \quad z$, and if $n+1$ $\leqslant z \leqslant 2 n$, we put $y=2 n+1-z$.

Since A is an S_{n}-set, either $y \in A$ or there exist $a, b \in A$ such that one of the following cases occurs:

$$
\begin{aligned}
& y=a-b \\
& y=a+b \\
& y=2 n+1-(a+b)
\end{aligned}
$$

If $y \in A$, then evidently $x=r \circ y \in r \circ A$. Let us analyze the other cases (all the following congruences are related to the modul $2 n+1$).
(I) $y=a-b$. Obviously $\pm r \circ y \equiv r y-r a-r b$, where $r a \equiv \pm r a$, $r b \equiv \pm r \circ b$.

By examining all 8 possibilities for choice of signs we find that one of the following 4 cases occurs (we use inequality (*)):

$$
\begin{array}{rl}
x-r \circ y \equiv r \circ a+r \circ b, \text { hence } x=r \circ a+r \circ b, \\
x & r \circ y \\
x & \quad r \circ y \equiv-r \circ a+r \circ b, \text { hence } x=r \circ b-r \circ a, \\
x & r \circ y \\
x & \equiv-r \circ a-r \circ b \equiv(2 n+1)-r \circ a-r \circ b, \\
& \text { so } x=2 n+1-(r \circ a+r \circ b) .
\end{array}
$$

(II) $y \quad a+b$. Evidently

$$
\pm k \circ y \equiv k y=k a+k b \equiv \pm k \circ a \pm k \circ b
$$

where we again have 8 possibilities for choice of the signs. Further procedure is the same as in case (I).
(III) $y \quad 2 n+1-(a+b)$. We have: $\pm k \circ y \equiv k y=k(2 n+1)-k a$
$k b-k a-k b \equiv \mp k \circ a \mp k \circ b$. Further we proceed as in case (I). The lemma follows.

Lemma 5. Let r, n and k be such natural numbers that
(1) $2 n 1$ is a prime number,
(2) k divides n,
(3) r is a primitive root of $2 n+1,\left({ }^{1}\right)$
(4) $A \quad\left\{r^{(k)}, r^{(2 k)}, r^{(3 k)}, \ldots, r^{(n)}-1\right\}$ is an S_{n}-set.

Then $g(k) \leqslant n$.
Proof. From (1) and (3) it follows that $(r, 2 n+1)=1$ and that the nu mbers $r, r^{2}, \ldots, r^{n}, \ldots, r^{2 n}$ represent all non-zero residue classes modulo $2 n+1$. From this fact it can be easily deduced that $\left\{r^{(1)}, r^{(2)}, \ldots, r^{(n)}\right\}-\{1,2, \ldots, n\}$. From (2) and (4) it follows that the sets $A, r \circ A, r^{2} \circ A, \ldots, r^{k} 1 \circ A$ are mutually disjoint. They are S_{n}-sets, as it follows from (4) and Lemma 4. Therefore the set $\{1,2, \ldots, n\}$ can be decomposed into k disjoint S_{n}-sets, consequently $g(k) \leqslant n$.

Lemma 6. We have: $g(1) \leqslant 1, g(2) \leqslant 2, g(3) \leqslant 6, g(4) \leqslant 20, g(5) \leqslant 35$, $g(6) \leqslant 78, g(7) \leqslant 98, g(8) \leqslant 96, g(9) \leqslant 189, g(10) \leqslant 260$.

Proof. We use the method from Lemma 5: we look for such a multiple n of k that (1) is valid and the least primitive root r of $2 n+1$ satisfies (4). With the help of tables of the least primitive roots of primes (see, e. g. [5]) we can construct the following S_{n}-sets A :
${ }^{(1)}$ A natural number r is called a primitive root of a prıme number p if the numbers $r, r^{2}, r^{3}, \ldots, r^{1} \equiv 1$ represent all non-zero residue classes modulo p.

$$
\begin{aligned}
& k=1, n=1, r=2, A=\{1\} \\
& k=2, n=2, r=2, A=\{1\} \\
& k=3, n=6, r=2, A=\{1,5\} \\
& k=4, n=20, r-3, A=\{1,4,10,16,18\} \\
& k=5, n=35, r=7, A=\{1,20,23,26,30,32,34\} \\
& k=6, n=78, r=5, A=\{1,4,14,16,27,39,46,49,56,58,64,67,75\} . \\
& k=7, n=98, r=2, A=\{1,6,14,19,20,33,36,68,69,77,83,84
\end{aligned}
$$

$$
87,93\} .
$$

$$
k=8, n=96, r=5, A=\{1,7,9,12,16,43,49,55,63,81,84,85\}
$$

$$
k=9, n=189, r=2, A=\{1,5,25,39,51,52,57,68,76,86,91,93,94
$$

$$
119,124,125,133,138,162,163,184\}
$$

$$
k=10, n=260, r=3, A=\{1,10,18,29,32,42,52,55,62,74,98,99
$$ $100,101,106,114,176,180,197,201,219,226,231,235,237,255\}$.

To check that they are S_{n}-sets is a matter of routine. The rest of the proof follows from Lemma 5.

Remark. It can be easily found that even $g(1)=1, g(2)=2, g(3) \quad 6$. By a systematic examination we can also establish that $g(4) \quad 20$, but, on the other hand, $g(5)-30$. (The inequality $g(5) \leqslant 30$ follows from the fact that $A=\{1,5,6,11,14,29\}, 3 \circ A, 3^{2} \circ A, 3^{3} \circ A$ and $3^{4} A$ are disjoint S_{30}-sets.)

Theorem 2. We have: $f_{2}(2) \leqslant 5, f_{3}(2) \leqslant 13, f_{4}(2) \leqslant 41, f_{5}(2) \leqslant 61, f_{6}(2) \leqslant 157$, $f_{7}(2) \leqslant 193, f_{8}(2) \leqslant 193, f_{9}(2) \leqslant 379, f_{10}(2) \leqslant 521$.

Pr oof. For $k \neq 5, k \neq 7$ the upper estimation of $f_{k}(2)$ follows from Lemmas 3 and 6. For $k=5$ it suffices to apply Lemma 3 and the preceding remark. For $k=7$ we proceed thus: Evidently $f_{7}(2) \leqslant f_{8}(2)$, because from a decomposition of a complete graph into 8 factors with diameter two we obtain a decomposition into 7 factors with diameter two by unifying edges of any two of the 8 given factors leaving the other 6 factors without any change. Since $f_{8}(2) \leqslant 193$, we have $f_{7}(2) \leqslant 193$ as well.

Lemma 7. There exists a natural number N such that for all naturals $n>N$ we have: The number A_{n} of all factors of $\left\langle n\right.$ with $\left.t \quad[\rceil 3 n^{3} \log n\right]$ edges and with a diameter greater than two is less than

$$
\left.\begin{array}{c}
1 \\
n
\end{array}\binom{n}{2}\right)
$$

Proof uses methods similar to those used in [2].
(I) Pick a vertex x of $\langle n$. Let i be an integer for which

$$
0 \leqslant i \leqslant t
$$

holds. Denote by a_{i} the number of factors of $\langle n\rangle$ with t edges, in which the degree of x is i. Evidently, we have:

$$
a_{i}=\binom{n-1}{i}\left(\begin{array}{c}
n-1 \\
2 \\
t-i
\end{array}\right)
$$

(II) Put $\left.l \quad[] 3 n \log ^{-} n\right]$. Prove that there is a number N_{1} such that for $i \quad 0,1,2, \ldots, l$ and for every natural $n>N_{1}$ we have

$$
a_{i}<\begin{gathered}
1 \\
a_{2 l}
\end{gathered} .
$$

It is easy to see that for any natural n the inequalities

$$
\begin{aligned}
& n l \leqslant t \\
& 2 l \leqslant t
\end{aligned}
$$

are valid. Now, we have:

$$
\begin{aligned}
& \left.\frac{a_{i}}{a_{2 l}}=\frac{\binom{n-1}{i}\binom{n-1}{2}}{t-i} \begin{array}{l}
\binom{n-1}{2 l} \\
\binom{n-1}{2} \\
t-2 l
\end{array}\right), \\
& =\frac{(i+1)(i+2) \ldots 2 l}{(n-i-1)(n-i-2) \ldots(n-2 l)} \times \\
& \times \frac{\left(\binom{n-1}{2}-t+2 l\right)\left(\binom{n-1}{2}-t+2 l-1\right) \ldots\left(\binom{n-1}{2}-t+i+1\right)}{(t-2 l+1)(t-2 l+2) \ldots(t-i)}< \\
& <\begin{array}{c}
(i+1)(i+2) \ldots 2 l
\end{array}{ }_{(n-i-1)(n-i-2) \ldots(n-2 l)}^{(t-2 l+1)(t-2 l+2) \ldots(t-i)}- \\
& \frac{(i+1)(i+2) \ldots 2 l}{2^{2 l i}} \cdot\binom{n}{t}^{2 l-i} \cdot \frac{n^{2 l i}}{(n-i-1)(n-i-2) \ldots(n-2 l)} \times
\end{aligned}
$$

$$
\begin{gathered}
\times \frac{t^{2 l-i}}{(t-2 l+1)(t-2 l+2) \ldots(t-i)} \leqslant \frac{(i+1)(i+2) \ldots 2 l}{(2 l)^{2 l i}} \times \\
\times\left(\frac{n}{n-2 l}\right)^{2 l-i} \cdot\left(\frac{t}{t-2 l+1}\right)^{2 l-i} \leqslant \frac{l+1}{2 l} \cdot \frac{l+2}{2 l} \ldots \frac{2 l}{2 l} \cdot\left(\frac{n}{n-2 l}\right)^{2 l} \times \\
\times\left(\frac{t}{t-2 l+1}\right)^{2 l} \leqslant\left(\frac{3}{4}\right)^{l-1} \cdot\left(\sqrt{\frac{5}{4}}\right)^{2 l} \cdot\left(\sqrt[4]{\frac{5}{4}}\right)^{2 l}=\frac{5}{4} \cdot\binom{15}{16}^{l-1}< \\
<\frac{5}{4}\left(\frac{15}{16}\right)^{V / n}<\frac{1}{n^{3}}
\end{gathered}
$$

for every natural $n>N_{1}$, if N_{1} is a sufficiently large constant.
(III) Let us prove that the number $B_{n}(x)$ of the factors of $\langle n$ with t edges, in which the degree of x does not exceed l, is less than

$$
\left.\frac{1}{2} \frac{\binom{n}{2}}{t}\right)
$$

for every sufficiently large n.
Obviously, according to (II) for $n>N_{1}$ we have:

$$
\begin{gathered}
\left.\frac{n^{2} B_{n}(x)}{\left(\binom{n}{2}\right.} \begin{array}{c}
t \\
t
\end{array}\right) \\
\left.\leqslant n^{2} \frac{a_{0}+a_{1}+\ldots+a_{l}}{\left(\binom{n}{2}\right.} \begin{array}{c}
t
\end{array}\right) \\
\leqslant n^{2} \frac{a_{0}+a_{1}+\ldots+a_{l}}{a_{2 l}}=n^{2}\left(\frac{a_{0}}{a_{2 l}}+\frac{a_{1}}{a_{2 l}}+\ldots+\frac{a_{l}}{a_{2 l}}\right)< \\
<n^{2}(l+1) \frac{1}{n^{3}}=\frac{[\sqrt{3 n \log n}]+1}{n} .
\end{gathered}
$$

Evidently, the last expression tends to zero for $n \rightarrow \infty$. Therefore

$$
\frac{[\sqrt{3 n \log n}]+1}{n}<\frac{1}{2}
$$

Lor $n>N_{2}$, where N_{2} is a sufficiently large constant so that

$$
\frac{n^{2} B_{n}(x)}{\left(\begin{array}{c}
n \\
2 \\
t
\end{array}\right)}<\frac{1}{2}
$$

a. e.

$$
B_{n}(x)<\frac{1}{2} \frac{\binom{\binom{n}{2}}{t}}{n^{2}}
$$

for $n>\max \left\{N_{1}, N_{2}\right\}$.
(IV) We prove now that the number B_{n} of the factors of $\langle n$ with t edges containing a vertex of degree $\leqslant l$, is less than

$$
\left.\frac{1}{2 n}\binom{n}{2}\right)
$$

for $n>\max \left\{N_{1}, N_{2}\right\}$.
Evidently, we have

$$
B_{n} \leqslant \sum_{x} B_{n}(x),
$$

where x runs through the vertex set of $\langle n\rangle$. Therefore, using (III) we obtain

$$
\left.\left.B_{n} \leqslant \sum_{x} B_{n}(x)<n \frac{1}{2} \frac{1}{n^{2}}\binom{n}{2}\right)=\frac{1}{2 n}\binom{n}{2}\right)
$$

for $n>\max \left\{N_{1}, N_{2}\right\}$.
(V) Fix now two different vertices x and y of $\langle n\rangle$ and two integers i and j satisfying the relations $l<i<n, l<j<n$.

Denote by $D_{n}(x, y, i, j)$ the number of factors of $\langle n\rangle$ with t edges in which x has degree i, y has degree j, and x is not joined with y by an edge. We have:

$$
D_{n}(x, y, i, j)=\binom{n-2}{i}\binom{n-2}{j}\binom{n-2}{2} .
$$

Further, denote by $E_{n}(x, y, i, j)$ the number of factors of $\langle n$ with t edges in which x has degree i, y has degree j, and the distance of x and y is greater
than two. Evidently,

$$
E_{n}(x, y, i, j)=\binom{n-2}{i}\binom{n-2-i}{j}\binom{n-2}{2}
$$

We shall find a natural number N_{3} such that for every $n>N_{3}$ we have*

$$
\frac{E_{n}(x, y, i, j)}{D_{n}(x, y, i, j)}<\underset{n^{3}}{1}
$$

Obviously, we have:

$$
\begin{aligned}
\frac{E_{n}(x, y, i, j)}{D_{n}(x, y, i, j)} & -\frac{n-i-2}{n-2} \cdot \frac{n-i-3}{n-3} \ldots \frac{n-i-j-1}{n-j-1}< \\
& <\left(\frac{n-i-2}{n-2}\right)^{j} \leqslant\left(\frac{n-3-l}{n-2}\right)^{l 1}
\end{aligned}
$$

It is easy to see that there exists a natural number N_{3} such that for all $n>N_{3}$ we have

$$
\frac{n-2}{l+1} \gg 1
$$

Evidently, it suffices to prove that for every $n>N_{3}$ we have:

$$
\left(\frac{n-2}{n-3-l}\right)^{l+1}>n^{3}
$$

But for $n>N_{3}$ we have:

$$
\left(1+\frac{1}{n-2} \frac{1}{l+1}\right)^{n-2} l+1 .
$$

It follows that

$$
\begin{gathered}
\left(\frac{n-2}{n-3-l}\right)^{l+1}=\left(\left(1+\frac{1}{\frac{n-2}{l+1}-1}\right)^{l+1}\right)^{\frac{n-2}{n 2}}> \\
>\mathrm{e}^{(l+1)^{2}}>\mathrm{e}^{\left.\frac{(l+1)^{2}}{n n \log n}\right)^{2}}-n^{3} .
\end{gathered}
$$

(VI) Let C_{n} be the number of factors of $\langle n\rangle$ with t edges in which all the vertices have degrees greater than l and with diameters greater than two. From (V) it follows that for every $n>N_{3}$ we have:

$$
\begin{aligned}
& C_{n} \leqslant \sum_{(x, y)} \sum_{(i, j)} E_{n}(x, y, i, j) \leqslant \\
& <\sum_{(x, y)} \sum_{(i, j)} \frac{D_{n}(x, y, i, j)}{n^{3}}=\frac{1}{n^{3}} \sum_{(x, y)} \sum_{(i, j)} D_{n}(x, y, i, j)< \\
& \left.\left.\left.<\sum_{(x, y)} \frac{\binom{n}{2}}{t} \boldsymbol{t}\right) ~=\binom{n}{n^{3}} \cdot \frac{\binom{n}{2}}{n^{3}}\right)<\frac{\binom{n}{2}}{t} \boldsymbol{t}\right),
\end{aligned}
$$

where (x, y) runs through the set of all unordered pairs of different vertices of $n(i, j)$ runs through the set of all ordered pairs of integers such that $l<i<n, l<j<n$.
(VII) Put $N \max \left\{N_{1}, N_{2}, N_{3}\right\}$. Then, according to (IV) and (VI) for every natural number $n>N$ we have:

$$
\left.A_{n} \leqslant B_{n}+C_{n}<\frac{\binom{n}{2}}{t}\right) .+\binom{n}{2} .\binom{n}{t} .2 n=\frac{\binom{n}{2}}{2 n}
$$

The lemma follows.
Lemma 8. A natural number M exists such that for every integer $n>M$ we have: n contains

$$
\left[\sqrt{\left.\begin{array}{c}
n-2 \\
12 \log n
\end{array}\right]}\right.
$$

edge-disjoint factors with diameter two.
Proof. According to Lemma 7 there exists a positive integer N such that for every integer $n>N$ we have:

$$
\left.A_{n}<{ }_{n}^{1}\binom{n}{2}\right)
$$

Put

$$
u=\left[\frac{\binom{n}{2}}{t}\right]
$$

Evidently there is a natural number N_{4} such that for every $n>N_{4}$ we have $u<n$. Put $M=\max \left\{N, N_{4}\right\}$. Obviously for $n \geqslant 2$ we have:

$$
\begin{gathered}
u=\left[\frac{n(n-1)}{2\left[\sqrt{\left.3 n^{3} \log n\right]}\right.}\right] \geqslant\left[\frac{n(n-1)}{2 \sqrt{3 n^{3} \log n}}\right]= \\
=\left[\sqrt{\frac{n^{2}-2 n+1}{12 n \log n}}\right] \geqslant\left[\sqrt{\frac{n^{2}-2 n}{12 n \log n}}\right]=\left[\sqrt{\frac{n-2}{12 \log n}}\right] .
\end{gathered}
$$

- Therefore it suffices to prove that for $n>M$ the graph $\langle n\rangle$ contains u edgedisjoint factors with diameter two.

If we assume the contrary, then each of the

$$
\left.p=\frac{\prod_{i=0}^{u-1}\binom{n}{2}-i t}{t} ⿺\right)
$$

systems S consisting of u edge-disjoint factors of $\langle n\rangle$, each with t edges, contains at least one factor with diameter greater than two. Any such factor with t edges and with diameter greater than two occurs just in

$$
\left.q=\frac{\prod_{i-1}^{u-1}\binom{n}{2}-i t}{t} ⿺\right) .
$$

systems S. Therefore the number of factors of $\langle n\rangle$ with t edges and with a diameter greater than two is at least

$$
\left.\left.\begin{array}{c}
p \\
q
\end{array}=\begin{array}{c}
1 \\
u
\end{array}\binom{n}{2}\right)>{ }_{n}^{1}\binom{n}{2}\right)
$$

which contradicts Lemma 7. Thus Lemma 8 follows.
Theorem 3. There exists a positive integer K such that for any integer $k>K$ we have:

$$
f_{k}(2) \leqslant\left(\frac{49}{10}\right)^{2} k^{2} \log k
$$

Proof. Pick a natural number K_{1} such that for every $k>K_{1}$ we have

$$
\left[\left(\frac{49}{10}\right)^{2} k^{2} \log k\right]>M
$$

where M is the constant from Lemma 8.
Pick a natural number K_{2} in such a way that for any $k>K_{2}$

$$
k^{2} \log k \geqslant 750
$$

.and, consequently,

$$
-3 \geqslant-\frac{1}{250} k^{2} \log k
$$

Further, pick a natural number K_{3} such that for every integer $k>K_{3}$ we have:

$$
\left(\frac{49}{10}\right)^{2} \log k \leqslant k^{\frac{1}{2000}}
$$

Put $K=\max \left\{K_{1}, K_{2}, K_{3}\right\}$. Pick an integer $k>K$. Put

$$
n=\left[\left(\frac{49}{10}\right)^{2} k^{2} \log k\right]
$$

Then we have:

$$
\begin{gathered}
\frac{n-2}{\log n} \geqslant \frac{\left(\left(\frac{49}{10}\right)^{2} k^{2} \log k-1\right)-2}{\log \left(\left(\frac{49}{10}\right)^{2} k^{2} \log k\right)}=\frac{\left(\frac{49}{10}\right)^{2} k^{2} \log k-3}{2 \log k+\log \left(\left(\frac{49}{10}\right)^{2} \log k\right)} \geqslant \\
\geqslant \frac{\left(\frac{49}{10}\right)^{2} k^{2} \log k-\frac{1}{250} k^{2} \log k}{2 \log k+\log \left(\frac{1}{k^{2000}}\right)}=12 k^{2}
\end{gathered}
$$

It follows that

$$
k \leqslant \sqrt{\frac{n-2}{12 \log n}}
$$

where $n>M$. From Lemma 8 it follows that $\langle n\rangle$ can be decomposed into k edge-disjoint factors with diameter two (the remaining edges may be added to any factor). Consequently,

$$
f_{k}(2) \leqslant n \leqslant\left(\frac{49}{10}\right)^{2} k^{2} \log k
$$

The theorem follows.
Remark. It can be proved that there exist positive constants C_{1} and C_{2} such that

$$
C_{1} k^{2}<g(k)<C_{2} k^{2} \log k
$$

for every sufficiently large k; the left inequality is obvious; the right one can be obtained using similar methods as in our Theorem 3 and in [3]; this remains true even if we do not allow representations of the form $2 n+1-$ $-(a+b)$. Now, using Lemma 3 we can again obtain that $f_{2}(k)<C k^{2} \log h$ for certain constant C and all sufficiently large k.

Problem 1. Is $g(k) / k^{2}$ bounded?
Problem 2. Determine $\lim _{k \rightarrow \infty} \frac{f_{k}(2)}{k}$.

REFERENCES

[1] Bosák J., Rosa A., Znám Š., On decompositions of complete graphs into factors with given diameters, Theory of Graphs, Proc. Colloq. Tihany 1966, Akadémiai Kiadó, Budapest 1968, 37-56.
[2] Erdös P., Rényi A., On the evolution of random graphs, Magyar tud. akad. Mat. kutató int. közl. 5 (1960), 1761.
[3] Erdös P., Rényi A., Additive properties of random sequences of positive integers, Acta Arithm. 6 (1960), 83-110.
[4] Erdös P., Rényi A., Egy gráfelméleti problémáról, Magyar tud. akad. Mat. kutató int. közl. 7 (1962), 623-641.
[5] Виноградов И. М., Основы теории чисел, ГИТТ.І, Москва-Јенинград 1952.

> A magyar tudományos akadémia Matematikai kutató intézet, Budapest
> Matematický ústav Slovenskej akadémie vied, Bratislara
> McMaster University
> Department of Mathematics, Hamilton

