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M a t e m a t i c k ý časopis 21 (1971), N o . 1 

DECOMPOSITIONS OF COMPLETE GRAPHS 
INTO FACTORS WITH DIAMETER TWO 

JURAJ BOSÁK, Bratislava, PÁL ERDÓS, Budapest (Hungary) 
and ALEXANDER ROSA, Hamilton (Canada) 

In the present paper the question is studied from three points of view 
whether to any natural number k > 2 there exists a complete graph decom
posable into k factors with diameters two. The affirmative answer to this-
question is given and some estimations for the minimal possible number 
of vertices of such a complete graph are deduced. As a corollary it follows t h a t 
given k diameters d\,d2, ..., djc (where k > 3 and di ^ 2 for i — 1, 2, 3, . . . , k)T 

there always exists a finite complete graph decomposable into k factors with 
diameters d\,d2, ..., djc. Thus Problem 1 from [1] is solved. 

In this paper we deal only with nonoriented graphs. By & factor of a graph G 
we mean any subgraph of G containing all the vertices of G. By a diameter 
of G we understand the supremum of the set of all distances between the 
pairs of vertices of G (e. g. a disconnected graph has the diameter oo). The 
symbol (n) denotes the complete graph with n vertices. 

Let k be a natural number. By a decomposition of a graph G into k factors 
we mean a finite system {cp\,(p>2, • •, (pic) of factors of G such that every edge 
of G belongs to exactly one of the factors (p\,q)2, ..., (pjc. The symbol 
Fjc(d\, d2, ..., djc) denotes the smallest natural number n such t h a t the complete 
graph (ii) can be decomposed into k factors with diameters d\,d2, . ..,djc', 
if such an n does not exists, we put Fjc(d\,d2, ...,djc) = oo. Further, put 
fjc(d) = Fjc(d, d, ..., d). The main aim of the present paper is to find estimations 
for/*(2). From [1] it follows that/ 2 (2) = 5, 12 ^ /3(2) ^ 13. 

Theorem 1. For any integer k ^ 3 we have: 

(6k - 7\ 

<*-XA<*>«L__. 
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Proof . To prove the upper estimation it suffices to decompose the graph 

G= \\2k-2j/ 

into fc factors with diameters two. The vertices of G can be represented by 
(2fc — 2)-tuples formed from elements 1, 2, 3, . . . , 6fc — 7. The i th factor 
(i 1, 2, . . . , fc) consists of all edges joining (2fc — 2)-tuples with just i — 1 
common elements. The remaining edges can be added to any factor. I t is 
easy to prove that all the factors have diameter two. 

Suppose that for some fc ^ 4 we have fk(2) ^ 4fc — 2. Then, according 
to Theorem 1 of [1], <4fc — 2> is decomposable into fc factors cpi, (p2, ..., cpk 

with diameter two. Put n = 4fc — 2. None of the factors <pi (i = 1, 2, . . . , fc) 
may have a vertex of degree n — 1 (otherwise the other factors are not con-
i ected), therefore, by [4], cpi has at least 2n — o edges. The number of all 
edges of n is 

whence it follows that 

(1) n2 + lOfc ^ 4kn + n. 

But 
n2 + lOfc = 16fc2 — 6fc + 4, 

±kn + n= 16fc2 — 4fc — 2, 

thus for fc ^ 4 we have n2 + lOfc < 4kn + n, which contradicts (1). For 
fc 3 our assertion follows from [1], Theorem 7. 

R e m a r k . The upper estimation given in Theorem 1 is too high. Therefore 
we later present some methods enabling to improve it, namely for a ,,small" fc 
in the second part of this article, and for a ,,great" fc in the third part . 

Lemma 1. Let fc ^ 2, 2 — d\ < d2 ^ d% ^ . . . ^ dk < GO . TVe have: 
Fk(d\,d2,...,dk) ^fk(2) + d\ + d2 + ... + dk- 2k. 

Proof . From Theorem 1 it follows that fk(2) is a natural number. If d\ 
d2 . . . = dk = 2, the assertion of the lemma is evident. Thus we can 

suppose that there exists an integer i (1 ^ i ^ k — 1) such that d\ = d2 

di 2 < di+\ ^ . . . < dk. Let us construct a decomposition of the 
graph 

G = </*(2) + d\ + d2 + ... + dk - 2fc> 

'nto fc factors with diameters d\,d2, ..., dk. 
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The vertex set of G consists (as we may suppose) of vertices ui, u2, 
u3, . . . , % ( 2 ) and of vertices vjtl, vjf2,Vj^9 •••,vj,dj 2 (* + l < 3 ^ *)• Ob
viously, the total number of vertices is fk(2) + di + d2 + ... + dk — 2k. 
The complete subgraph of G generated by the vertices ui, u2, u%, ..., ufk{2) 

according to the definition offk(2) can be decomposed into k factors cpi, <p2, ..., 
<pk with diameter two. Define a decomposition of G into factors cp'm (m 
= 1, 2, . . . , k) thus: Into <pm there belong (i) all the edges of cpm; (ii) all the 
edges u8Vj,t (1 < s < fk(2), i + 1 ^ j ^ k, I ^ t ^ dj — 2) such tha t the 
edge usui belongs to cpm and J =}= m; (iii) all the edges of the path u\vmt\vmt2 •. • 
vm,dm-2 (if m ^ i + 1). All the remaining edges are placed into (p[. 

I t is easy to show that (pm has diameter dm (m = 1, 2, . . . , k). The lemma 
follows. 

Lemma 2. Let k ^ 3, 2 ^ di ^ c?2 ^ ... ^ dk < 00. Then we have: 
(6k - 7\ 

Fk(di,d2,...,dk) < \+di + d2 + . . . + 4 - 2 k . 
\2k — 2y 

Proof. Distinguish two cases: 
I . di = 2. Then the assertion follows from Lemma 1 and Theorem 1. 

I I . di > 2. By [1], Theorem 4, we have: 

Fk(di,d2, ...,dk) ^ di + d2+ ... + dk — k. 

Since for any k ^ 2 wre have 

/6k - 7\ 
k < 

\2k — 2 

the lemma follows. 

Corollary. Lel k ^ 3, 2 -̂  di < 0*2 < . . . < dk ^ 00. Then Fk(di, d2, ...,dk) 
is a natural number. 

Proof . If dk < 00, our assertion follows from Lemma 2. If d2 = 00, the 
assertion follows from [1], Theorem 3. Therefore we may suppose that d2 < 00, 
e^ = 00, i. e. there is an integer i (2 ^ i ^ k — 1) such that 2 ^ rfi ^ d2 ^ 
^ . . . ^ di < 00 = di+i = di 2= ... = dk. 

If i ^ 3, according to Lemma 2, Fi(di, d2, ..., di) is a natural number . 
Therefore the finite complete graph 

G= {Fi(di,d2,...,di) 

is decomposable into i factors with diameters di, d2, ..., di. If we add k — i 
null factors (i. e., factors without edges), we obtain a decomposition of G 
into k factors with diameters di,d2, ...,d[,di 1, ..., dk. 
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If i 2, then according to Theorem 8 of [1] F3(di, d2,d3 = co) is a natural 
number. Since 

Fjc(di, d2, rf3 = c o , . . . , djc = oo) ^ F3(di,d2,d% = oo), 

then Fjc(di, d2, ...,djc) is also a natural number. The corollary follows. 
R e m a r k . As the supposition di ^ d2 ^ . . . ^ djc is not essential, the 

preceding corollary completely solves Problem 1 from [1], p. 53. 

Let a natural number n and a set A c {1, 2, . . . , n} be given. A is called 
an Sn-set if each x e {1, 2, . . . , n}, x £ A can be written in at least one of the 
following forms 

x = a -f- b, 

x = a — b, 

x = 2n + 1 — (a -f b), 

where a,b e A. 
Let k be a natural number. Denote by g(k) the least natural number I such 

t h a t the set {1, 2, . . . , 1} can be partitioned into k disjoint Sj-sets. (If such 
•x natural number I does not exist, put g(k) = oo.) 

Lemma 3. fjc(2) < 2g(k) + 1/or any integer k ^ 2.. 
Proof . Let natural numbers m and n be given. We shall call a finite graph 

(without loops or multiple edges) with m labelled vertices vi,v2, ...,vm cyclic, 
if it contains with each edge VfVj (i,je{l, 2, ...,m}) the edge vt i#;+i (the 
indices taken modulo m) as well. By the length of an edge viVj we mean the 
number 

m\n{i —j\,m— \i — j \ } . 

Evidently, a cyclic graph contains either every or no edge of length i for 
each ie{\, 2, ..., [ra/2]}. 

Assign to a given S?i-set A a cyclic graph with 2n -f- 1 vertices containing 
edges of length i if and only if i e A (i = I, 2, ..., n). I t is clear that thus 
a one-to-one correspondence between cyclic graphs with 2w -f- 1 labelled 
vertices with diameter two and Sw-sets is defined. Further, it is obvious that 
to different [disjoint] S^-sets different [edge-disjoint, respectively] cyclic 
factors with diameter two of <2n + 1> are assigned. Therefore the assertion 
of the lemma follows immediately from the definitions of fjc(2) and g(k). 

Let natural numbers n, i, integers c, d and a set A c {l, 2, . . . , n} be given. 
Denote by rednc the (uniquely determined) integer r such tha t 
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r = c (mod 2n + 1), 

\r\ ^ n. 

Further, put 

r«> =. |rednr*|, 

c ° ( J = \redncd\, 

c ° A = {c ° d; d e A}. 

Evidently, we always have 

(*) 0 ^ c ° d ^ n, 

c o A^{0,l,2,...,n}. 

Lemma 4. If n and r are such natural numbers that the greatest common divisor 
(2n + 1, r) = 1 and A is an Sn-set, then r ° A is an Sn-set as well. 

Proof . Choose x e {1, 2, . . . , n}. I t suffices to prove that either x e r A 
or there exist a,b e A such that one of the equalities 

x = r a + r ° b, 

x =z r o a — r o b , 

x = (2n + 1) — (r o a + r ° b), 

holds. 

I t is easy to see that there is a y e {1, 2, . . . , n} such that r ° y — x. In fact 
as (r, 2n + 1) = 1, the congruence 

rz = x (mod 2^ -f- 1) 

has a solution z e {1, 2, ..., 2n}. If 1 ^ z ^ n, we put y z, and if n + 1 
^ 2 ^ 2n, we put /̂ = 2n + 1 — z. 

Since A is an S^-set, either y e A or there exist a,b E A such that one of 
the following cases occurs: 

y = a — b, 

y = a + b, 

y = 2n + 1 — (a + b). 

If y e A, then evidently x = r ° y er ° A. Let us analyze the other cases 
(all the following congruences are related to the modul 2n + 1). 

(I) y = a — b. Obviously _ r ° y = ry — ra — rb, where ra = _ r a, 
rb = _ r ° b. 
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By examining all 8 possibilities for choice of signs we find that one of the 
following 4 cases occurs (we use inequality (*)): 

x — r ° y = r ° a -f- r ° b, hence x = r°a-\-r°b, 

x r ° y = r ° a — r ° b, hence x = r ° a — r ° b, 

x r ° y = —r ° a -\- r ° b, hence x = r ° b — r ° a, 

x r ° y = —r ° a — r ° b = (2n -f- 1) — r ° a — T°b, 

so x = 2n -f- 1 — (r ° a -f- r ° b). 

(II) y a -\-b. Evidently 

±k ° y = ky = ka -f- kb = ±k ° a ±k ° b, 

A\here we again have 8 possibilities for choice of the signs. Further procedure 
is the same as in case (I). 

(III) y 2n + 1 — (a + b). We have: ±k ° y = ky = k(2n + 1) — ka 
kb — ka — kb = ^pk ° a =pk ° b. Further we proceed as in case (1). 

The lemma follows. 

Lemma 5. Let r, n and k be such natural numbers that 

(1) 2n 1 is a prime number, 
(2) k divides n, 
(3) r is a primitive root of 2n -f- 1, (*) 
(4) A {r<*>, rM), ?<W, ...,rW — 1} is an Sn-set. 

Then g(k) ^ n. 
Proof . From (1) and (3) it follows that (r, 2n + 1) = 1 and that the numbers 

r, r2, ..., rn, ..., r2n represent all non-zero residue classes modulo 2n -f- 1. 
From this fact it can be easily deduced that {r*1), r<2), . . . , r^)} — { 1 , 2 , . . . , n}. 
From (2) and (4) it follows that the sets A,r°A, r2 ° A, ...,rk 1 ° A are 
mutually disjoint. They are S^-sets, as it follows from (4) and Lemma 4. 
Therefore the set {1, 2, ..., n} can be decomposed into k disjoint S^-sets,, 
consequently g(k) ^ n. 

Lemma 6. We have: g(l) ^ 1, g(2) ^ 2, g(3) ^ 6, g(4) ^ 20, g(5) ^ 35, 
<7(<3) ^ 78, g(l) ^ 98, g(8) ^ 96, #(9) ^ 189, g(!0) ^ 260. 

Proof . We use the method from Lemma 5: we look for such a multiple n 
of k that (1) is valid and the least primitive root r of 2n -f- 1 satisfies (4). 
With the help of tables of the least primitive roots of primes (see, e. g. [5]) 
we can construct the following S^-sets A: 

(2) A natural number r is called a primitive root of a prime number p if the numbers 
r, r2, r3, . . ., rP - = 1 represent all non-zero residue classes modulo p. 
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h= 1, n = 1, r = 2, A = {1}. 
h = 2, n= 2, r = 2, A = {1}. 
Jfc = 3, w = 6, T = 2, .4 = {1, 5}. 
fc = 4, 7i = 20, r — 3, A = {1, 4, 10, 16, 18}. 
h = 5, n = 35, T = 7, .4 = {1, 20, 23, 26, 30, 32, 34}. 
h = 6, n=lS, r = 5, A = {1, 4, 14, 16, 27, 39, 46, 49, 56, 58, 64, 67, 75}. 
h = 7, n = 98, r = 2, 4 = {1, 6, 14, 19, 20, 33, 36, 68, 69, 77, 83, 84, 

87, 93}. 
h = 8, n = 96, r = 5, A = {1, 7, 9, 12, 16, 43, 49, 55, 63, 8V 84, 85}. 
k = 9, n = 189, r = 2, A = {1, 5, 25, 39, 5V 52, 57, 68, 76, 86, 9V 93, 94, 

119, 124, 125, 133, 138, 162, 163, 184}. 
h = 10, n = 260, r = 3, A = {V 10, 18, 29, 32, 42, 52, 55, 62, 74, 98, 99, 

100, 101, 106, 114, 176, 180, 197, 201, 219, 226, 231, 235, 237, 255}. 

To check that they are S^-sets is a matter of routine. The rest of the proof 
follows from Lemma 5. 

R e m a r k . I t can be easily found that even g(l) = V g(2) = 2, g(3) 6. 
By a systematic examination we can also establish that g(4t) 20, but, on 
the other hand, g(5) — 30. (The inequality g(5) ^ 30 follows from the fact 
tha t A = {1, 5, 6, 11, 14, 29}, 3° A, 32 ° A, 3 3 ° i and 34 A are disjoint 
Sjo-sets.) 

Theorem 2. Wehave:f2(2) ^ 5,/3(2) ^ 13,/4(2) ^ 4V/5(2) ^ 61,/6(2) ^ 157, 
/7(2) ^ 193,/8(2) ^ 193,/9(2) ^ 379, /10(2) ^ 52V 

P r oof. For h =f= 5, h 4= 7 the upper estimation of/^(2) follows from Lemmas 3 
and 6. For h = 5 it suffices to apply Lemma 3 and the preceding remark. 
For h = 7 we proceed thus: Evidently/7(2) ^ /s(2), because from a decom
position of a complete graph into 8 factors with diameter two we obtain 
a decomposition into 7 factors with diameter two by unifying edges of any-
two of the 8 given factors leaving the other 6 factors without any change. 
Since /8(2) ^ 193, we have/7(2) ^ 193 as well. 

Lemma 7, There exists a natural number N such that for all naturals n > N 
^ve have: The number An of all factors of (n ^vith t [| 3?i3 log n~\ edges and 
with a diameter greater than two is ILSS than 

t 

P r o o f uses methods similar to those used in [2], 
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(I) Pick a vertex x of <jt . Let i be an integer for which 

0 ^ i ^ t 

holds. Denote by â  the number of factors of <w> with t edges, in which the 

degree of x is i. Evidently, we have: 

щ = (•:')(<;•;>). 

(II) P u t I [j Snlogn]. Prove that there is a number Ni such that for 

i 0, 1, 2, . . . , I and for every natural n > Ni we have 

at 1 
< 

an n3 

I t is easy to see that for any natural n the inequalities 

nl ^ t, 
21 ^ t 

are valid. Now, we have: 

ai 

aгi 

ln-l\[\ 2 ) 
\ * ) \ t - i I 

ín-l\[\ 2 ) 
\ 2l ) \ t - 21 , 

(i+l)(i + 2)...2l 
X 

(n — i — \)(n — i — 2) . . . (n — 21) 

; ( ( - 7 i ) - t + . , ) ( ( - 7 . ) - . + , - , ) . . . ( ( - - . ) _ , + < + 1 ) 

(t — 21 + \)(t — 2/ + 2) ... (í — i) 

i V2\2l-i 

(i+ \)(i + 2)...2l 
< 

(n — i — \)(n - i — 2) . . . (n — 21) (t — 21 + \)(t - 21 + 2)... (t - i) 

(i + \)(i + 2) ...21 I n \2ř-* 7j2i i 
X 

2 2 Í Í \ í / (n — i — i)(n _ ; _ 2) . . . (n — 21) 
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pl-i 
X 

X 

(t — 21 + l)(í —2l + 2)...(t — i) 

\-»-* / í 

(»+ l ) ( i + 2)... 2/ 
s£ X 

(21) 21 i 

\n — 21 j [t — 21 + 1 

2І-І ł _L_ ]_ i + 2 2/ 
^ • ... — 

тг V 2 Z 

21 21 21 \n — 2l 
X 

X t Y í3 ^_1 

í — 2Z + 1 / 1 4 

5 \2 ' 

4 

5 \2Z 15У-1 

16 
< 

5 /l5\Vn 1 

4 \ 16/ n* 

for every natural n > Ni, if N± is a sufficiently large constant. 
( I l l ) Let us prove that the number Bn(x) of the factors of <ji with t edges, 

in which the degree of x does not exceed I, is less than 

'Gľ 
i \ t 

for every sufficiently large n. 
Obviously, according to (II) for n > N± we have: 

n2Bn(x) 

~W 
a0 + ai+ ... + at 

;ф) 
^ W 2 

a0 + aľ + ... + aг 

a2ï 

a0 , a_ 
+ — + ...+ , a2i a2i 

aЛ 

a2t 

< 

1 [l/Vnlogra] + 1 
< n-(f + 1)— = L J * J • 

n3 n 

Evidently, the last expression tends to zero for n-± oo. Therefore 

[\/3nlogn] + 1 1 
- ? <r — 

?i 
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tor n > N2, where N2 is a sufficiently large constant so that 

1 . e. 

1 
Bn(x) < — 

2 n* 

for n > max {Ni, N2}. 
(IV) We prove now that the number Bn of the factors of (n with t edges 

•containing a vertex of degree ^ I, is less than 

for n > max {Ni, N2}. 
Evidently, we have 

Bn ^ ^Bn(x), 
x 

where x runs through the vertex set of <w>. Therefore, using ( I I I ) we obtain 

; * ( » ) - * ( < ! > : 
Bn < > Bn{x) <n- — 

Z 2 » 
X 

for n > max {Nx, N2}. 

(V) Fix now two different vertices x and y of <w> and two integers i and j 
.satisfying the relations I < i < n, I < j < n. 

Denote by Dn(xt y, i,j) the number of factors of <?i> with t edges in which x 
has degree i, y has degree j , and x is not joined with y by an edge. We have: 

^M»7 2 ) (V ) (,©,)• 
Further, denote by En(x, y, i,j) the number of factors of (n with t edges 

jn which x has degree /, y has degree j , and the distance of x and y is greater 
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than two. Evidently, 

«*•»•'-fl-(" 7')(""/"')((" J'))• 
We shall find a natural number N3 such that for every n > N3 we have* 

En(x,y,i,j) 1 
< 

Dn(x,y,i,j) n3 

Obviously, we have: 

En(x, y,i,j) n — i — 2 n — i — 3 n — i — j — 1 

Dn(x, y,i,j) n — 2 n — 3 n—j — I 

ln — i — 2\1 ln— 3 - A* 1 

< 

\ w — 2 y \ ^ — 2 y 

I t is easy to see that there exists a natural number N3 such that for all 
n > N3 we have 

7 ^ — 2 

> 1. 

Evidently, it suffices to prove that for every n > N3 we have: 

n — 2 V+i 
> w3. 

x w — 3 — I 

But for n > N3 we have: 

I t follows that 

> e . 

n — 2 V+1 / / 1 \ »-2\ a+v 
= / / 1 + \ i+i \ « 2 > 

n—Ъ — l) I I n — 2 

7 + T - 1 

(Z+l)2 (1/Зwlogn)2 

> Є w 2 > Є n — П2 

2 4 



(VI) Let Cn be the number of factors of (jiy with t edges in which all t h e 

vertices have degrees greater than I and with diameters greater than two.. 

From (V) it follows that for every n > N3 we have: 

Cn ^ 2 2E*(x,y,i,j) ^ 
(x,y) tiJ) 

Dn(x,y,i,j) 1 \ ^ r n y 

1 = , > > Dn(x,y,i,j)< 
n6 n3 / j / j 

(x,V) (*.j) 

< 
ri* 2n 

where (x, y) runs through the set of all unordered pairs of different vertices, 

of n (i,j) runs through the set of all ordered pairs of integers such that 

I < i < n, I <j < n. 

(VII) P u t N m a x { N i , N 2 , i V 3 } . Then, according to (IV) and (VI) for 

every natural number n > N we have: 

Лn ^ Bn -|- cn < 

(Ф; 
2n 2n n 

The lemma follows. 

Lemma 8. A natural number M exists such that for every integer n > M 

we have: n contains 

n — 2 

12 log n 

edge-disjoint factors with diameter two. 

V 
P r o o f . According to Lemma 7 there exists a positive integer N such t h a t 

for every integer n > N we have: 



P u t 

u = 
( > ) 

Evidently there is a natural number N4 such that for every n > Ar

4 we have 

u < n. P u t M = max {A7, N4}. Obviously for n ^ 2 we have: 

u = 
7l(тг — 1) 

[2[j/3r^log7i]J 
> 

n(тг — 1) 

2 ]/3n3logn J 

тг2 — 2n + 1 

12тг log тг 
> 

тi2 — 2?г 

12?г log n 

n 

12 log 71 

Therefore it suffices to prove that for n > M the graph (n) contains u edge-
disjoint factors with diameter two. 

If we assume the contrary, then each of the 

p = 
u\ 

systems S consisting of u edge-disjoint factors of <TI>, each with t edges, 
contains at least one factor with diameter greater than two. Any such factor 
with t edges and with diameter greater than two occurs just in 

O - l ) ! 

systems S. Therefore the number of factors of (n) with t edges and with a dia

meter greater than two is at least 

' - • ( 6 ) ) > ' ( W 
q u \ t ) n\ t i 

which contradicts Lemma 7. Thus Lemma 8 follows. 

Theorem 3. There exists a positive integer K such that for any integer k > K 

we have: 
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/49\2 
fk(2) < I - kHogk. 

P r o o f . Pick a natural number K\ such t h a t for every k > Ki we have 

!49\2 

дo 
&2 log k >M, 

where M is the constant from Lemma 8. 
Pick a natural number K2 in such a way that for any k > K2 

and, consequently, 

k2log& ^ 750, 

— 3 ^ — — &2log&. 
250 * 

Further, pick a natural number K3 such that for every integer k > K$ 
we have: 

/49\ 2 _j_ 
— I log k -̂  fcooo. 

W 
P u t K = max {Ki, K2, K3}. Pick an integer k > K. P u t 

/49\2 

Then we have: 

!49\2 

» - 2 > _\\io/ 
Ä;2 log k — 1 — 2 

t49\2 

,loj 
k2 log k — 3 

logrc ' / / 4 9 \ 2 

log - kHogkj 2 log k + log II—J logfc 

f49\2 1 
- k2logk — £ 2 l og£ 

i 10/ 250 
^ -->-—L = 12k2. 

2 log & + log (k20W) 

I t follows that 

k ^ 
n — 2 

12 log 71 
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where n > 31. From Lemma 8 it follows that <w> can be decomposed into-
k edge-disjoint factors with diameter two (the remaining edges may be added 
to any factor). Consequently, 

/49 \2 
/*(2) < n ^ — k2\ogk. 

The theorem follows. 
R e m a r k . I t can be proved that there exist positive constants C\ and C* 

such that 

dk2 < g(k) < C2k
2 log k 

for every sufficiently large k\ the left inequality is obvious; the right one can 
be obtained using similar methods as in our Theorem 3 and in [3]; this re
mains true even if we do not allow representations of the form 2n + 1 — 
— (a -f- b). Now, using Lemma 3 we can again obtain tha t f2(Jc) < Ck2 log k 
for certain constant C and all sufficiently large k. 

Problem 1. Is g(k)/k2 bounded? 

fk(2) 
Problem 2. Determine lim . 

A,-*oo Ic 
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