Matematický časopis

Bedřich Pondělíček

A Relation for Closure Operations on a Semigroup

Matematický časopis, Vol. 23 (1973), No. 3, 249--256
Persistent URL: http://dml.cz/dmlcz/126880

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A RELATION FOR CLOSURE OPERATIONS ON A SEMIGROUP

BEDŘICH PONDĚLÍČEK, Poděbrady

Let S be a semigroup. The mapping $\mathbf{U}: \exp S \rightarrow \exp S$ is said to be a \mathscr{C}-closure operation if \boldsymbol{U} satisfies the following conditions:

$$
\begin{equation*}
\mathbf{U}(\varnothing)=\varnothing ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A \subset B \subset S \Rightarrow \mathbf{U}(A) \subset \mathbf{U}(B) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A \subset U(A) \text { for each } A \subset S \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{U}(\mathbf{U}(A))=\boldsymbol{U}(A) \text { for each } A \subset S \tag{4}
\end{equation*}
$$

For $x \in S$ we write simply $\mathbf{U}(x)$ instead of $\boldsymbol{U}(\{x\})$. A subset A of S will be called \boldsymbol{U}-closed if $\boldsymbol{U}(A)=A$. The set of all U-closed subsets of S will be denoted by $\mathscr{F}(U)$.

In [1] a certain relation for \mathscr{C}-closure operations \mathbf{U}, \mathbf{V} on S is studied, i. e.

$$
A \cap B=A B
$$

for every U-closed non-empty subset A of S and for every V-closed non-empty subset B of S.

In this paper we consider semigroups satisfying the relation

$$
\begin{equation*}
A \cap B=A B \cap B A \tag{5}
\end{equation*}
$$

for every U-closed non-empty subset A of S and for every V-closed non-empty subset B of S. We denote this fact by $\boldsymbol{U}_{\sigma} \boldsymbol{V}$.

Let $\mathscr{C}(S)$ denote the set of all \mathscr{C}-closure operations for a semigroup S. It is clear that σ is a symmetric relation on $\mathscr{C}(S)$.

Let $\boldsymbol{U}, \boldsymbol{V} \in \mathscr{C}(S)$. Then we define $\boldsymbol{U} \leqq \boldsymbol{V}$ if and only if $\boldsymbol{U}(A) \subset \mathbf{V}(A)$ for each $A \subset S$. The ordered set $\mathscr{C}(S)$ is a lattice (\wedge, \vee) and there holds

$$
\begin{equation*}
\mathbf{U} \leqq \mathbf{V} \Leftrightarrow \mathscr{F}(\mathbf{V}) \subset \mathscr{F}(\mathbf{U}) . \tag{6}
\end{equation*}
$$

(See [1]).

Lemma 1. Let $\mathbf{U}_{1}, \mathbf{V}_{1}, \mathbf{U}_{2}, \mathbf{V}_{2} \in \mathscr{C}(S)$ and $\mathbf{U}_{1} \leqq \mathbf{U}_{2}, \mathbf{V}_{1} \leqq \boldsymbol{V}_{2}$. If $\mathbf{U}_{1 \sigma} \boldsymbol{V}_{1}$ then $\mathbf{U}_{2} \sigma V_{2}$.
The proof follows from (5) and (6).
Let $\varnothing \neq A \subset S$. Put $\boldsymbol{L}(A)=S^{1} A=S A \cup A$ and $\boldsymbol{R}(A)=A S^{1}=A S \cup A$. Finally $\boldsymbol{L}(\varnothing)=\varnothing=\boldsymbol{R}(\varnothing)$. Clearly $\boldsymbol{L}, \boldsymbol{R} \in \mathscr{C}(S)$. Put $\mathbf{M}=\boldsymbol{L} \vee \boldsymbol{R}$ and $\boldsymbol{H}=$ $=\boldsymbol{L} \wedge \boldsymbol{R}$. Evidently $\boldsymbol{M}, \boldsymbol{H} \in \mathscr{C}(S) . \mathscr{F}(\boldsymbol{L}), \mathscr{F}(\boldsymbol{R}), \mathscr{F}(\boldsymbol{M})$ and $\mathscr{F}(\boldsymbol{H})$, respectively, is the set of all left, right, two-sided and quasi, respectively, ideals of S (including $\varnothing)$. We have $\mathbf{M}(A)=S^{1} A S^{1}=S A S \cup A S \cup S A \cup A$ and $H(A)=$ $=\mathbf{L}(A) \cap \boldsymbol{R}(A)$ for every non-empty subset A of S. (See [1].)

Theorem 1. Let $\mathbf{U}, \boldsymbol{V} \in \mathscr{C}(S)$. Then $\mathbf{U}_{\sigma} \mathbf{V}$ if and only if $H \leqq \boldsymbol{U} \wedge \boldsymbol{V}$ and $x \in$ $\in \mathbf{U}(x) \boldsymbol{V}(x) \cap \boldsymbol{V}(x) \mathbf{U}(x)$ for every $x \in S$.

Proof. Let $\boldsymbol{U}_{\sigma} \boldsymbol{V}$. Evidently $S \in \mathscr{F}(\boldsymbol{V})$. If $\varnothing \neq A \in \mathscr{F}(\mathbf{U})$, then $A=A \cap S=$ $=A S \cap S A$ and so A is a quasi-ideal of S. Thus $A \in \mathscr{F}(\boldsymbol{H})$, hence $\mathscr{F}(\mathbf{U}) \subset$ $\subset \mathscr{F}(\boldsymbol{H})$. It follows from (6) that $\boldsymbol{H} \leqq \boldsymbol{U}$. Similarly we obtain that $H \leqq \boldsymbol{V}$. Thus we have $\boldsymbol{H} \leqq \boldsymbol{U} \wedge \mathbf{V}$. By (4) we have $\mathbf{U}(x) \in \mathscr{F}(\boldsymbol{U})$ and $\boldsymbol{V}(x) \in \mathscr{F}(\boldsymbol{V})$ for every x of S. It follows from (3) and (5) that $x \in \boldsymbol{U}(x) \cap \boldsymbol{V}(x)=\boldsymbol{U}(x) \boldsymbol{V}(x) \cap$ $\cap \boldsymbol{V}(x) \boldsymbol{U}(x)$.

Let now $\boldsymbol{H} \leqq \mathbf{U} \wedge \mathbf{V}$ and let $x \in \mathbf{U}(x) \mathbf{V}(x) \cap \mathbf{V}(x) \mathbf{U}(x)$ for every $x \in S$. If $\varnothing \neq A \in \mathscr{F}(\mathbf{U})$ and $\varnothing \neq B \in \mathscr{F}(\mathbf{V})$, then by (6) $A \in \mathscr{F}(\boldsymbol{H})$ and $B \in \mathscr{F}(\boldsymbol{H})$. Hence A, B are quasi-ideals of S. Thus $A B \cap B A \subset A S \cap S A \subset A$ and $A B \cap B A \subset S B \cap B S \subset B$. Hence $A B \cap B A \subset A \cap B$. Let $x \in A \cap B$. Since $x \in A$, hence by (2) we have $\boldsymbol{U}(x) \subset \boldsymbol{U}(A)=A$. Similarly $\boldsymbol{V}(x) \subset B$. Thus $x \in \boldsymbol{U}(x) \boldsymbol{V}(x) \cap \boldsymbol{V}(x) \boldsymbol{U}(x) \subset A B \cap B A$. Therefore, $A \cap B \subset A B \cap B A$. This implies (5).

Corollary 1. Let $\mathbf{U}, \mathbf{V} \in \mathscr{C}(S)$ and let $\mathbf{H} \leqq \mathbf{U} \wedge \mathbf{V}$. Then the following conditions on S are equivalent:

1. $U_{\sigma} \boldsymbol{V}$;

2. $\mathbf{U}(x) \cap \boldsymbol{V}(y)=\mathbf{U}(x) \mathbf{V}(y) \cap \boldsymbol{V}(y) \mathbf{U}(x)$ holds for every $x, y \in S$,
3. $\mathbf{U}(x) \cap \boldsymbol{V}(x)=\mathbf{U}(x) \boldsymbol{V}(x) \cap \boldsymbol{V}(x) \boldsymbol{U}(x)$ holds for every $x \in S$.

Corollary 2. Let $\mathbf{U} \in \mathscr{C}(S)$ and let $\mathbf{H} \leqq \mathbf{U}$. Then the following conditions on S are equivalent:

1. $U_{\sigma} U$;
2. $A=A^{2}$ holds for every U-closed non-empty subset A of S;
3. $\boldsymbol{U}(x)=\boldsymbol{U}(x) \boldsymbol{U}(x)$ holds for every $x \in S$,
4. $x \in \mathbf{U}(x) \mathbf{U}(x)$ holds for every $x \in S$.

Theorem 2. The following conditions on a semigroup S are equivalent:

1. $\mathbf{M} \sigma \mathbf{M}$,
2. Every two-sided ideal of S is idempotent;
3. $x \in S x S x S$ holds for every $x \in S$.

Proof. $1 \Rightarrow 2$. This follows from Corollary 2.
$2 \Rightarrow 3$. Let every two-sided ideal of S be idempotent. Let $x \in S$. Corollary 2 implies that $x \in \boldsymbol{M}(x) \boldsymbol{M}(x) \subset S^{1} x S^{1} x S^{1}$. We shall prove that $x \in S x S x S$. If $x=x^{2}$, then $x=x^{5} \in S x S x S$. If $x=a x^{2}$ for some $a \in S$, then $x=a x a x^{2} \in$ $\in S x S x S$. Similarly, $x=x^{2} a(x=x a x$, respectively) for some $a \in S$ implies that $x \in S x S x S$. If $x=a x b x$ for some $a, b \in S$, then $x=a x b a x b x \in S x S x S$. Similarly, $x=x a x b$ for some $a, b \in S$ implies that $x \in S x S x S$. Finally, if $x=a x^{2} b$ for some $a, b \in S$, then $x=a x a x^{2} b^{2} \in S x S x S$.
$3 \Rightarrow 1$. Let $x \in S x S x S$ hold for every $x \in S$. Let $x \in S$. Then $x \in S x S x S \subset$ $\subset \boldsymbol{M}(x) \boldsymbol{M}(x)$ and so by Corollary $2 \boldsymbol{M} \sigma \mathbf{M}$.

Theorem 3. The following conditions on a semigroup S are equivalent:

1. $\boldsymbol{R} \sigma \boldsymbol{R}$,
2. $\boldsymbol{R}_{\sigma} \mathbf{M}$,
3. Every right ideal of S is idempotent,
4. $x \in x S x S$ holds for every $x \in S$.

Proof. $1 \Rightarrow 2$. This follows from Lemma 1 .
$2 \Rightarrow 3$. Let $\boldsymbol{R} \subset \mathbf{M}$ and let $x \in S$. Theorem 1 implies $x \in \mathbf{R}(x) \mathbf{M}(x) \subset x S^{1} x S^{1}=$ $\boldsymbol{R}(x) \boldsymbol{R}(x)$. According to Theorem 1, $\boldsymbol{R} \sigma \boldsymbol{R}$. By Corollary 2 it follows that every right ideal of S is idempotent.
$3 \Rightarrow 4 \Rightarrow 1$. This is analogous to the proof of Theorem 2.
Left-right dually we have the following:
Theorem 4. The following conditions on a semigroup S are equivalent:

1. L σL;
2. $M \sigma L ;$
3. Every left ideal of S is idempotent,
4. $x \in S x S x$ holds for every $x \in S$.

A semigroup S is called quasi inverse (see [2]) if every right ideal of S is idempotent and every left ideal of S is idempotent.

Theorem 5. The following conditions on a semigroup S are equivalent:

1. $\boldsymbol{R}_{\sigma} R$ and $L \sigma L$;
2. $\boldsymbol{R}_{\sigma} \mathbf{M}$ and $\mathbf{M} \sigma \mathbf{L}$;
3. $\mathrm{M}_{\sigma} \mathrm{H}$;
4. S is a quasi inverse semigroup.

Proof. $1 \Rightarrow 2 \Rightarrow 4 \Rightarrow 1$. This follows from Theorem 3 and from Theorem 4. $1 \Rightarrow$ 3. Let $\boldsymbol{R} \sigma \boldsymbol{R}$ and $\boldsymbol{L} \sigma \boldsymbol{L}$ hold. Let $x \in S$. Theorem 3 implies that $x \in S x S x$ and so $x \in S x S x S x \subset \mathbf{M}(x) \boldsymbol{H}(x)$. Similarly, we obtain that $x \in \boldsymbol{H}(x) \boldsymbol{M}(x)$ for every $x \in S$. It follows from Theorem 1 that $\mathbf{M}_{\sigma} \boldsymbol{H}$.
$3 \Rightarrow 2$. This follows from Lemma 1 .
Theorem 6. The following conditions on a semigroup S are equivalent:

1. $H_{\sigma} H$,
2. $\boldsymbol{R}_{\sigma} H$;
3. $H \subset L$;
4. $R \subset L$;
5. S is regular and intraregular,
6. Every quasi-ideal of S is idempotent.

Proof. $1 \Rightarrow 2 \Rightarrow 4$ and $1 \Rightarrow 3 \Rightarrow 4$. This follows from Lemma 1 .
$4 \Rightarrow 5$. Let $\boldsymbol{R} \sigma \boldsymbol{L}$ and let $x \in S$. Theorem 1 implies that $x \in \boldsymbol{R}(x) \boldsymbol{L}(x) \cap$ $\cap \boldsymbol{L}(x) \boldsymbol{R}(x) \subset x S^{1} x \cap S^{1} x^{2} S^{1}$ and so S is a regular and intraregular semigroup.
$5 \Rightarrow 6$. Let S be a regular and intraregular semigroup. Then $x \in x S x \cap S x^{2} S$ for any x of S. This implies that $x \in x S x S x$ and so $x \in x S x^{2} S x \subset \boldsymbol{H}(x) \boldsymbol{H}(x)$. By Corollary 2 we obtain that every quasi-ideal of S is idempotent.
$6 \Rightarrow 1$. This follows from Corollary 2.
If $A \subset S, A \neq \varnothing$, then we denote by $\mathbf{P}(A)$ the subsemigroup generated by all elements of A. Put $\mathbf{P}(\varnothing)=\varnothing$. Evidently $\mathbb{P} \in \mathscr{C}(S)$ and $\mathscr{F}(\boldsymbol{P})$ is the set of all subsemigroups of S (including \varnothing). Further $\mathbf{P} \leqq \boldsymbol{H}$.

Theorem 7. The following conditions on a semigroup S are equivalent:

1. $P \sigma P$,
2. $R \sigma P$;
3. $P \subset L$,
4. Every element of S is an idempotent and every subsemigroup of S is a quasi--ideal of S.
5. Every element of S is an idempotent and $x z y=x y$ for $x, y, z \in S$.

Proof. $1 \Rightarrow 2$ and $1 \Rightarrow 3$. This follows from Lemma 1 .
$2 \Rightarrow 4$. Let $\boldsymbol{R} \sigma \mathbf{P}$. Theorem 1 implies that $\boldsymbol{H} \leqq \boldsymbol{P}$. Since $\mathbf{P} \leqq \boldsymbol{H}$, hence $\boldsymbol{H}=\boldsymbol{P}$ and so $\mathscr{F}(\boldsymbol{H})=\mathscr{F}(\boldsymbol{P})$. Therefore, every subsemigroup of S is a quasi-ideal of S. Since $\boldsymbol{R}_{\sigma} H$, hence by Theorem 6 every quasi-ideal of S is idempotent. Let $x \in S$. Then $x \in \boldsymbol{P}(x)=\boldsymbol{H}(x)=\boldsymbol{H}(x) \boldsymbol{H}(x)=\boldsymbol{P}(x) \boldsymbol{P}(x)$. Hence there exists some integer $n>1$ such that $x=x^{n}$. It is clear that $\mathbf{P}(x)$ is a cyclic subgroup of S. Let e be an identity of $\boldsymbol{P}(x)$. Then $x=e x=x e \in \boldsymbol{H}(e)=\boldsymbol{P}(e)=\{e\}$ and so $x=e$. Hence, every element x of S is an idempotent.
$3 \Rightarrow 4$. Similarly.
$4 \Rightarrow 5$. Let every element of S be an idempotent and let every subsemigroup
of S be a quasi-ideal of S. Then we have $\mathscr{F}(\boldsymbol{P}) \subset \mathscr{F}(\boldsymbol{H})$ and so by $(6) \boldsymbol{H} \leqq \boldsymbol{P}$. Since $\mathbf{P} \leqq \boldsymbol{H}$, hence $\boldsymbol{H}=\boldsymbol{P}$. We shall prove that $x z y=x y$ for every $x, y, z \in S$. Let $x, y, z \in S$. Put $A=\{x, y\}$. Evidently $\boldsymbol{H}(A)=\mathbf{P}(A)=\{x, y, x y, y x, x y x, y x y\}$. Since $\boldsymbol{H}(A)$ is a quasi-ideal of S, hence $x z y \in x S \cap S y \subset A S \cap S A \subset \boldsymbol{H}(A) S \cap$ $\cap S \boldsymbol{H}(A) \subset \boldsymbol{H}(A)$. If $x z y=x$, then $x z y=x z y^{2}=(x z y) y=x y$. If $x z y=y$, then $x z y=x^{2} z y=x(x z y)=x y$. If $x z y=y x$, then $x z y=x^{2} z y^{2}=x(x z y) y=$ $=x(y x) y=(x y)^{2}=x y$. If $x z y=x y x$, then $x z y=x z y^{2}=(x z y) y=(x y x) y=$ $=(x y)^{2}=x y$. If $x z y=y x y$, then $x z y=x^{2} z y=x(x z y)=x(y x y)=(x y)^{2}=x y$. Hence, $x z y=x y$ for every $x, y, z \in S$.
$5 \Rightarrow 1$. Let every element of S be an idempotent and let $x z y=x y$ hold for every x, y, z of S. We shall prove that every subsemigroup of S is a quasi-ideal of S. Let A be an arbitrary subsemigroup of S. If $x \in S A \cap A S$, then $x=u e=$ $=f v$ for some $e, f \in A$ and for some $u, v \in S$. Thus we have $x=f v=f^{2} v=$ $=f(f v)=f u e=f e \in A$. Hence $S A \cap A S \subset A$ and so A is a quasi-ideal of S. Therefore $\mathscr{F}(\boldsymbol{P}) \subset \mathscr{F}(\boldsymbol{H})$ and so by $(6) \boldsymbol{H} \leqq \boldsymbol{P}$. Evidently $x=x^{2} \in \boldsymbol{P}(x) \mathbf{P}(x)$ for every $x \in S$. Corollary 2 implies that $\boldsymbol{P}_{\sigma} \mathbf{P}$.

Remark 1. It follows from Theorems in [3] (pp. 108-109) that:
The conditions of Theorem 7 and the following conditions on a semigroup S are equivalent:
6. Every pair of elements from S is regularly conjugate, i. e. $x y x=x$ for every $x, y \in S$.
7. S is anticommutative, i.e. $x y \neq y x$ for every pair of distinct elements x, y from S.

A \mathscr{C}-closure operation \mathbf{U} is said to be a $\mathscr{2}$-closure operation if

$$
\begin{equation*}
\mathbf{U}(A)=\bigcup_{x \in A} \boldsymbol{U}(x) \text { for each non empty } A \subset S \tag{7}
\end{equation*}
$$

holds. Let $\mathscr{2}(S)$ denote the set of all $\mathscr{2}$-closure operations for a semigroup S. Evidently $\mathscr{Q}(S) \subset \mathscr{C}(S)$. It is clear that $\boldsymbol{L}, \boldsymbol{R}, \boldsymbol{M} \in \mathscr{Q}(S)$.

Let $\boldsymbol{U} \in \mathscr{C}(S)$. We define $\mathbf{U}^{*} \in \mathscr{2}(S)$. If $A \subset S$, then $x \in \mathbf{U}^{*}(A)$ if and only if $\boldsymbol{U}(x) \cap A \neq \varnothing$. For $\boldsymbol{U}, \boldsymbol{V} \in \mathscr{C}(S)$ we have

$$
\begin{gather*}
\mathbf{U} \leqq \mathbf{V} \Rightarrow \mathbf{U}^{*} \leqq \mathbf{V}^{*}, \tag{8}\\
\mathbf{U}^{* *} \leqq \mathbf{U} . \tag{9}
\end{gather*}
$$

(See [1].)
Let $\boldsymbol{U} \in \mathscr{C}(S)$. We shall introduce the equivalence $\overline{\boldsymbol{U}}$ on a semigroup S by: for $x, y \in S, x \overline{\mathbf{U}} y$ if and only if $\boldsymbol{U}(x)=\boldsymbol{U}(y)$. For any element x of S, let \boldsymbol{U}_{x} denote the \bar{U}-class of S containing x. (See [4].)

Ir follows from Theorem 4 [4] that

$$
\begin{equation*}
\mathbf{U}=\mathbf{U}^{*} \Rightarrow \mathbf{U}_{x} \in \mathscr{F}(\mathbf{U}) \text { for every } x \in S \tag{10}
\end{equation*}
$$

Theorem 1 [4] implies that

$$
\begin{equation*}
A=\bigcup_{x \in A} U_{x} \text { for every non-empty set } A \text { of } \mathscr{F}\left(\mathbf{U}^{*}\right) \tag{11}
\end{equation*}
$$

Lemma 2. Every maximal subgroup G of a semigroup S is an \boldsymbol{H}-class of S.
Proof. Let e be an identity of a maximal subgroup G of S. If $x \in G$, then evidently $x \in \boldsymbol{H}(e)$ and $e \in \boldsymbol{H}(x)$ and so by (2) and (4) $\boldsymbol{H}(x)=\boldsymbol{H}(e)$. Thus we have $x \in \boldsymbol{H}_{e}$ and so $\boldsymbol{G} \subset \boldsymbol{H}_{e}$. It follows from [5] that $\boldsymbol{H}_{e}=\boldsymbol{R}_{e} \cap \boldsymbol{L}_{e}$ is a subgroup of S. Since G is a maximal subgroup of S, hence $G=\boldsymbol{H}_{e}$ which implies that G is an $\overline{\mathbf{H}}$-class.

Theorem 8. The following conditions on a semigroup S are equivalent:

1. $\mathbf{H}^{*} \sigma \boldsymbol{U}$ holds for all $\mathbf{U} \in \mathscr{C}(S)$ where $\mathbf{H} \wedge \mathbf{H}^{*} \leqq \mathbf{U}$;
2. $\mathbf{H}^{*} \sigma \mathbf{U}$ holds for some $\mathbf{U} \in \mathscr{C}(S)$ where $\boldsymbol{H} \wedge \mathbf{H}^{*} \leqq \mathbf{U}$;
3. $\boldsymbol{H} \leqq \boldsymbol{H}^{*}$;
4. $\boldsymbol{H}=\boldsymbol{H}^{*}$;
5. S is a union of groups and $G_{1} \cup G_{2}$ is a quasi-ideal of S for every pair of maximal subgroups G_{1}, G_{2} of S;
6. S is a union of groups and $G_{1} S G_{2} \subset G_{1} \cup G_{2}$ holds for every pair of maximal subgroups G_{1}, G_{2} of S.

Proof. $1 \Rightarrow 2$. Evident.
$2 \Rightarrow 3$. This follows from Theorem 1.
$3 \Rightarrow 4$. Let $\boldsymbol{H} \leqq \boldsymbol{H}^{*}$. By (8) and (9) we have $\boldsymbol{H}^{*} \leqq \boldsymbol{H}^{* *} \leqq \boldsymbol{H}$ and hence $H=H^{*}$.
$4 \Rightarrow 5$. Let $\boldsymbol{H}=\boldsymbol{H}^{*}$. Since $\boldsymbol{P} \leqq \boldsymbol{H}$, hence, by (8) we have $\boldsymbol{P}^{*} \leqq \boldsymbol{H}^{*}=\boldsymbol{H}$. According to Theorem 8 [4], S is a union of groups. Let $G_{i}(i=1,2)$ be maximal subgroups of S. It follows from Lemma 2 that G_{i} is an \boldsymbol{H}-class and so, by $(10), G_{i} \in \mathscr{F}(H)$. Since $\boldsymbol{H}=\boldsymbol{H}^{*} \in \mathscr{2}(S)$, hence $G_{1} \cup G_{2} \in \mathscr{F}(\boldsymbol{H})$ and so $G_{1} \cup G_{2}$ is a quasi-ideal of S.
$5 \Rightarrow 6$. Let S be a union of groups and let $G_{1} \cup G_{2}$ be a quasi-ideal of S for every pair of maximal subgroups G_{1}, G_{2} of S. Then $G_{1} S G_{2} \subset\left(G_{1} \cup G_{2}\right) S \cap$ $\cap S\left(G_{1} \cup G_{2}\right) \subset G_{1} \cup G_{2}$.
$6 \Rightarrow 1$. Let S be a union of groups and let $G_{1} S G_{2} \subset G_{1} \cup G_{2}$ hold for every pair of maximal subgroups of S. We shall prove that $H \leqq H^{*}$. Let $\varnothing \neq A \in$ $\in \mathscr{F}\left(\boldsymbol{H}^{*}\right)$. It is known that S is a union of maximal subgroups. Lemma 2 implies that every $\overline{\boldsymbol{H}}$-class is a maximal subgroup of S. According to (11), A is a union of maximal subgroups of S. Let $x \in A S \cap S A$. Then $x=g_{1} s_{1}=s_{2} g_{2}$ for some $s_{1}, s_{2} \in S$, for some $g_{1} \in G_{1} \subset A$ and for some $g_{2} \in G_{2} \subset A$ where G_{1}, G_{2} are
maximal subgroups of S, Let e_{i} be an identity of a group $G_{i}(i=1,2)$. Thus we have $x=g_{1} s_{1}=e_{1} g_{1} s_{1}=e_{1} s_{2} g_{2} \in G_{1} S G_{2} \subset G_{1} \cup G_{2} \subset A$. Therefore $A S \cap$ $\cap S A \subset A$ and so A is a quasi-ideal of S. This means that $A \in \mathscr{F}(\boldsymbol{H})$. Since $\mathscr{F}\left(\mathbf{H}^{*}\right) \subset \mathscr{F}(\boldsymbol{H})$, hence, by $(6), \boldsymbol{H} \leqq \mathbf{H}^{*}$. Since S is a union of groups, hence S is regular and intraregular. According to Theorem 6, we have $\boldsymbol{H}_{\sigma} H$ and so, by Lemma $1, \boldsymbol{H}^{*} \sigma \boldsymbol{U}$ where $\boldsymbol{H} \wedge \boldsymbol{H}^{*}=\boldsymbol{H} \leqq \boldsymbol{U} \in \mathscr{C}(S)$.

Put $\mathbf{O}(A)=A$ for each $A \subset S$. Then $\mathbf{O} \in \mathscr{2}(S), \mathbf{O}=\mathbf{O}^{*}$ and for every $\boldsymbol{u} \in \mathscr{C}(S)$,

$$
\begin{equation*}
0 \leqq U \tag{12}
\end{equation*}
$$

holds.
Theorem 9. The following conditions on a semigroup S are equivalent:

1. $\mathbf{O}_{\sigma} \mathbf{U}$ holds for all $\cup \in \mathscr{C}(S)$;
2. $\mathbf{O} \sigma \boldsymbol{U}$ holds for some $\boldsymbol{U} \in \mathscr{C}(S)$;
3. $\mathbf{P}^{*} \sigma \boldsymbol{U}$ holds for all $\boldsymbol{U} \in \mathscr{C}(S)$;
4. $\mathbf{P} *{ }_{\sigma} \boldsymbol{U}$ holds for some $\mathbf{U} \in \mathscr{C}(\mathbb{S})$;
5. $\mathbf{H}^{*}{ }_{\sigma} \mathbf{P}$;
6. Every non-empty subset of S is a quasi-ideal of S,
7. For every $x, y, z \in S$, either $x z y=x$ or $x z y=y$.

Proof. It is clear that $6 \Leftrightarrow \boldsymbol{H}=\mathbf{O}$.
$1 \Rightarrow 2$ and $3 \Rightarrow 4$. Evident.
$2 \Rightarrow 6$. It follows from Theorem 1 that $H \leqq O$ and so, by (12), $\boldsymbol{H}=\mathbf{O}$.
$4 \Rightarrow 6$. Theorem 1 implies that $\boldsymbol{H} \leqq \boldsymbol{P}^{*}$ and so $\boldsymbol{P} \leqq \boldsymbol{H} \leqq \boldsymbol{P} *$. By Lemma 12 [1], we obtain $\mathbf{P}=\mathbf{O}$. This implies $\mathbf{H} \leqq \mathbf{P}^{*}=\mathbf{O}^{*}=\mathbf{O}$. Hence, by (12), $\mathbf{H}=\mathbf{O}$.
$5 \Rightarrow 6$. Let $\boldsymbol{H}^{*}{ }_{\sigma} \boldsymbol{P}$. It follows from Theorem 1 that $\boldsymbol{H} \leqq \boldsymbol{P}$. Since $\boldsymbol{P} \leqq \boldsymbol{H}$, hence $\boldsymbol{H}=\boldsymbol{P}$ and so $\boldsymbol{P} * \sigma \boldsymbol{P}$. Hence (by $\mathbf{4} \Rightarrow 6$) $\boldsymbol{H}=\mathbf{O}$.
$6 \Rightarrow$ 7. Let $\boldsymbol{H}=\mathbf{O}$.Let $x, y, z \in S$. Evidently, $A=\{x, y\}$ is a quasi-ideal of S. Then $x z y \in A S \cap S A \subset A$ and thus we have either $x z y=x$ or $x z y=y$.
$7 \Rightarrow 1,3$ and 5 . Let $x z y \in\{x, y\}$ hold for every $x, y, z \in S$. Then $x y x=x$ for every pair of elements x, y from S. It follows from Remark 1 that $\boldsymbol{P}_{\sigma} \boldsymbol{P}$ and $x y=x z y$ for every $z \in S$. This implies that either $x y=x$ or $x y=y$ and so every non-empty subset of S is a subsemigroup of S. Hence $\boldsymbol{P}=\mathbf{O}$ and so $\mathbf{O}_{\sigma} \mathbf{O}$. It follows from Lemma 1 that $\mathbf{O}_{\sigma} \boldsymbol{U}$ (for all $\mathbf{U} \in \mathscr{C}(S)$), $\mathbf{P}^{*} \sigma \boldsymbol{U}$ (for all $\boldsymbol{U} \in \mathscr{C}(S))$ and $\boldsymbol{H}{ }^{*} \sigma \boldsymbol{P}$.

Remark 2. It follows from the proof of Theorem 9 that every element of S is an idempotent (see Remark 1). This implies that:

The conditions of Theorem 9 and the following condition on a semigroup S are equivalent:
8. Every element of S is an idempotent and it satisfies at least one of the conditions of Theorem 8.

REFERENCES

[1] PONDĚLÍČEK, B.: On a certain relation for closure operations on a semigroup. Czechoslovak Math. J. 20 (95), 1970, 220-231.
[2] CALAIS, J.: Demi-groupes quasi-inversifs. C. r. Acad. sci. 252, 1961, 2357-2359.
[3] ЛЯПИН, Е. С.: Полугруппы. Москва 1960.
[4] PONDĚLÍČEK, B.: A certain equivalence on a semigroup. Czechoslovak Math. J. 21 (96), 1971, 109-117.
[5] GREEN, J. A.: On the structure of semigroups. Ann. Math. 54, 1951, 163-172.
Received January 26, 1972

Katedra matematiky
elektrotechnické fakulty
Českého vysokého učení technického Poděbrady

