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INTERSECTION GRAPHS OF LATTICES

BOHDAN ZELINKA, Liberec

The intersection graph of an algebra A is by definition the graph whose
vertices are proper subalgebras of A and in which two vertices are joined by
an edge if and only if the corresponding subalgebras have a non-empty inter-
section.

Intersection graphs of semigroups were studied mainly by J. Bosdk [2].
He also suggested to study intersection graphs of other algebras, including
lattices. The latter is the subject of this paper.

Let a lattice L be given. A sublattice of L can be defined in two different
ways; therefore we shall distinguish algebraic sublattices and set-theoretical
ones.

An algebraic sublattice of L is by definition a non-empty subset of L which
is closed with respect to the operations of join and meet (i. e. with any two
elements it contains also their join and meet).

A set-theoretical sublattice of L is by definition a nonempty subset of L
which is a lattice with respect to the ordering induced by the ordering of L.

It can be easily proved that every algebraic sublattice of a lattice L is
simultaneously its set-theoretical sublattice. The inverse assertion is not true,
as shown in Fig. 1, where the Hasse diagram of the lattice L is drawn, whose
elements 0, a, b, I form a set-theoretical sublattice given by the Hasse diagram
in Fig. 2. This is evidently a lattice, but this lattice is no algebraic sublattice
of L, because it contains the elements a and b, but not the element ¢ which
is the join of these elements in L.

Thus we shall distinguish algebraic intersection graphs of lattices and set-
-theoretical ones. We shall introduce even the third type of intersection graphs
of lattices, namely the interval intersection graphs. If ¢ < b in a lattice L,
then the interval <@, b) is the set of all elements x € L for whicha =z £ b
holds. The interval <{a, b) is evidently an algebraic sublattice of L; the inverse
assertion is not true, as shown in Fig. 3. Here {0, a, b, I} is an algebraic sublat-
tice, but not an interval. The interval intersection graph of the lattice L is by
definition the graph whose vertices are intervals {a, b)> for all pairs @, b of
the elements of L for which ¢ =< b holds and if 0 and I exist, then either a £ 0,
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or b # I (here and in the following 0 denotes the least, I the greatest element
of L) and in which two elements are joined by an edge if and only if the cor-
responding intervals have a non-empty intersection.

The algebraic intersection graph of the lattice L will be denoted by GA(L),
the set-theoretical intersection graph by GS(L), the interval intersection graph
by GI(L). The symbols VV and A denote the join and the meet in L, the symbols
U and N denote the set-theoretical operations of union and intersection.

From the above given definitions it follows that each one-element subset
of a lattice L is its algebraic sublattice, set-theoretical sublattice and interval.

; : -

Fig. 1. Fig. 2. Fig. 3.

Theorem 1. The system of one-element subsets of a finite lattice L with more
than one element is a maximal internally stable [1] set in any of the graphs GA(L),
GS(L), GI(L), while any other internally stable set in any of these graphs has
@ less number of vertices.

Proof. Two distinct one-element sets are disjoint, therefore the system of
one-element subsets of the lattice L is an internally stable set in GA(L), GS(L)
and GI(L). Tts number of elements is equal to the number of elements of L.
Assume that there exists some other subset of the vertex set of some of these
graphs which is internally stable and has the cardinality greater than or equal
to the cardinality of L. But there does not exist in any set a system of pairwise
disjoint non-empty subsets of the cardinality greater than the cardinality of
this set; the system with these properties and of the cardinality equal to the
cardinality of the original set is exactly one in a finite set; this is the system of
all one-element subsets, which is a contradiction.

Corollary. The internal stability numbers of the graphs GA(L), GS(L), GI(L)
for a finite lattice L with more tham one element are pasrwise equal and are equal
to the cardinality of L.

Theorem 2. Let the set-theoretical intersection graph GS(L) of a finite lattice L
with more than one element be given. Then the set of elements of L and the relation
of comparability on it can be reconstructed.
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Proof. In the graph G'S(L) we find the internally stable set of the greatest
cardinality; according to Theorem 1 this is the set of one-element sublattices
of the lattice L and therefore its elements correspond in a one-to-one manner
to the elements of L. A two-element subset {a, b} of L (where a + b) is a set-
theoretical sublattice of the lattice L if and only if the elements @, b are com-
parable, i. e. if either @ < b, or b < @ holds. To such a sublattice a vertex of
(/S(L) corresponds which is joined by edges with vertices corresponding to
sublattices {a}, {b} and is not joined with any other vertex corresponding to
a one-element sublattice. Thus we recognize for any two elements «, b of the
lattice L, whether such a vertex exists, and so we reconstruct the relation of
comparability on the set of elements of L.

Theorem 3. Let the algebraic intersection graph GA(L) of a finite lattice L with
more than one element be given. Then the set of elements of L and the relation of
comparability on it can be reconstructed.

Proof. A two-element subset {a, b} is also an algebraic sublattice of the
lattice L if and only if the elements a, b are comparable. Therefore we can
proceed in the same way as in the proof of Theorem 2.

Theorem 4. Let the algebraic intersection graph GA(L) of a finite lattice L
with more than one element be given. Then the set of elements of L can be recon-
structed and for any two elements a, b of L the set {a 1 b, a v b} can be reconstructed,

Remark. The reconstruction of the set {a A b, a v b} means finding two
elements, one of which is @ A b, the other is @ v b, but such that in general it is
not possible to determine, which of them is @ A b and which is a v b.

Proof. The reconstruction of the set of elements of the lattice L will be
performed so as in the proof of Theorem 2 and also the relation of comparabi-
lity will be determined. If two elements a, b are comparable, then {a 1 b,
av b} = {a, b}. If they are non-comparable, then there exists an algebraic
sublattice consisting of the elements a, b, @ » b, @ v b (which are pairwise
distinct) and no other four-element algebraic sublattice containing ¢ and b.
Thus in the graph GA(L) we find a vertex which is joined with vertices {a}
and {b} and moreover with exactly two further vertices corresponding to one-
-element sublattices. These two further vertices correspond to the one-element
sublattices {a A b}, {a v b}.

Theorem 5. Let the interval intersection graph GI(L) of a finite lattice L with
more than two elements be given. Then the (undirected) Hasse diagram of L can
be reconstructed.

Remark. Here we speak only about the Hasse diagram as an undirected
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graph. If this diagram has to determine uniquely the lattice L, it must be
drawn in a certain position, which cannot be performed with help of this
theorem.

Proof. In the Hasse diagram of the lattice L two elements of L are joined
by an (undirected) edge if and only if either a covers b, or b covers a. (We say
that @ covers b, if @ > b and there does not exist any element ¢ such that
@ > ¢ > b.) This is realized if and only if there exists an interval of the lattice
L consisting only of the elements @, b. In the graph G(L) there corresponds
to such an interval a vertex joined by edges with one-element intervals {¢} =
= {a, a), {b} = <b, b) and not joined with any other one-element interval.
(The set of vertices corresponding to one-element intervals can be found
similarly as the set of vertices corresponding to one-element sublattices in the
proof of Theorem 2.) Thus in the Hasse diagram of the lattice L the elements
a, b will be joined by an edge if and only if such a vertex exists in GI(L).

Lemma. Let a be an element of a finite lattice L with more than two elements.
The vertex: corresponding to the element a in the Hasse diagram of L is a cut-vertex
of this diagram if and only if a # O, a == I and the element a is comparable with
all elements of L.

Proof. Let a be a cut-vertex of the Hasse diagram of the lattice L and let b,
¢ be vertices of this diagram separated by the vertex a (i. e. each path from b
to ¢ contains the vertex a). If b, ¢ are non-comparable, there is b A ¢ 4 b v c.
Let €1 (or (3 respectively) be the path from b (or from ¢ respectively) to b v ¢
corresponding to the saturated chain between these elements. Both these
paths have only the vertex b v ¢ in common; otherwise there would exist
a vertex d so that b £ d <bve, ¢ £ d < bve, which is impossible. By C
denote the union of these paths. Analogously let €] (or C, respectively) be
the path from b A ¢ to b (or to ¢ respectively) corresponding to the saturated
chain between these elements; these two paths have no common vertex either
except for b A ¢. Let ¢ be their union. Assume that the paths ¢ and ¢’ have
a common vertex d different from b and c¢. If d is a common vertex of the
paths €1 and O], this means that simultaneously d < b and d > b, which is
impossible; analogously if d is a common vertex of the paths (; and €. If d
is a common vertex of the paths €y and €}, then d > b, d < ¢ and therefore
b < ¢, which is also impossible; analogously if d is a common vertex of ('}
and Cs. Therefore ¢ and € have no common vertices except for b and ¢, thus
according to Menger’s Theorem the connectivity degree of the vertices b, ¢
is at least two and these vertices cannot be separated by a cut-vertex, which
is a contradiction. Hence any two vertices separated by a cut-vertex a are
comparable. Without loss of generality let b < ¢. In the Hasse diagram of L
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there exist a path corresponding to the saturated chain from b to ¢; this path
contains @ and therefore b << @ < ¢ and « is comparable with both b and c.
As b and ¢ were chosen arbitrarily, @ is comparable with all elements of L
and evidently it is different from both O and 1.

Now let ¢ be comparable with all elements of L and different from both O
and /. Let b << @, ¢ > a and let a path from b to ¢ exist not containing a. Let d
be the last vertex of this path (if we go from b to ¢) which is less than a. The
element d is different from ¢, therefore there exists a vertex e of this path fol-
lowing after d. As a is comparable with all elements of L, there must be ¢ > a.
But then d < a < e and e does not cover d and d does not cover e, thus d
and e are not joined by an edge, which is a contradiction. Therefore each path
from b to ¢ contains @ and @ is a cut-vertex of the Hasse diagram of L.

Theorem 6. Let the sel-theoretical intersection graph GS(L) of a finite lattice
L with more than two elements be given and let the interval intersection graph GI(L)
of L be marked in it as its subgraph. Then the lattice L is determined uniquely
up to the duality.

Proof. First, according to Theorem 2 from (/S(L), we reconstruct the set
of elements of the lattice L and the relation of comparability and according
tn Theorem 5 from GI(L) we reconstruct the Hasse diagram of L. If there exist
exactly two elements comparable with all other elements of the lattice L,
then one of them is O, the other is I. If there are more such elements, then O
and I are exactly those of them, for which the corresponding one-element
intervals do not form cut-vertices of the Hasse diagram of the lattice L (ac-
cording to Lemma). Therefore let us choose one of these elements to be O; then
the other is I. Further, if two different elements a, b are comparable, then
a < b if and only if there exists an interval containing O and @ and not contai-
ning b. To such an interval in GI(L) a vertex corresponds joined by edges with
intervals <O, 0> and {a, a) and not joined with the interval ¢b, b) Therefore
if there exists such a vertex, then a < b, otherwise b < a. The unique random
step in the whole procedure was the choice of the element O. In the case of the
opposite choice we obtain evidently the lattice dual to that obtained in the
preceding case. One of these lattice is evidently L.

Theorem 7. Let the algebraic intersection graph GA(L) of a finite lattice L with
more than two elements be given and let the interval intersection graph GI(L) of
L be marked in it as its subgraph. Then the lattice L is determined uniquely up to
the duality.

Proof is analogous to the proof of Theorem 6.

Theorem 8. The graph GS(L) of the lattice L with more than two elements has
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diameter 2, if L is not isomorphic to the lattice whose Hasse diagram is in Fig. 2.
The graph GS(L) of the lattice whose Hasse diagram is in Fig. 2 has diameter 3.

Proof. Let a, b be two elements of the lattice L. The distance of the vertices
{a}, {b} in the graph G/S(L) is equal to two, if and only if there exists a proper
sublattice of L (set-theoretical) containing the elements @, b. The least (ac-
cording to the number of elements) sublattice of the lattice L containing «
and b has exactly two elements, if @ and b are comparable, and is isomorphic
to the lattice whose Hasse diagram is in Fig. 2, if they are non-comparable.
If such a sublattice is the whole lattice L, then the distance of {a} and {b}
is greater than 2; if it is a proper sublattice, then this distance is equal to 2.
Therefore in each lattice which has more than two elements and is not iso-
morphic to the lattice whose Hasse diagram is in Fig. 2 the distance of arbitrary
two one-element set-theoretical sublattices in GZS(L) is equal to 2. Now let us
have two arbitrary proper sublattices Ly, Ls of L. If Li N Ly =~ ), then their
distance is equal to one. If Li N Ly = 0, then we choose an element « € L
and an element b € L. There exists a proper sublattice containing ¢ and b
and having therefore a non-empty intersection with both L; and L. The distan-
ce of the sublattices L; and Ly is therefore also equal to two and thus also the
diameter of the graph GS(L) is equal to two. The second assertion is trivial.

Theorem 9. The graph GA(L) of a lattice L with more than two elements has
diameter 2, if L is not isomorphic to the lattice whose Hasse diagram is in Fig. 2.
The graph GA(L) of the lattice whose Hasse diagram is in Fig. 2 has diameter 3.

Proof is analogous to that of Theorem 8.

Theorem 10. Let L be a lattice with more than two elements, let GI(L) be its
wnterval intersection graph. Then the diameter of GI1(L) is equal to 3 if and only
of L has the least and the greatest element. In the reverse case the diameter of GI(L)
18 equal to 2.

Remark. In our considerations on diameters we admit also infinite lattices.

Proof. If GI(L) has the least element O and the greatest element I, then the
unique interval containing these elements is <O, I, which is the whole lattice
L. Therefore the distance of the intervals (0, O> and (I, I> in GI(L)is greater
than two. As L contains more than two elements, it contains at least one ele-
ment a different from both O and I. The intervals <O, a>, <{a, I> are intervals
of L different from (O, I, therefore there exist vertices of G/I(L) corresponding
to them. The interval <O, a> has a non-empty intersection with <O, O> and
with (a, I> and {a, I) has a non-empty intersection with (0, &) and with <I, I’>.
The vertices <0, 0>, <O, a, {a, I>, {I, I, form a path of length 3 from <O, O>
to (I, I>. Now let a, b be two different elements of the lattice L, from which
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at least one is different from both O and I. If @ = I, then there exists a path
of length 2 from (a, a> to (b, b); it contains vertices {a, a> = (I, 1>, {(b, I,
<b, b>. Similarly for b = 0. If a £ 0, b £ 0, a #+ 1, b -+ I, there exists a path
of length 3 from <a, a> to (b, b) in GI(L) containing vertices (a, a>, <O, a),
{0, b>, (b, b>. The distance of arbitrary two one-element intervals in GI(L)
is therefore at most three. Now ifJ, J; are arbitrary two intervals of L diffe-
rent from L, we choose an element a €.J; and an element b € J, find the
corresponding path from <a, @) to <b, b>. If we substitute the vertex <(a, a>
by the vertex J; and the vertex <b, b) by the vertex J, in it, we obtain a path
of the same or less length from .J; to Js, because any interval having a non-
-empty intersection with {a, a) has a non-empty intersection also with J;
and any interval having a non-empty intersection with <b, > has a non-empty
intersection also with .Jo. Therefore L has diameter 3. If L has no least element,
there exists to arbitrary two different elements a, b of L a path of length 2
joining the vertices <a, a), <b, b> in GI(L) and containing the vertices (a, a>,
{anb, avby (b, by, the interval {a » b, a v b) is not equal to L because L
must contain an element less than a 2 b. For arbitrary two intervals J; and
Js we proceed then as in the preceding case. We proceed analogously, if L
has no greatest element.

Remark. If the lattice L has only two elements, then evidently the diame-
ters of GS(L), GA(L) and GI(L) are all equal to co (these graphs are discon-
nected).
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