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Matematický časopis 21 (1971), No. 4 

A NOTE ON MEASURABLE SETS 

BELOSLAV RJECAN, Bratislava 

We present here a strengthenning of the previous results of the author 
concerning the measurability of some sets with respect to an outer measure, 
some examples and a remark about the Hausdorff measure in abstract spaces. 

Theorem 1. Let H be a hereditary o-ring*), y be an outer measure on H. 
Let M be a symmetric relation on the system of all subsets of X such that EMFy 

E±c: E, F7! c F implies Ex0tFx. Let y(E U F) = y (E) + y(F) whenever 
E&F. Let {Vn} be a non-ascendent sequence of the sets of H, (Vn — Vnn)&Vn+2 

00 

(n=l,2,...).LetCbeasetC c Vn,C&(X - Vn)(n= 1,2, ...),y([)Vn-C) = 0. 
«= i 

Then C is y-measurable. 
Proof. Since we only modify a well-known proof (c. f. [2], Theorem 2, [3] 

§ 11, exercise 8, [5], Theorem 1), we present only basic ideas. Let E EH 
be an arbitrary set. Then 

(1) y(E - Vn) ^ y(B - C) ^ y(f\ Vi - C) + y(E - V2k) + 

+ J Y(E n (V2i - V2i+i)) +2y(Er\ (V2i+1 - V2i+2)) 
i=k i=k 

for all k and n. If both series in (1) converge, we get 

(2) y(E -C) = lim y(E - Vn). 

In the reverse case we use to prove (2) the following relations: 
k 

Y(E - V2k) ^Jjy(Er\ (V2i-i - V2i-2)), 
U2 

y(E - V2k) S 2 y(E n (V2i - V2i-±)). 

*) We use the terminology according to [3]. 
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The last two inequalities follow from the relation (Vn — Vn+\)8%Vny%. F r o m 
the relation CM(X — Vn) and from (2) it follows 

y(E) ^ lim y((E n C) U (E - Vn)) = y(E n C) + lim y(E - Vn) = 

= y(E n G) + y(# - C) 
for all EEH. 

Theorem 2. .Le£ H be a hereditary a-ring of subsets of X, y an outer measure 
on H, Y some y-measurable set of H. Let 2% and y fulfil the assumptions of 
Theorem 1. Let U c: Y, {Dn} be a non-descendent sequence of the sets Dn<^ U, 

00 

Dn@(Dn+2 - Dn+1), Dn0t(Y -U)(n= 1, 2, . . . ) , y(U - \J Dn) = 0. 
«=i 

Then U is y-measurable. 
Proof . Pu t C = Y — U, Vn = Y — Dn. Then C is y-measurable according 

to Theorem 1. Since Y is y-measurable and U = Y — C, U is y-measurable 
too. 

Corollary ([2], Theorem 2). Let (X, T) be a topological space, y be an outer 
measure such that y(E KJ F) = y(E) + y(F), whenever E C\F = 0. Let A be 
an open set and {An} be such a sequence of sets in X that An c= A, An+2 — An+i n 

00 

n An = 0 and y(A — ( J An) = 0. Then A is y-measurable. 
n=l 

Another corollary of our theorems (especially of Theorem 1) is the previous 
result of the author in [5], Theorem 1 (c. f. also [6], Theorem 1). There are 
a few known as well as a few unknown examples in [5], [6]. Here we present 
further ones. 

E x a m p l e 1. Let X be a linear space. We shall say tha t two sets A, B are 
separated if for every x e A, y e B the segment [x, y] contains a subsegment 
[u, v]^- [x, y] (u #= v) such tha t [u, v] a A' U B'. Let y(-4 U B) = y(A) + 
+ y(B) for any A, B which can be separated. Then the radial kernel (see [4]) 
of any convex set is y-measurable. 

Proof . Let A be the radial kernel of a convex set B, a e A. Then A — a 
is the radial kernel of U = B — a. Let p be the Minkowski functional for U. 
Then {x: p(x) < 1} = A — a. Hence if we define a functional / by the formula, 

f(x) = p(x — a), then A = {x:f(x) < 1}. We can put Dn = {x:f(x) ^ 1 — 1/n} 
and E&F, whenever E, F can be separated. 

E x a m p l e 2. Let A be a convex body (see [4]) in a linear topological space* 
y(E U F) = y(E) + y(F), whenever E C\F = 0. Then A is y-measurable. 

P roof . Here A = {x:f(x) g 1} for a continuous funct ion/(see [4], Theorem 
13.2). 

E x a m p l e 3 ([2], Theorem 3). I f / i s a continuous function on a topological 
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space X, y(E U F) = y(E) + y(F), whenever E nF = 0, then {x :f(x) = 0} 

is y-measurable. , 

Proof . EMF iff E nF = 0, Vn = {x :f(x) < Ijn). 
E x a m p l e 4 ([7], Theorem 2.4). I n the example 3 the condition J? nF = 0 

oan be replaced by a stronger one (hence a theorem with a weaker assumption 
holds): there are open disjoint U, V including E, resp. F. 

P r o o f . E&F iff there are open disjoint U, V including E resp. F. 

E x a m p l e 5. Let I be a topological space, y(E U F) = y(E) + y(F), 

whenever E nF = 0OTEnF = 0. Then every closed Gd set is y-measurable. 

Theorem 3. Let y and 3% satisfy the assumptions of Theorem 1. Let D <=- X. 

Let to any 6 > 0 and any T <= X, with y(T) < co there be Vn, Cn c: X such 

that Vn =3 Vn+i, Cn+1cz Cn c Vn, (Vn - Vn+i)&Vn+2, Cn <= D (n = 1,2, . . . ) , 

y(DnT -dnT)< 6/2, y(Cn nT - Cn+1 nT)< <J/2»+i, y(f) VnnT -
w=l 

- П Gn п T) = 0. 
«=i 

Then D is y-measurable. 
00 

P r o o f . P u t 7i(E) = y(E nT), C = f] Cn. C is jr-measurable according 
n=l 

t o Theorem 1. Further 

n(D - C) ^ n(D — Oi) + J n{d - Ci+1) ^ d. 
i=i 

Hence to any i there is a jr-measurable set Jf^ c= D with 7r(D — Jfi) < 1/i. 
00 

Jtf = ( J Jlf̂  is then ^-measurable, M cz D, n(D — M) = 0, therefore D is 
i=l 

^-measurable. Now if y(K) = oo, then oo = y(K) ^ y(if n D) + y(J£ — D). 
If y(Z) < oo, then put K = T. Then y(K) = y(K nT) = n(K) = n(K n D) + 
+ n(K -D) = y(K nD) + y(K - D). 

Theorem 3 is a generalization of Theorem 1. For obtaining Theorem 1 it 
00 

suffices to put Cn = D (n = 1, 2, ...). Then y( f] Vn nT — D nT) = 0, 

y(D —- D) = 0 < d/2n+1. The formulation of Theorem 3 is quite complicated 
but we can get directly from it the Bledsoe-Morse theorem on the measurability 
of closed Gd (resp. open Fa) sets in so-called y-normal spaces (see [1], Theorem 
2.17 also [5], Theorem 7). 

Finally we should like to say a few words about the Hausdorff measure. 
The well-known classical definition was generalized in [1] for arbitrary topo
logical spaces. We intended to generalize it further on abstract spaces (using 

266 



Theorem 1). We actually obtained some results concerning the measurability 
and the comparison of various definitions in a uniform space. But after reading 
an excellent and thoroughly exhaustive paper [8] we found that all our results 
had been contained explicitely or implicitely in [8]. 

Therefore we present here only a direct proof of a measurability theorem 
with respect to a Hausdorff measure in an abstract space. 

Definition 1. Let T be a set of indices, X be an abstract space, Kt (t e T) be 
a system of subsets of X, 0 e Kt, r be a non-negative function on K = (J Kt, 

teT 

T(0) = 0. Then for any 4 = 1 put 

vt(A) = inf { | r(Ai) : (j At ZD A, AteKt}, 
i=i i=i 

v(A) - s u p {vt(A) :teT}. 

Definition 2. For A <-= X and a family B of subsets of X put B[A] = 
= U {E :E EB, E nA 4= 0} and say that B[A] is the B-star of A. 

Theorem 4. v is an outer measure (for any Kt, teT). If T is directed, t< s 
implies Kt =-> Ks and A, B are subsets of X with disjoint stars (i. e. there are s, t 
such that Kt[A] n KS[B] = 0), then v(A u B) = v(A) + v(B). 

Proof. The first assertion is evident. Let Kt[A] n KS[B] = 0, u>s,t. 
Then KU[A] a Kt[A], KU[B] c KS[B], KU[A] n KU[B] = 0. Let \(A \JB)< 
< oo, d > 0. Then there are E% e Ku (i = 1,2,...) such that 

vu(A \jB)+d>2 r(Ei) ^ 2 T W + 2 T(^) ^ MA) + MB). 
i=l EinA^O EinB=£0 

The rest of the proof is now evident. 

Theorem 5. Let K be a system of subsets of X,0 e K, r, d be two non-negative 
functions on K, r(0) = 0. For any A <= X, r > 0 put 

hr(A) = inf { f r(Ai) : Q At => A, At e K, d(At)< r} 
i=l i=l 

and 

h(A) = sup {hr(A) -r> °}-

Let d satisfy the following condition: 

(C) If Elf E2 e K, d(Ex)< n, d(E2) < r2, E1r\E2^¥ 0, then there is E e K 
such that E ZD EiU E2 and d(E) <n + r2. 

Now if A is an intersection of r-stars (i. e. of sets Ar = u {E e K :E n 
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n A -# 0, d(E)< r}), or if more generally h ( n Ar — A) = 0, then A is 
h-measurable. 

Proof , h is a special case of y\ T = (0, oo), Kr = {E eK : d(E)< r}. 
Vut Un = U {E eK:E n A 4= 0, d ( # ) < 1/w}. We shall prove tha t Un+1, Un 

can be separated. P u t R = 1/2 (1/n — l/(n + l ) a n d construct -R-stars of 
Un+1, resp. Un. Denote them by U, resp. V. We assert tha t U n V ^ 0. 

Prove it indirectly. Let a; e c7 n V. Then there are EltE2 e K such tha t 
d(Et)< R, Ex C\Un+1 #= 0, ^2 n C7"̂  4= 0, -ve-Si n ^ 2 - According to the 
assumption there is E3 EK, E% => ^1 U E2, such tha t e?(i?3) < 2R = 1/n — 
— l/(7i+l) = a. Since Ez^ E2, there is y E U'n, y EE3. Since JS73 n E/w+i 4= 0, 
there is A e K , E± n -4 4= 0, £ 4 n £ 3 * 0, d(E±)< l/(n-\-l). Then according 
to the assumption there is B e K, B z> jE/4 U E3, d(B)< l/(n + 1) + a = 1/n. 
Since B C\Az> E±C\ A 4=0, d(B)< 1/n, we have B cz Un. Since B ZD Es, 
we have y E B. Hence ?/ e f7?a which is a contradiction. 

Now it is clear tha t Un — Un+1, Un+2 can be separated. The possibility 
to separate A, X — Un can be proved similarly. Hence we can use Theorem 1. 

R e m a r k . If K satisfies the condition (C), then K satisfies also the condition 
(511) from [8], hence A is r-measurable — ^-measurable according to corollary 
7.4 of [8]. Hence Theorem 5 is obtained implicitely in [8]. 
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