Matematický časopis

Beloslav Riečan

A Note on Measurable Sets

Matematický časopis, Vol. 21 (1971), No. 4, 264--268
Persistent URL: http://dml.cz/dmlcz/127070

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A NOTE ON MEASURABLE SETS

BELOSLAV RIEČAN, Bratislava

We present here a strengthenning of the previous results of the author concerning the measurability of some sets with respect to an outer measure, some examples and a remark about the Hausdorff measure in abstract spaces.

Theorem 1. Let H be a hereditary σ-ring*), γ be an outer measure on H. Let \mathscr{R} be a symmetric relation on the system of all subsets of X such that $E \mathscr{R} F$, $E_{1} \subset E, F_{1} \subset F$ implies $E_{1} \mathscr{R} F_{1}$. Let $\gamma(E \cup F)=\gamma(E)+\gamma(F)$ whenever $E \mathscr{R} F$. Let $\left\{V_{n}\right\}$ be a non-ascendent sequence of the sets of $H,\left(V_{n}-V_{n+1}\right) \mathscr{R} V_{n+2}$ $(n=1,2, \ldots)$. Let C be $a \operatorname{set} C \subset V_{n}, C \mathscr{R}\left(X-V_{n}\right)(n=1,2, \ldots), \gamma\left(\bigcap_{n=1}^{\infty} V_{n}-C\right)=0$.

Then C is γ-measurable.
Proof. Since we only modify a well-known proof (c.f. [2], Theorem 2, [3] $\S 11$, exercise 8, [5], Theorem 1), we present only basic ideas. Let $E \in H$. be an arbitrary set. Then

$$
\begin{align*}
& \gamma\left(E-V_{n}\right) \leqq \gamma(E-C) \leqq \gamma\left(\bigcap_{i=1}^{\infty} V_{i}-C\right)+\gamma\left(E-V_{2 k}\right)+ \tag{1}\\
& \quad+\sum_{i=k}^{\infty} \gamma\left(E \cap\left(V_{2 i}-V_{2 i+1}\right)\right)+\sum_{i=k}^{\infty} \gamma\left(E \cap\left(V_{2 i+1}-V_{2 i+2}\right)\right)
\end{align*}
$$

for all k and n. If both series in (1) converge, we get

$$
\begin{equation*}
\gamma(E-C)=\lim \gamma\left(E-V_{n}\right) \tag{2}
\end{equation*}
$$

In the reverse case we use to prove (2) the following relations:

$$
\begin{aligned}
& \gamma\left(E-V_{2 k}\right) \geqq \sum_{i=2}^{k} \gamma\left(E \cap\left(V_{2 i-1}-V_{2 i-2}\right)\right), \\
& \gamma\left(E-V_{2 k}\right) \geqq \sum_{i=1}^{k} \gamma\left(E \cap\left(V_{2 i}-V_{2 i-1}\right)\right) .
\end{aligned}
$$

[^0]The last two inequalities follow from the relation $\left(V_{n}-V_{n+1}\right) \mathscr{R} V_{n+2}$. From. the relation $C \mathscr{R}\left(X-V_{n}\right)$ and from (2) it follows

$$
\begin{gathered}
\gamma(E) \geqq \lim \gamma\left((E \cap C) \cup\left(E-V_{n}\right)\right)=\gamma(E \cap C)+\lim \gamma\left(E-V_{n}\right)= \\
=\gamma(E \cap C)+\gamma(E-C)
\end{gathered}
$$

for all $E \in H$.
Theorem 2. Let H be a hereditary σ-ring of subsets of X, γ an outer measure. on H, Y some γ-measurable set of H. Let \mathscr{R} and γ fulfil the assumptions of Theorem 1. Let $U \subset Y,\left\{D_{n}\right\}$ be a non-descendent sequence of the sets $D_{n} \subset U$, $D_{n} \mathscr{R}\left(D_{n+2}-D_{n+1}\right), D_{n} \mathscr{R}(Y-U)(n=1,2, \ldots), \gamma\left(U-\bigcup_{n=1}^{\infty} D_{n}\right)=0$.

Then U is γ-measurable.
Proof. Put $C=Y-U, V_{n}=Y-D_{n}$. Then C is γ-measurable according to Theorem 1. Since Y is γ-measurable and $U=Y-C, U$ is γ-measurable too.

Corollary ([2], Theorem 2). Let (X,T) be a topological space, γ be an outer measure such that $\gamma(E \cup F)=\gamma(E)+\gamma(F)$, whenever $\bar{E} \cap \bar{F}=\emptyset$. Let A be an open set and $\left\{A_{n}\right\}$ be such a sequence of sets in X that $\bar{A}_{n} \subset A,{\overline{A_{n+2}-A}}_{n+1} \cap$ $\cap \bar{A}_{n}=\emptyset$ and $\gamma\left(A-\bigcup_{n=1}^{\infty} A_{n}\right)=0$. Then A is γ-measurable.
Another corollary of our theorems (especially of Theorem 1) is the previous. result of the author in [5], Theorem 1 (c.f. also [6], Theorem 1). There are a few known as well as a few unknown examples in [5], [6]. Here we present. further ones.

Example 1. Let X be a linear space. We shall say that two sets A, B are separated if for every $x \in A, y \in B$ the segment $[x, y]$ contains a subsegment. $[u, v] \subset[x, y](u \neq v)$ such that $[u, v] \subset A^{\prime} \cup B^{\prime}$. Let $\gamma(A \cup B)=\gamma(A)+$ $+\gamma(B)$ for any A, B which can be separated. Then the radial kernel (see [4]) of any convex set is γ-measurable.
Proof. Let A be the radial kernel of a convex set $B, a \in A$. Then $A-a$ is the radial kernel of $U=B-a$. Let p be the Minkowski functional for U. Then $\{x: p(x)<1\}=A-a$. Hence if we define a functional f by the formula $f(x)=p(x-a)$, then $A=\{x: f(x)<1\}$. We can put $D_{n}=\{x: f(x) \leqq 1-1 / n\}$ and $E \mathscr{R} F$, whenever E, F can be separated.
Example 2. Let A be a convex body (see [4]) in a linear topological space, $\gamma(E \cup F)=\gamma(E)+\gamma(F)$, whenever $\bar{E} \cap \bar{F}=0$. Then \bar{A} is γ-measurable.

Proof. Here $\bar{A}=\{x: f(x) \leqq 1\}$ for a continuous function f (see [4], Theorem 13.2).

Example 3 ([2], Theorem 3). If f is a continuous function on a topological
space $X, \gamma(E \cup F)=\gamma(E)+\gamma(F)$, whenever $\bar{E} \cap \bar{F}=\emptyset$, then $\{x: f(x)=0\}$ is γ-measurable.

Proof. $E \mathscr{R} F$ iff $\bar{E} \cap \bar{F}=\emptyset, V_{n}=\{x: f(x)<1 / n\}$.
Example 4 ([7], Theorem 2.4). In the example 3 the condition $\bar{E} \cap \bar{F}=\emptyset$ can be replaced by a stronger one (hence a theorem with a weaker assumption holds): there are open disjoint U, V including \bar{E}, resp. \bar{F}.

Proof. $E \mathscr{R} F$ iff there are open disjoint U, V including \bar{E} resp. \bar{F}.
Example 5. Let X be a topological space, $\gamma(E \cup F)=\gamma(E)+\gamma(F)$, whenever $\bar{E} \cap F=\emptyset$ or $E \cap \bar{F}=\emptyset$. Then every closed G_{δ} set is γ-measurable.

Theorem 3. Let γ and \mathscr{R} satisfy the assumptions of Theorem 1. Let $D \subset X$. Let to any $\delta>0$ and any $T \subset X$, with $\gamma(T)<\infty$ there be $V_{n}, C_{n} \subset X$ such that $V_{n} \supset V_{n+1}, C_{n+1} \subset C_{n} \subset V_{n},\left(V_{n}-V_{n+1}\right) \mathscr{R} V_{n+2}, C_{n} \subset D(n=1,2, \ldots)$, $\gamma\left(D \cap T-C_{1} \cap T\right)<\delta / 2, \quad \gamma\left(C_{n} \cap T-C_{n+1} \cap T\right)<\delta / 2^{n+1}, \gamma\left(\bigcap_{n=1}^{\infty} V_{n} \cap T-\right.$ $\left.-\bigcap_{n=1}^{\infty} C_{n} \cap T\right)=0$.

Then D is γ-measurable.
Proof. Put $\pi(E)=\gamma(E \cap T), C=\bigcap_{n=1}^{\infty} C_{n} . C$ is π-measurable according to Theorem 1. Further

$$
\pi(D-C) \leqq \pi\left(D-C_{1}\right)+\sum_{i=1}^{\infty} \pi\left(C_{i}-C_{i+1}\right) \leqq \delta
$$

Hence to any i there is a π-measurable set $M_{i} \subset D$ with $\pi\left(D-M_{i}\right)<1 / i$. $M=\bigcup_{i=1}^{\infty} M_{i}$ is then π-measurable, $M \subset D, \pi(D-M)=0$, therefore D is π-measurable. Now if $\gamma(K)=\infty$, then $\infty=\gamma(K) \leqq \gamma(K \cap D)+\gamma(K-D)$. If $\gamma(K)<\infty$, then put $K=T$. Then $\gamma(K)=\gamma(K \cap T)=\pi(K)=\pi(K \cap D)+$ $+\pi(K-D)=\gamma(K \cap D)+\gamma(K-D)$.

Theorem 3 is a generalization of Theorem 1. For obtaining Theorem 1 it suffices to put $C_{n}=D \quad(n=1,2, \ldots)$. Then $\gamma\left(\bigcap_{n=1}^{\infty} V_{n} \cap T-D \cap T\right)=0$, $\gamma(D-D)=0<\delta / 2^{n+1}$. The formulation of Theorem 3 is quite complicated but we can get directly from it the Bledsoe-Morse theorem on the measurability of closed G_{δ} (resp. open F_{σ}) sets in so-called γ-normal spaces (see [1], Theorem 2.17 also [5], Theorem 7).

Finally we should like to say a few words about the Hausdorff measure. The well-known classical definition was generalized in [1] for arbitrary topological spaces. We intended to generalize it further on abstract spaces (using

Theorem 1). We actually obtained some results concerning the measurability and the comparison of various definitions in a uniform space. But after reading an excellent and thoroughly exhaustive paper [8] we found that all our results had been contained explicitely or implicitely in [8].

Therefore we present here only a direct proof of a measurability theorem with respect to a Hausdorff measure in an abstract space.

Definition 1. Let T be a set of indices, X be an abstract space, $K_{t}(t \in T)$ be a system of subsets of $X, \emptyset \in K_{t}, \tau$ be a non-negative function on $K=\bigcup_{t \in T} K_{t}$, $\tau(\emptyset)=0$. Then for any $A \subset X$ put

$$
\begin{gathered}
\nu_{t}(A)=\inf \left\{\sum_{i=1}^{\infty} \tau\left(A_{i}\right): \bigcup_{i=1}^{\infty} A_{i} \supset A, A_{i} \in K_{t}\right\} \\
v(A)=\sup \left\{v_{t}(A): t \in T\right\}
\end{gathered}
$$

Definition 2. For $A \subset X$ and a family B of subsets of X put $B[A]=$ $=\cup\{E: E \in B, E \cap A \neq \emptyset\}$ and say that $B[A]$ is the B-star of A.

Theorem 4. v is an outer measure (for any $K_{t}, t \in T$). If T is directed, $t<s$ implies $K_{t} \supset K_{s}$ and A, B are subsets of X with disjoint stars (i. e. there are s, t such that $\left.K_{t}[A] \cap K_{s}[B]=\emptyset\right)$, then $v(A \cup B)=v(A)+\nu(B)$.

Proof. The first assertion is evident. Let $K_{t}[A] \cap K_{s}[B]=\emptyset, u>s, t$. Then $K_{u}[A] \subset K_{t}[A], K_{u}[B] \subset K_{s}[B], K_{u}[A] \cap K_{u}[B]=\emptyset$. Let $v(A \cup B)<$ $<\infty, \delta>0$. Then there are $E_{i} \in K_{u}(i=1,2, \ldots)$ such that

$$
\nu_{u}(A \cup B)+\delta>\sum_{i=1}^{\infty} \tau\left(E_{i}\right) \geqq \sum_{E_{i} \cap A \neq 0} \tau\left(E_{i}\right)+\sum_{E_{i} \cap B \neq 0} \tau\left(E_{i}\right) \geqq v_{u}(A)+v_{u}(B) .
$$

The rest of the proof is now evident.
Theorem 5. Let K be a system of subsets of $X, \emptyset \in K, \tau, d$ be two non-negative functions on $K, \tau(\emptyset)=0$. For any $A \subset X, r>0$ put

$$
h_{r}(A)=\inf \left\{\sum_{i=1}^{\infty} \tau\left(A_{i}\right): \bigcup_{i=1}^{\infty} A_{i} \supset A, A_{i} \in K, d\left(A_{i}\right)<r\right\}
$$

and

$$
h(A)=\sup \left\{h_{r}(A): r>0\right\}
$$

Let d satisfy the following condition:
(C) If $E_{1}, E_{2} \in K, d\left(E_{1}\right)<r_{1}, d\left(E_{2}\right)<r_{2}, E_{1} \cap E_{2} \neq \emptyset$, then there is $E \in K$ such that $E \supset E_{1} \cup E_{2}$ and $d(E)<r_{1}+r_{2}$.

Now if A is an intersection of r-stars (i.e. of sets $A_{r}=\cup\{E \in K: E \cap$
$\cap A \neq \emptyset, \quad d(E)<r\}$), or if more generally $h\left(\cap A_{r}-A\right)=0$, then A is h-measurable.

Proof. h is a special case of $\gamma ; T=(0, \infty), K_{r}=\{E \in K: d(E)<r\}$. Put $U_{n}=\cup\{E \in K: E \cap A \neq \emptyset, d(E)<1 / n\}$. We shall prove that U_{n+1}, U_{n}^{\prime} can be separated. Put $R=1 / 2(1 / n-1 /(n+1)$ and construct R-stars of U_{n+1}, resp. U_{n}^{\prime}. Denote them by U, resp. V. We assert that $U \cap V=\emptyset$.

Prove it indirectly. Let $x \in U \cap V$. Then there are $E_{1}, E_{2} \in K$ such that $d\left(E_{i}\right)<R, \quad E_{1} \cap U_{n+1} \neq \emptyset, \quad E_{2} \cap U_{n}^{\prime} \neq \emptyset, \quad x \in E_{1} \cap E_{2}$. According to the assumption there is $E_{3} \in K, E_{3} \supset E_{1} \cup E_{2}$, such that $d\left(E_{3}\right)<2 R=1 / n-$ $-1 /(n+1)=\alpha$. Since $E_{3} \supset E_{2}$, there is $y \in U_{n}^{\prime}, y \in E_{3}$. Since $E_{3} \cap U_{n+1} \neq \emptyset$, there is $E_{4} \in K, E_{4} \cap A \neq \emptyset, E_{4} \cap E_{3} \neq \emptyset, d\left(E_{4}\right)<1 /(n+1)$. Then according to the assumption there is $B \in K, B \supset E_{4} \cup E_{3}, d(B)<1 /(n+1)+\alpha=1 / n$. Since $B \cap A \supset E_{4} \cap A \neq \emptyset, d(B)<1 / n$, we have $B \subset U_{n}$. Since $B \supset E_{3}$, we have $y \in B$. Hence $y \in U_{n}$ which is a contradiction.

Now it is clear that $U_{n}-U_{n+1}, U_{n+2}$ can be separated. The possibility to separate $A, X-U_{n}$ can be proved similarly. Hence we can use Theorem 1.

Remark. If K satisfies the condition (C), then K satisfies also the condition (5II) from [8], hence A is v-measurable $=h$-measurable according to corollary 7.4 of [8]. Hence Theorem 5 is obtained implicitely in [8].

REFERENCES

[1] Bledsoe W. W., Morse A. P., A topological measure construction, Pacif. J. Math. 13 (1963), 1067-1084.
[2] Futaš E., Outer measures on topological spaces, Mat. časop. 19 (1969), 264-269.
[3] Halmos P. R., Measure Theory, New York 1950.
[4] Kelley J. L., Namioka I., Linear Topological Spaces, New York 1963.
[5] Riečan B., O meratelných množinách v topologických priestoroch, Časop. pěstov. mat. 93 (1968), 1-7.
[6] Riečan B., On measurable sets in topological spaces, Proc. of the Second Prague Topological Symposium, 1966, 295-296.
[7] Riečanová Z., A note on the Baire measure, Mat. časop. 19 (1969), 116-120.
[8] Sion M., Willmott R. C., Hausdorff measures on abstract spaces, Trans. Amer. Math. Soc. 12.3 (1966), 275-309.

Received October 1, 1969
Katedra matematiky a deskriptínej geometrie .Stavebnej fakulty
Slovenskej vysokej školy technickej Bratislava

[^0]: $\left.{ }^{*}\right)$ We use the terminology according to [3].

