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METRIZATION PROBLEM FOR LINEAR CONNECTIONS
AND HOLONOMY ALGEBRAS

Alena Vanžurová

Abstract. We contribute to the following: given a manifold endowed with
a linear connection, decide whether the connection arises from some metric
tensor. Compatibility condition for a metric is given by a system of ordinary
differential equations. Our aim is to emphasize the role of holonomy algebra
in comparison with certain more classical approaches, and propose a possible
application in the Calculus of Variations (for a particular type of second order
system of ODE’s, which define geodesics of a linear connection, components of a
metric compatible with the connection play the role of variational multipliers).

1. Motivation, geometry of paths

The metrizability problem for linear connections can be formulated as follows:
given an affine manifold (M,∇), consisting of an n-dimenisonal manifold M endo-
wed with a torsion-free linear connection ∇, under what conditions is ∇ metrizable;
that is, when is there a (pseudo-)Riemannian (=non-degenerate) metric g such
that ∇ is just the Levi-Civita (Riemannian) connection of (M, g). A quite na-
tural motivation comes from theoretical physics ([2] etc.). As well known, the
Riemannian connection is uniquely determined by zero torsion and ∇g = 0, its
components are related to components of the metric by the well-known formula
Γ`ik = 1

2g
`j
(
∂gij
∂xk

+ ∂gjk
∂xi −

∂gki
∂xj

)
, gisgsj = δij . In [3], geometries were studied which

arise on an analytic n-manifold when a system of curves called “paths" is given as
the family of solutions of the system of differential equations d2

xi

ds2 +Γijk dxj
ds

dxk
ds = 0,

i, j, k ∈ {1, . . . , n} where Γijk(x) are analytic functions of the coordinates in the
manifold. As a motivation coming from gravitation theory, let us mentione free-fall
trajectories as example of a “preferred family” of curves. The question formulated
in [3] was in fact a bit more general. In a free paraphrase: On (M,∇), find a cova-
riantly constant symmetric type (0, 2) tensor field g (which might not be a metric
if no condition concerning its rank is required). The approach used in [3] was of
analytic character, possible solutions of the system corresponding to the condition
∇g = 0, ∂gij

∂xk
− gsjΓsik − gisΓsjk = 0 (for unknowns gij) were discussed under the

implicite assumption det(gij) 6= 0. Applying higher order covariant derivatives, the
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integrability conditions were derived, and necessary conditions for metrizability
were given in the form of an infinite homogeneous system of linear equations in gij
(coefficients being functions in Γ′s and their partial derivatives), which reads (in
coordinate-free form)

g(R(X,Y )Z,W ) + g(Z,R(X,Y )W ) = 0 ,(1)

g(∇rR(X,Y ;Z1; . . . ;Zr)(Z),W ) + g(Z,∇rR(X,Y ;Z1; . . . ;Zr)(W )) = 0(2)
for all X,Y, Z,W,Z1, . . . , Zr ∈ X (M), 1 ≤ r <∞. In the “matrix form”, g ◦∇rR+
(∇rR)T ◦ gT = 0, r = 0, 1, · · · <∞, [13]. Obviously, any flat connection (R = 0) is
metrizable.

In the case of a metrizable connection, the above linear conditions must sta-
bilize for some positive integer N (in the sense that from the (N + 1)th stage,
the conditions are algebraic consequences of the previous ones). For any n ≥ 2,
there exist non-metrizable n-dimensional affine spaces (and there are in fact more
non-metrizable examples than metrizable ones). In general, 0 ≤ rank (gij) ≤ n
holds, but it might happen that the maximum q of ranks of all possible solutions of
(1)–(2) is less than n, then the affine space is non-metrizable (Example 3, 4; even
the case q = 0 might come). The procedure was described in [3] and applied by
various authors later on, e.g. [4], [5] (n = 2), [6], [7] (n = 4), [11, p. 75] (n = 2) etc.
For 2-manifolds, the metrization problem was solved e.g. in [2], [13], [14].
Proposition 1 ([3, p. 23], a free paraphrase). An affine manifold (M,∇) with the
curvature tensor R is metrizable if and only if the system
(3) gsjR

s
ik` + gisR

s
jk` = 0

has at least one-dimensional solution, and any solution of (3) satisfies
(4) gsjR

s
ik`;m + gisR

s
jk`;m = 0 , i, j, k, `,m ∈ {1, . . . , n} .

In examples, compatible metrics can be found using certain steps from the proof.
Suppose that the system (3) is solvable, and that any solution of (3) satisfies
(4). Let 〈G(1), . . . , G(p)〉 be a basis of the solution space. Then any solution g
can be written in the form g =

∑p
α=1 ϕ

(α)G(α) where ϕ(α) are some functions
on M . Due to (4), G(α)

sj;mR
s
ik` + G

(α)
is;mR

s
jk` = 0 holds, α = 1, . . . , p. That is,

the covariant derivatives G(α)
sj;m satisfy (3), too, and hence can be expressed as

G
(α)
ij;k =

∑p
β=1 µ

(αβ)
k G

(β)
ij . Since second covariant derivatives satisfy the (so-called

Ricci) indentity G
(α)
ij;k` − G

(α)
ij;`k = G

(α)
sj R

s
ik` + G

(α)
is R

s
jk`, and the right hand side

vanishes for our G(α)
ij , we get G(α)

ij;k`−G
(α)
ij;`k = 0, and further (after some evaluations)

(5)
∂µ

(αβ)
k

∂x`
−
∂µ

(αβ)
`

∂xk
+

p∑
γ=1

(
µ

(αγ)
k µ

(γβ)
` − µ(αγ)

` µ
(γβ)
k

)
= 0 .

If g shall satisfy ∇g = 0 then the ϕ’s must satisfy the equations

(6) ∂ϕ(α)

∂xk
+

p∑
β=1

ϕ(β)µ
(αβ)
k = 0 , α = 1, . . . , p .
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But according to (5), the system (6) is completely integrable, hence there exist
functions ϕ(1), . . . , ϕ(p) which determine a compatible (pseudo-)Riemannian metric.
Let us demonstrate the method presented above on a simple example.
Example 1 ([15]). On the manifold (R2, id) with (global) coordinates (x, y),
consider the symmetric linear connection ∇ with the only non-zero components
Γ1

11 = x/(x2 + 1), Γ2
22 = y/(y2 + 1). The curvature tensor vanishes identically,

R ≡ 0, the corresponding system of equations is empty (the connection is surely
metrizable since flat). Anyway, let us find the metrics to demonstrate the method.
The solution space can be given e.g. as a span of independent (global analytic)
type (0, 2) symmetric tensor fields G(1) = dx ⊗ dx, G(2) = dy ⊗ dy, G(3) =
dx ⊗ dy + dy ⊗ dx. Their covariant derivatives, which must satisfy the system
(3), can be expressed as combinations of the generators (with coefficients which
are at most functions of x). We get G

(1)
ij;1 = − 2x

x2+1G
(1)
ij , G(1)

ij;2 = G
(2)
ij;1 = 0,

G
(2)
ij;1 = − 2y

y2+1G
(2)
ij , G(3)

ij;1 = − x
x2+1G

(3)
ij , G(3)

ij;2 = − y
y2+1G

(3)
ij . Hence µ(11)

1 = − 2x
x2+1 ,

µ
(22)
1 = − 2y

y2+1 , µ(33)
1 = − x

x2+1 , µ(33)
2 = − y

y2+1 are just the non-zero coefficients,
and all compatible metrics are of the form g = ϕ(1)G(1) +ϕ(2)G(2) +ϕ(3)G(3) where
the functions ϕ′s solve the system (6); we get ϕ(1) = − x

x2+1 etc. All compatible
metrics g are described explicitely in Example 5 below.

2. Metrization via holonomy algebras

2.1. Holonomies. The method described above gives a very little insight into a
geometric meaning of the integrability conditions and the restrictions imposed on
the connection. A more geometric and sophisticated approach to the interpretation
of necessary and sufficient metrization conditions (1), (2) can be given using
parallel transport and holonomy groups. The holonomy of (M,∇) at x ∈M along
a piecewise-differentiable1 loop (i.e. closed curve with x as starting point as well as
endpoint; loops are taken with usual composition, [8]) is an automorphism of the
tangent space TxM which is given by parallel propagation of vectors2 along the
given loop. Due to properties of the parallel transport along curves3, all holonomies
at x together with composition form the so-called (full linear) holonomy group
Φ(x) := Hol∇x of (M,∇) at x, which appears to be a Lie transformation group; Φ(x)
is a subgroup of GL(TxM). As well known, on a connected manifold, holonomy
groups at different points are isomorphic. If we restrict ourselves onto loops which
are homotopic to zero (contractible to a point), a similar construction gives rise
to the (linear) restricted holonomy group Φ0(x) of ∇ with the reference point x,
which is a connected Lie transformation group, and plays the role of component
of unit in Φ(x). Denote by h(x) := Hol∇x the corresponding Lie algebra of Φ(x).
Particular Lie subgroups in Φ(x), namely a (linear) local holonomy group Φ∗(x) and
an infinitesimal holonomy group Φ′(x) can be introduced, Φ′(x) ⊂ Φ∗(x) ⊂ Φ0(x)
holds, hence the corresponding holonomy Lie algebras satisfy h′(x) ⊂ h∗(x) ⊂ h(x)

1The class C1 is sufficient, [8, I, p. 85, Th. 7.2].
2In [8], parallel transport of frames is used.
3τµ−1 = τ−1

µ and τµ ◦ τη = τηµ
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(the inclusions might be sharp in general), [8, I, Ch. II, p. 94, 95]. For a smooth
connection, the infinitesimal holonomy algebra h′(x) can be calculated from the
curvature tensor and its covariant derivatives:

Lemma 1 ([8, Ch. III, p. 152, Lemma 1, Th. 9.2]). For smooth (C∞) connections,
the Lie algebra h′(x), as a vector space, is a span of the linear maps

(7) ∇kR(X,Y ;Z1, . . . , Zk) , X, Y, Z1, . . . , Zk ∈ TxM , 0 ≤ k <∞ .

Lemma 2 ([8, Ch. II, p. 101, Th. 10.8]). Holonomy groups of a real analytic
connection on a real analytic manifold satisfy Φ′(x) = Φ∗(x) = Φ0(x), x ∈M .

Corollary 1. In the real analytic case, the holonomy algebra coincides with the
infinitesimal holonomy algebra, h(x) = h′(x), hence the component of unit Φ0(x)
can be retrieved from h′(x). Moreover, the restricted holonomy group of a connected
real analytic manifold (M,∇) with an analytic connection is fully determined by
the curvature tensor R and its iterated covariant derivatives ∇kR, k ∈ N.

2.2. Hol∇x -invariant bilinear forms. The possibility to employ holomomy groups
in order to solve the metrization problem for linear connections was discussed e.g. in
[12], [1]. The holonomy group “decides” whether a connection is metrizable or not.
Given a connection on a connected simply connected manifold, Φ(x) is a connected
Lie subgroup of the automorphism (transformation) group GL(TxM) of the fibre,
therefore it is uniquely determined by its Lie algebra. If a connection is induced
by a certain metric, then the scalar product defined by g on particular tangent
spaces is preserved by parallel translations, therefore elements of the holonomy
group are isometries of the tangent space, and Φ0(x) identifies with a subgroup of
SO(TxM), i.e., according to the signature of the metric, with a subgroup of SO(n)
or of SO(p, q), p+ q = n, respectively. On the other hand, if Φ0(x) is a subgroup
of the special orthogonal group of the fibre at one4 point then we can define scalar
product on this particular fibre5 TxM , and create a compatible metric using parallel
transport, [1], [12], [10]. In simple examples, it works, [15]. The following shows
how to characterize quadratic forms invariant under the holonomy group in terms
of the holonomy algebra.

Lemma 3. Let (M,∇) be a simply connected smooth manifold with ∇ torsion-free,
x ∈M a fixed point. Given a symmetric bilinear form G on TxM , G ∈ S2(T ∗xM),
then the following holds: G is invariant by Φ(x) if and only if

(8) G(AX,Y ) +G(X,AY ) = 0 for all A ∈ h(x), X,Y ∈ TxM.

Proof. We check here that elements of the holonomy algebra satisfy (8). The
other implication also holds but the proof is not so trivial. If A ∈ h(x) consider
the corresponding one-parameter subgroup sA : R → Φ(x), t 7→ sA(t) uniquely
determined by the initial data sA(0) = 1, (sA)′(0) := ( ddt )t=0 s

A(t) = A. Let G be

4we mean here a “nice”, generic point, cf. the definition below
5It can be done e.g. using a fixed chart about x: we can suppose that the tangent space is

isomorphic to (Rn, 〈 , 〉), endowed with a standard scalar product, [1].
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invariant under the holonomy group6. Then we get G(sA(t)X, sA(t)Y ) = G(X,Y )
for X,Y ∈ TxM . Let us differentiate with respect to t, making use of the formula
for scalar product7, and consider t→ 0:

G((sA)′(0)(X), sA(0)(Y )) +G(sA(0)(X), (sA)′(0)(Y )) = 0 .

That is, (8) is satisfied. �

In general, we can not calculate the holonomy group from the curvature tensor
and its covariant derivatives. It might be difficult to find the holonomy group and
a quadratic form invariant under it. The situation is easier in the real analytic
case: the assumptions on Φ(x) can be reformulated as assumptions on h(x). The
above gives us a quite natural motivation for introducing the vector subspace H(x),
x ∈M , of all symmetric bilinear forms satisfying the condition from Lemma 3,

(9) H(x) :=
{Gx ∈ S2(T ∗xM) | Gx(AX,Y ) +Gx(X,AY ) = 0, A ∈ h(x), X, Y ∈ TxM} .

Theorem 1 ([12], a free paraphrase). Let (M,∇) be connected and let there exist
Gx0 ∈ H(x0)8. Then ∇ is the Levi-Civita connection of a metric on M which has
the same signature as Gx0 .

If ∇ is Riemannian (comes from a positive definite metric) then for every x ∈M ,
H(x) includes a positive definite form; under additional assumptions, the converse
also holds.

Theorem 2 ([10, Prop. 1], [12]). Given a connected simply connected (M,∇) and
x ∈M , let there be a positive definite form Gx0 ∈ H(x). Then ∇ is Riemannian.

It might be a problem to check whether there is a positive definite form in H(x).
Since no direct decision algorithm based on linear algebra only is available, an
algorithm using geometric properties of the Levi-Civita conection, particularly the
canonical (de Rham) decomposition of the tangent space TxM of a Riemannian
manifold (M, g) with respect to Φ(x) was developed, [10].

3. Decision algorithm

In [10], O. Kowalski proposed an algorithm based on the holonomy algebra which
enables to decide effectively whether a given (analytic) connection on an analytic
manifold satisfying additional conditions is a Riemannian one, and suggested a
method for constructing all corresponding Riemannian metrics in the affirmative
case. Let (M,∇) be connected, simply connected and analytic. Denote

(10) hr(x) =
span {∇kR(X,Y ;Z1, . . . , Zk), X, Y, Z1, . . . , Zk ∈ TxM, x ∈M, 0 ≤ k ≤ r} .

6That is, G(τX, τY ) = G(X,Y ) for any τ ∈ Φ(x).
7G′(u(t), v(t)) = G(u′(t), v(t)) +G(u(t), v′(t)).
8Originally: “Let Φ(x0) keeps a non-degenerate quadratic form Gx0 (on Tx0M) invariant”
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A point x will be called Φ-regular (regular, generic) if for each r ∈ N, the dimension
dim hr(x) of the subspace reaches its maximum in a neighborhood Ux 3 x. The set
of Φ-regular points is a dense open subset in M . At a regular point, the sequence
of subspaces stabilizes for some N , hN (x) = hN+1(x), and the same must hold in
a neighborhood. We get9 h(y) = hN (y) at any point y ∈ Ux. Hence if we find the
subspaces hr(y) in a coordinate neighborhood of a point x we are able to decide
whether x is regular or not; about a regular point, we can calculate the algebra
h(y) in the given coordinate system. Let us give here a shortened version of the
decision process (according to which a computer program can be constructed).

Algorithm.

We choose local coordinates in an open subset U ⊂M about x, and calculate the
curvature tensor, its covariant derivatives at x, and the subspaces ho(x) ⊂ h1(x) ⊂
. . . at x (step by step). If there is a natural number N such that hN (x) = hN+1(x)
then x is Φ-regular. If not we try another point.

If x is regular we calculate the space H(x) as the solution space of the system
of homogeneous equations obtained from (9) when we put successively A = ∇rR,
r = 0, . . . , N . In fact, we find solution of the equations from (1), (2) corresponding
to r ≤ N . Find dimH(x). If p = dimH(x) = 0, ∇ is not Riemannian10, and we
STOP the process. If p = dimH(x) ≥ 1 we choose a basis 〈G1, . . . , Gp〉 of H(x);
any element of H(x) has a unique expression in the form G = λ1G

1 + · · ·+ λpG
p.

Local components Gmk` of the base forms are rational functions of the components
of covariant derivatives of the curvature tensor.

To decide whether there is a regular form in H(x) or not, compute the deter-
minant det(

∑
mλmG

m
k`), k, ` ∈ {1, . . . , n}, viewed as a polynomial of independent

variables λ`. If the resulting polynomial is non-zero, ∇ is not Riemannian11, STOP.
If we get a non-zero polynomial then there is a regular form in H(x), and we can
continue our search. Step by step, we choose integers λ̂1, . . . , λ̂p so that to obtain a
particular (regular) form ĥ ∈ H(x).

In our local coordinates, let us calculate the linear operators12 S1, . . . , Sp corres-
ponding to respective base elements G1, . . . , Gp via the regular form ĥ according
to the formulae

(11) ĥ(S`X,Y ) = G`(X,Y ), X, Y ∈ TxM, ` = 1, . . . , p.

Let us evaluate a span in End (TxM) of all commutators of the above endomor-
phisms, the commutant Cx = span {[S`, Sk]; `, k = 1, . . . , p} of the set {S1, . . . , Sp}.
Find the common null-space Nx of Cx. If Nx is not invariant under S1, . . . , Sp, or
if the restriction ĥ|Nx is not regular then ∇ is not Riemannian, STOP. Otherwise
continue.

9using covariant differentiation
10and is not metrizable, either.
11and is not metrizable, either.
12Each S` is an symmetric endomorphism w.r.t. ĥ of the space (TxM, ĥ).
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If Cx 6= (0) find the orthogonal complement N̂x of Nx in TxM with respect to
ĥ. Calculate the restrictions G`|N̂x, ` = 1, . . . , p. If they do not generate the space
S2(N̂∗x) of all symmeric bilinear forms on N̂x then ∇ is not Riemannian, STOP. If
they generate S2(N̂∗x) we continue; if Cx = (0) we continue directly.

In the family of the restrictions S1|Nx, . . . , Sp|Nx, find a set of independent gene-
rators S(1), . . . , S(s) of the space H(x)|Nx. Calculate all eigenspaces of S(1), . . . , S(s)

and all possible intersections Z(1)α∩· · ·∩Z(s)γ of various eigenspaces of S(1), . . . , S(s).
Let (0), L1, . . . , Lr be just the set of all intersections. Then the necessary conditions
for ∇ be Riemannian are:
• r = s, and Nx = L1 ⊕ · · · ⊕ Lr (the orthogonal decomposition w.r.t. ĥ).

If the above conditions are not satisfied, STOP. If they are satisfied continue.
If each of the restrictions ĥ|Lj is either positive or negative definite, ∇ is

Riemannian (and N̂x := T 0
x ⊂ TxM is the subspace on which Φ(x) acts trivially).

If this is not the case then ∇ is not Riemannian, STOP. �

Note that if n = 2, and the manifold (M2,∇) is real analytic connected and
simply connected then the decision procedure can be simplified; ∇ is Riemannian
only in two cases, namely, either at the given Φ-regular point x, p = dimH(x) = 1
and the space H(x) is generated by a positive definite form, or p = 3 (which
happens if and only if R = 0), and then the connection ∇ is Euclidean.

Example 2. To demonstrate the above Algorithm let us solve Example 1 by the
above method. Choose an arbitrary point x=(x0, y0); in our case, it is surely regular;
all the objects involved will be calculated in fact not only about x, but on the
entire manifold. Independently of the point, the holonomy algebra (the restricted
holonomy group, respectively) is trivial, h = (0), Φ0(x) = (id ). Consequently,
since only the zero morphism A = 0 is to be considered in (9), the condition
holds for any symmetric bilinear form on the tangent space at x. Hence the
subspace H(x) ⊂ S2(T ∗xR2), x ∈ R2, satisfying (9) is of maximal dimension p = 3,
and can be given e.g. as H(x) = span {G(1)(x), G(2)(x), G(3)(x)} where G(i)(x)
(satisfying (9) for any x in the manifold) are the same as in Example 1. Obviously,
G(1) + G(2) ∈ H(x) is positive definite. Nevertheless, for illustration choose the
regular form ĝ = G(3) which is not positive definite (and has constant components
on the manifold). At any x ∈ R2, the symmetric operators from (11) and the
commutant of the set {S1, S2, S3} have matrix representations

S1
ij =

(
0 0
1 0

)
, S2

ij =
(

0 1
0 0

)
, S3

ij =
(

1 0
0 1

)
, Cx = span

{(
0 −1
1 0

)}
.

The commutant is non-trivial, so let us determine the orthogonal complement N̂x
of its nullspace Nx = {(0, 0)} with respect to our form g̃ = G(3), which should
coincide with the maximal subspace on which Holx acts trivially: T 0 = N̂x = TxR2.
The space S2(T ∗xR2) is a span of the restrictions G(α)|T 0 = G(α). The remaining
conditions are automatically satisfied due to triviality of Nx. Hence the Riemannian
metrics do exist.
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4. Construction of metrics

The following results enable us to construct the metric explicitely.

Theorem 3 ([10, p. 8], a free paraphrase). On a connected simply connected
analytic manifold with an analytic connection ∇, let Ux be an open neighborhood
of x ∈M formed exclusively by Φ-regular points. Let ∇ be Riemannian (metrizable
and positive definite), and let ĝ ∈ H(x) be regular on U . Let H(1), . . . ,H(t) be
analytic tensor fields on U such that for any y ∈ U , H(1)

y , . . . ,H
(t)
y are linearly

independent symmetric bilinear forms on TyM , with the same null-space equal to
Ny, and let the restrictions H(1)|N̂y, . . . ,H(t)|N̂y to the complement N̂y of Ny span
the space S2(N̂∗y ). Then there exist 1-forms ωij on U such that H(i) =

∑
ωij ⊗H(j),

1 ≤ i, j ≤ t. Moreover, the system of linear homogeneous PDE’s dλi + λkω
k
i = 0,

1 ≤ i ≤ t, is completely integrable.

Theorem 4 ([10, p. 9], a free paraphrase). Under the same assumptions and
notation as above, suppose that for any y ∈ Ux, Ny = L1,y ⊕ · · · ⊕ Ls,y is the
orthogonal decomposition w.r.t. ĝ. Let hi denote the tensor field on U such that
its null-space at y ∈ U coincides with the orthogonal complement of Li,y in TyM
w.r.t. ĝ, and which coincides with ĝ on Li,y for any y ∈ U . Then there exist exact
1-forms ωi (first integrals, ωi = dfi), such that ∇hi = ωi ⊗ hi, 1 ≤ i ≤ s (i.e. hi
are recurrent).

Theorem 5. Under the same assumptions as above, with H(i) and hi analytic on
U , all admissible Riemannian metrics are of the form

g =
t∑

i,k=1
biλ

i
kH

(k) +
s∑

k=1
cke
−fkhk,

where fj is some primitive function of the exact diferential form ωj , 1 ≤ j ≤ s, the
functions (λi1, . . . , λit), 1 ≤ i ≤ t form a basis of the solution space of the completely
integrable system from Theorem 3, and the real parameters bi, ck are chosen in
such a way that g is positive definite.

5. Application

Given a system of second order ODE’s of a particular form
(12) ẍk + Γkrs(x)ẋrẋs = 0 , k = 1, . . . , n ,
that is, second derivatives can be expressed as quadratic forms in first derivatives
(where Γkrs(x) are smooth functions), we can use the above theory for deciding
whether the system is derivable from a Lagrangian. Namely, we can assume that
the functions Γkrs(x) are components of a symmetric linear connection ∇ on some
neighborhood U ⊂ Rn, and curves solving the equations (12) are geodesics of
∇. If ∇ is (locally) metrizable, gij(x) (with det(gij(x)) 6= 0 at any x ∈ U) being
components of some non-degenerate metric g compatible with ∇ on U then the
system of equations (12) is equivalent to the system
(13) gik

(
ẍk + Γkrs(x)ẋrẋs

)
= 0, k = 1, . . . , n,
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hence the functions13 gik(x) can be taken as variational multipliers, and the
corresponding Lagrangian (kinetic energy) is

(14) T = 1
2gij(x)ẋiẋj .

In simple cases we can decide about solution of ∇g = 0 directly:

Example 3 ([3, p. 122]). On R2 with coordinates x = (x1, x2), assume the system
of ODE’s (ordinary differential equations)

(15) (ẍ1)2 + (x1 − x2)(ẋ1)2 = 0,
(ẍ2)2 + (x1 − x2)(ẋ2)2 = 0.

Curves c(s) : I → R2 (parametrized by arc length), which are solutions of the
system, represent the family of geodesics of a (symmetric) linear connection ∇
with components Γ1

11 = Γ2
22 = x1 − x2, Γijk = 0 otherwise, or equivalently,

∇ ∂
∂x1

∂

∂x1 = (x1 − x2) ∂

∂x1 ,

∇ ∂
∂x2

∂

∂x2 = (x1 − x2) ∂

∂x2 , ∇ ∂

∂xi

∂

∂xj
= 0 otherwise.

Let us solve directly the system of equations arising from the condition ∇g = 0
for (smooth) functions gij(x1, x2), which should be components of a symmetric
non-singular functional matrix G = (gij) (in short we write ∂k instead of ∂

∂xk
):

∂1g11 = (x1 − x2)g11 , ∂2g11 = 0 ,
∂1g12 = 0 , ∂2g12 = (x1 − x2)g12 , gij = 0 for all i, j ,

∂1g22 = 0 , ∂2g22 = (x1 − x2)g22; max rank = q = 0 .
Hence G = 0, the only solution is trivial, the connection is not metrizable, and
there are no variational multipliers of the form gij(x).

Example 4. The system
(16) ẍ1 = 0, ẍ2 = −2ẋ1ẋ2

defines on R2 (or on the cylinder R×S1, or on the torus T2 = S1×S1) a symmetric
linear connection ∇ which is not a metric one. In fact, the only non-zero Christoffels
are Γ2

12 = Γ2
21 = 1, i.e. ∇ can be introduced also by

∇X1X1 = ∇X2X2 = 0, ∇X1X2 = ∇X2X1 = X2, Xi = ∂

∂xi
.

Solving directly the corresponding system of differential equations we get

∂1g11 = 0 , ∂2g11 = 2g12 , G = (gij) =
(
a 0
0 0

)
, a ∈ R ,

∂1g12 = g12 , ∂2g12 = g22 ,

∂1g22 = 2g22 , ∂2g22 = 0 , max rank = q = 1 ,

13In general, there might exist multipliers of a more general form gik(t, x, ẋ), depending on
“time, positions and velocities”, which might bring more complicated Lagrangians.
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the corresponding tensor is degenerate; no multipliers of the form gij(x) can be
found.

Example 5. Assume the system

(17) ẍ+ x

x2 + 1 ẋ
2 = 0 , ÿ + y

y2 + 1 ẏ
2 = 0 .

The corresponding connection ∇ (on R2) was described in Example 1, and metriza-
bility was confirmed in Example 2. Variational multipliers gij(x) for the system can
be found as components of a non-degenerate metric g compatible with ∇. According
to the Theorems 3, 4, 5 the metrics we are searching for are in fact of the form
g = biλ

i
kH

(k), 1 ≤ i, k ≤ 3 (the second summand vanishes due to triviality of Ny on
the neighborhood). As tensor fields H(i), we can choose H(1) = dx⊗ dy + dy ⊗ dx,
H(2) = dx⊗ dx+ dy ⊗ dy, H(3) = dx⊗ dx− dy ⊗ dy. Their covariant derivatives
are
∇H(1) = − x

x2+1 (dx⊗ dy + dy ⊗ dx)⊗ dx− y
y2+1 (dx⊗ dy + dy ⊗ dx)⊗ dy ,

∇H(2) = − 2x
x2+1 dx⊗ dx⊗ dx− 2y

y2+1 dy ⊗ dy ⊗ dy ,
∇H(3) = − 2x

x2+1 dx⊗ dx⊗ dx+ 2y
y2+1 dy ⊗ dy ⊗ dy .

Hence the forms satisfy ∇H(i) = ωij ⊗H(i) with

ω1
1 = − x

x2+1 dx− y
y2+1 dy, ω1

2 = ω1
3 = ω2

1 = ω3
1 = 0,

ω2
2 = − x

x2+1 dx− y
y2+1 dy, ω2

3 = − x
x2+1 dx+ y

y2+1 dy,
ω3

2 = − x
x2+1 dx+ y

y2+1 dy, ω3
3 = − x

x2+1 dx− y
y2+1 dy.

The solution space of the system of linear PDE’s

dλ1 = λ1
x

x2 + 1dx+ λ1
y

y2 + 1dy,

dλ2 = (λ2 + λ3) x

x2 + 1dx+ (λ2 − λ3) y

y2 + 1dy,

dλ3 = (λ2 + λ3) x

x2 + 1dx− (λ2 − λ3) y

y2 + 1dy

has a basis 〈λ1, λ2, λ3〉 formed by triples of functions λi = (λi1, λi2, λi3), 1 ≤ i ≤ 3,

λ1 = (
√
x2 + 1

√
y2 + 1, 0, 0) , λ2 = (0, x2 + 1, x2 + 1) , λ3 = (0, y2 + 1, y2 + 1) .

We can see the desired multipliers from the matrix representation of the compatible
Riemannian metrics:

(gij) =
(

2b2(x2 + 1) b1
√
x2 + 1

√
y2 + 1

b1
√
x2 + 1

√
y2 + 1 2b3(y2 + 1)

)
where the (real) parameters b1, b2, b3 should be chosen so that g be positive de-
finite. In tensor notation, all compatible tensors are g = 2b2(x2 + 1)dx ⊗ dx +
b1
√
x2 + 1

√
y2 + 1dx⊗dy+ b1

√
x2 + 1

√
y2 + 1dy⊗dx+2b3(y2 +1)dy⊗dy, i.e. in

the classical notation, all admissible Riemannian metrics are

ds2 = 2b2(x2 + 1)dx2 + 2b1
√
x2 + 1

√
y2 + 1dxdy + 2b3(y2 + 1)dy2 .
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Using (14) we get (some of) the Lagrangians.
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