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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 44 (2008), 523–533

A GENERALIZATION OF THOM’S TRANSVERSALITY
THEOREM

Lukáš Vokřínek

Abstract. We prove a generalization of Thom’s transversality theorem. It
gives conditions under which the jet map f∗|Y : Y ⊆ Jr(D,M)→ Jr(D,N)
is generically (for f : M → N) transverse to a submanifold Z ⊆ Jr(D,N).
We apply this to study transversality properties of a restriction of a fixed
map g : M → P to the preimage (jsf)−1(A) of a submanifold A ⊆ Js(M,N)
in terms of transversality properties of the original map f . Our main result
is that for a reasonable class of submanifolds A and a generic map f the
restriction g|(jsf)−1(A) is also generic. We also present an example of A where
the theorem fails.

0. Introduction

We start by reminding that for smooth manifolds M and N the set C∞(M,N)
of smooth maps is endowed with two topologies called weak (compact-open) and
strong (Whitney) topology. They agree when M is compact. We say that a subset
of a topological space is residual if it contains a countable intersection of open dense
subsets. The Baire property for C∞(M,N) then guarantees that it is automatically
dense. This holds for both topologies but is almost exclusively used for the strong
one. Clearly every residual subset of C∞(M,N) for the strong topology is also
residual for the weak topology. The following is our main theorem in which we
denote by Jrimm(D,M) the subspace of all jets of immersions.

Theorem A. Let D, M , N be manifolds, Y ⊆ Jrimm(D,M) and Z ⊆ Jr(D,N)
submanifolds. Let us further assume that σY t σZ , where

σY = σ|Y : Y ⊆ Jr(D,M)→ D and σZ = σ|Z : Z ⊆ Jr(D,N)→ D

are the restrictions of the source maps. For a smooth map f : M → N let f∗|Y
denote the map

Y � � // Jrimm(D,M) f∗ // Jr(D,N) .
Then the subset

X :=
{
f ∈ C∞(M,N)

∣∣ f∗|Y t Z}
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is residual in C∞(M,N) with the strong topology, and open if Z is closed (as a
subset) and the target map τY : Y →M is proper.

We are interested in the theorem mainly because of the following two applications,
the first of which is the classical theorem of Thom.

Theorem B (Thom’s Transversality Theorem). Let M , N be manifolds, Z ⊆
Jr(M,N) a submanifold. Then the subset

X := {f ∈ C∞(M,N) | jrf t Z}

is residual in C∞(M,N). It is moreover open provided that Z is closed (as a
subset).

To explain the second application we need to introduce a bit of notation. Let us
consider the following diagram

f−1(A) //
� _

j

��

A� _

��

g−1(B) � � //

��

M
f

//

g

��

N

B
� � // P

of smooth manifolds and smooth maps between them where � � // indicates
embeddings. We assume that f t A and g t B for the two pullbacks to be defined
(which we emphasize by saying that they are transverse pullbacks) and also for
some technical reasons. Suppose that we fix g and allow ourselves to change f (but
only in such a way that f t A). It is not hard to describe when the composition
gj = g|f−1(A) is transverse to B. A more general condition on gj is whether it
satisfies some form of jet transversality. First we have to solve the problem of not
having the source of Jr(f−1(A), P ) fixed.

Construction. Let D be a d-dimensional manifold and

Diff(Rd, 0) = invG0(Rd,Rd)0

the group1 of germs at 0 of local diffeomorphisms Rd → Rd fixing 0. Define a
principal Diff(Rd, 0)-bundle

ChartsD = invG0(Rd, D) ev0−−−→ D

of germs at 0 of local diffeomorphisms Rd → D. If F is any manifold with a (smooth
in some sense) action of Diff(Rd, 0) then we can construct an associated bundle

D[F ] := ChartsD ×Diff(Rd,0) F −→ D.

1If we wanted to give Diff(Rd, 0) a topology we could do so by inducing the topology via the
map Diff(Rd, 0)→ J∞0 (Rd,Rd)0. Or one could replace Diff(Rd, 0) by its image - the subspace of
invertible ∞-jets.
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Any bundle of this form is “local”. Observe that this construction is functorial in
D on the category of d-dimensional manifolds and local diffeomorphisms. As an
example the bundle Jr(D,P ) of r-jets of maps D → P is a local bundle as

D[Jr0 (Rd, P )] = ChartsD ×Diff(Rd,0) J
r
0 (Rd, P ) ∼= Jr(D,P )

where Jr0 (Rd, P ) is the subspace of Jr(Rd, P ) of r-jets with source 0. The bijection
is provided by the map

[u, α] 7→ α ◦ jru(0)(u−1).
Having a Diff(Rd, 0)-invariant submanifold B ⊆ Jr0 (Rd, P ) we get an associated

subbundle D[B] ⊆ Jr(D,P ) for any d-dimensional manifold D. This allows us to
talk about jet transversality conditions on a map D → P without specifying what
D (and hence also Jr(D,P )) is.

Let A ⊆ Js(M,N) be a submanifold and jsf t A. Then f∗A := (jsf)−1(A) is
a submanifold of M and for any Diff(Rd, 0)-invariant submanifold B ⊆ Jr0 (Rd, P )
and the associated submanifold

f∗A[B] ⊆ Jr(f∗A,P )
we might ask whether jr(g|f∗A) is transverse to f∗A[B]. To state the theorem we
make the following notation: for a map g : M → P we write g t B in place of
g∗ t B where again

g∗ : Jr0,imm(Rd,M) −→ Jr0 (Rd, P ) .
This condition is satisfied e.g. by all submersions. Also consider the following map

κ : Jr+s(M,N)×M Jr0,imm(Rd,M) −→ Jr0 (Rd, Js(M,N)),(1)
(jr+sx ϕ, jr0ψ) 7−→ jr0(js(ϕ) ◦ ψ) .

Theorem C. Let
M

f
//

g

��

N

P

be a pair of smooth maps. Let A ⊆ Js(M,N) and B ⊆ Jr0 (Rd, P ) be smooth
submanifolds with d = dimM − codimA. Assuming that B is Diff(Rd, 0)-invariant,
κ t Jr0 (Rd, A) and g t B the subset

X :=
{
f ∈ C∞(M,N)

∣∣ jsf t A, jr(g|f∗A) t f∗A[B]
}

is residual in C∞(M,N) with the strong topology. If either r = 0 or s = 0 the
transversality condition κ t Jr0 (Rd, A) is automatically satisfied.

Remark. The transversality condition κ t Jr0 (Rd, A) cannot be removed as we
illustrate by an example in the next section. An interesting question arises whether
there is a reasonable sufficient condition on A for which the transversality is
automatic (an example of such is e.g. s = 0).

Remark. It is also possible to state conditions under which X is open.
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1. An example

We describe here a family of examples. For k = 1 (and partially for k = 2)
Theorem C can be applied whereas for k ≥ 3 the theorem fails due to κ 6t Jr0 (Rd, A).
We will not be interested in a particular choice of B since the transversality condition
in question depends only on A. Let us start with the following diagram

Dk ×M
f

//

��

R

Dk

where we think of f as a family of functions M → R parametrized by a disc Dk.
To fit into our situation we should replace Dk by Rk but the boundary is not the
issue in our example. Let s = 1 and let A ⊆ J1(Dk ×M,R) denote the subspace
of all those jets which have zero derivative in the direction of M . Clearly A has
codimension dimM and thus d = k.

For a function ϕ : Dk ×M → R we have j1
(x,y)ϕ ∈ A iff the composition

TyM
� � // TxD

k × TyM
dϕ

// R

is zero. We express this by saying that the map

d|TM : J1(Dk ×M,R)→ T ∗M

describes A as the preimage of 0. We will now show how to describe Jr0 (Rk, A) (or
f∗A in fact) in a similar way. Compose the defining equation with an immersion
ψ : Rk → Dk ×M as in (1) and differentiate to get

TyM ⊗ Rk � � incl⊗ψ∗ // S2(TxDk × TyM) d2ϕ
// R .

Differentiating further and putting all the maps together we get a single map

Jr+1(Dk ×M,R)×M Jr0,imm(Rk, Dk ×M) χ−−→ T ∗M ⊗ (R⊕ Rk ⊕ · · · ⊕ SrRk)∗

describing f∗A. Moreover χ is a submersion at f∗A iff κ t Jr0 (Rk, A). Fixing jr0ψ
the T ∗M ⊗ (SiRk)∗-coordinate is a sum of various restrictions of the derivatives of
ϕ with only a single term involving the highest derivative di+1ϕ, namely

TyM ⊗ SiRk � � incl⊗Siψ∗ // Si+1(TxDk × TyM) di+1ϕ
// R .

This implies that if the image of the derivative of ψ∗ at 0 intersects TM in a
subspace of dimension at most 1, the highest order term is a surjective linear map
and quite easily the whole map χ is a submersion (even for a fixed ψ). The opposite
implication also holds as considerations at pairs with jr+1ϕ = 0 show.

For k = 1 we have shown that κ t Jr0 (R, A) and therefore for a generic map f
the fibrewise singularity set Σf = f∗A is a 1-dimensional submanifold for which
the projection Σf → D1 is generic. This means that only regular points and
folds appear. The regular points of the projection are exactly the fibrewise Morse
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singularities of f while folds correspond to the fibrewise A3-singularities (those of
the form x3

1 ± x2
2 ± · · · ± x2

m).
For k ≥ 2 it is not the case that κ t Jr0 (Rk, A), namely at pairs (jr+sx ϕ, jr0ψ)

where the image of the tangential map ψ∗ at 0 intersects the tangent space of the
fibre M in a subspace of dimension at least 2.

Nevertheless for k = 2 the conclusion of Theorem C still holds. This is because
the condition κ t Jr0 (Rk, A) is only required at those (jr+sx ϕ, jr0ψ) for which
ψ(Rd) ⊆ f∗A and for a generic map f such ψ cannot be tangent to the fibre M
(if that was the case then the rank of the fibrewise Hessian of f at x would drop
by 2 and this does not happen generically). Therefore again Σf is a 2-dimensinal
submanifold of D2 ×M partitioned into three parts: the cusps of the projection
Σf → D2 (where f attains an isolated fibrewise A4-singularity); the folds form a
1-dimensional submanifold (where the fibrewise A3-singularities occur); and the
fibrewise Morse singularities.

For k = 3 the conclusion of Theorem C fails. This is due to the fact that for a
generic map between 3-manifolds the rank drops at most by 1 whereas for a generic
3-parameter family of functions M → R the fibrewise Hessian can drop rank by 2.

2. Proofs

First we will show how to translate transversality conditions for a restriction
of a fixed map g : M → P to the preimage f−1(A) of a submanifold along a map
f : M → N in terms of transversality conditions on f itself. At the end we prove
that such properties are generic in the sense that maps satisfying them form a
residual subset of C∞(M,N). First version does not involve any jet conditions.

Lemma 1. Let
f−1(A) //

� _

j

��

A� _

��

g−1(B) � � i //

��

M
f

//

g

��

N

B � � // P

be a diagram where we assume that f t A and g t B. Then the following conditions
are equivalent:

(i) gj t B,
(ii) fi t A,
(iii) f−1(A) t g−1(B).

Proof. Since (iii) is symmetric it is enough to show the equivalence of (i) and (iii).
But (i) is equivalent to the map

g∗ : Txf−1(A) −→ Tg(x)P/Tg(x)B



528 L. VOKŘÍNEK

induced by the derivative of g being surjective for every x ∈ f−1(A) ∩ g−1(B).
Because of the assumption g t B, we have a commutative diagram

Txf
−1(A) //

��

Tg(x)P/Tg(x)B

TxM/Txg
−1(B)

∼=

66mmmmmmmmmmmm

and so (i) is equivalent to (iii). �

Now we will generalize the lemma to jet transversality conditions. Let us recall
that for a Diff(Rd, 0)-invariant submanifold B ⊆ Jr0 (Rd, P ) we have constructed
an associated subbundle D[B] ⊆ Jr(D,P ) for any d-dimensional manifold D.

Lemma 2. For h : D → P the following conditions are equivalent
(i) h∗ : Jr0,imm(Rd, D)→ Jr0 (Rd, P ) is transverse to B,
(ii) jr(h) : D → Jr(D,P ) is transverse to D[B].

Proof. Taking associated bundles (i) is clearly equivalent to the transversality of

h∗ : Jrimm(D,D)→ Jr(D,P )

to D[B]. Let jrx(k) ∈ Jrx,imm(D,D)y be an r-jet of a diffeomorphism k : V → W
between open subsets of D. Then we have a diagram

Jrimm(V,D) h∗ //

∼= k∗

��

Jr(V, P )

∼= k∗

��

V [B]? _oo

∼= k∗

��

Jrimm(W,D) h∗ // Jr(W,P ) W [B]? _oo

Now jrx(k) in the top left corner is mapped by k∗ down to jry(id). Hence we see
that it is enough (equivalent) to check the transversality only at jry(id)’s for all
y ∈ D for which h∗(jry(id)) = jry(h) ∈ D[B]. For such y the same diagram shows
that every jrx(k) with target y is mapped by h∗ to D[B]. Thus the whole fibre over
y of the target map

Jrimm(D,D) τ−−→ D

is mapped to D[B]. The target map τ has a section

jr(id) : D → Jrimm(D,D)

and so (i) is finally equivalent to the composite

D
jr(id)−−−−−→ Jrimm(D,D) h∗−−−→ Jr(D,P )

being transverse to D[B]. This is (ii). �

We say that a map g : M → P is transverse to a Diff(Rd, 0)-invariant submanifold
B ⊆ Jr0 (Rd, P ), denoted g t B, if

g∗ : Jr0,imm(Rd,M)→ Jr0 (Rd, P )
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is transverse to B. When r = 0 this is equivalent to the usual transversality of a
map to a submanifold. Let f t A where f : M → N and A ⊆ N is a submanifold.
Then we have the following diagram

Jr0,imm(Rd, f−1(A)) � � //

j∗

��

Jr0 (Rd, f−1(A)) //

j∗

��

Jr0 (Rd, A)

��

Jr0,imm(Rd,M) � � // Jr0 (Rd,M) f∗ // Jr0 (Rd, N)

where both squares are transverse pullbacks. This can be easily seen in local
coordinates. Combining Lemma 1 with Lemma 2 we get:

Lemma 3. Given a diagram

f−1(A) //
� _

j

��

A� _

��

M
f

//

g

��

N

P

assume that f t A and g t B, where B ⊆ Jr0 (Rd, P ) is a Diff(Rd, 0)-invariant
submanifold with d = dimM + dimA− dimN . Then the following conditions are
equivalent:

(i) jr(gj) t (f−1(A))[B], where

jr(gj) : f−1(A)→ Jr(f−1(A), P )

is the jet prolongation,
(ii) f∗|Y t Jr0 (Rd, A), where Y = (g∗)−1(B) is defined by a pullback diagram

Y � � //

��

Jr0,imm(Rd,M)

g∗

��

B � � // Jr0 (Rd, P )

Proof. Applying Lemma 1 to the diagram

Jr0,imm(Rd, f−1(A)) //

j∗

��

Jr0 (Rd, A)

��

Y � � //

��

Jr0,imm(Rd,M) f∗ //

g∗

��

Jr0 (Rd, N)

B � � // Jr0 (Rd, P )
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gives an equivalence of (ii) with the transversality of
(gj)∗ : Jr0,imm(Rd, f−1(A)) −→ Jr0 (Rd, P )

to B. By Lemma 2 this is equivalent to (i). �

Now that we know how f controls the transversality of a map defined on the
preimage f−1(A) of some submanifold, we would like to see that this transversality
condition (any of the two equivalent conditions in Lemma 3) is generic. This is
indeed the case. We first prove a more general result which at the same time
happens to generalize the Thom Transversality Theorem.
Proof of Theorem A. This is an application of Lemma 5 from Section 3. We
have a map

α : C∞(M,N)→ C∞(Y, Jr(D,N))
sending f to f∗|Y . This map is continuous for the weak topology on the target
and clearly X = {f ∈ C∞(M,N) | α(f) t Z}. We have to verify the conditions of
Lemma 5.

OOOOOOOOOooooooooo
τ(K)

77
77

77

��

OOOOOOOOO ooooooooo

f−1
0 (V )

f−1
0 (τ(L))

ooooooooo

OOOOOOOOO WooU

Let f0 ∈ C∞(M,N) and K ⊆ Y , L ⊆ Z compact discs. We can assume that
τ(K) lies in a coordinate chart Rm ∼= U ⊆ M and that τ(L) lies in a coordinate
chart Rn ∼= V ⊆ N . We use these charts to identify U with Rm and V with Rn
when needed. Let λ : U → R be a compactly supported function such that λ = 1
on a neighborhood of τ(K) ∩ f−1

0 (τ(L)) and such that λ = 0 on U − f−1
0 (V ). This

is summarized in the picture above where we put W = intλ−1(1).
We set Q := Jr0 (Rm,Rn) and identify it both with Jr∗ (U, V ), where ∗ stands for

an arbitrary point in U , and also with the space of polynomial mappings U → V .
Then we get a map

β : Q→ C∞(M,N)
sending q to the function f0 + λq where the operations are interpreted inside V via
the chart. It is continuous (in the strong topology) and the adjoint map
(2) γ = (αβ)] : Q× Y → Jr(D,N)
is smooth. Thus it is enough to show that (after a suitable restriction) γ t Z.
Clearly γ sends (q, jrx(h)) to jrx((f0 + λq)h). Suppose now that h(x) ∈W so that
this equals to jrx(f0h+ qh). By restriction we get a map

δ : Q ∼= Q× {jrx(h)} γ−−→ Jrx(D,V ) .
In the affine structure on Jrx(D,V ) inherited from the chart, δ is clearly affine.
Identifying Q with Jrh(x)(U, V ) the linear part of δ is just a precomposition with h

(3) h∗ : Jrh(x)(U, V )→ Jrx(D,V ).
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The map h, being an immersion, has (locally - near x) a left inverse π which then
gives a right inverse π∗ of h∗ and so the linear part of δ is surjective and hence it
is a submersion.

In the horizontal direction our transversality condition σY t σZ applies and so
γ t Z on Q× τ−1

Y (W ). If f : M → N is close enough to f0 then

τ(K) ∩ f−1(τ(L)) ⊆W

(equivalently f(τ(K)−W ) ⊆ N − τ(L) which is one of the basic open sets for the
compact-open topology) and in particular there is a neighbourhood Q′ of 0 in Q
such that β(Q′) consists only of such maps. Therefore the restriction of γ to

Q′ ×K −→ Jr(D,N)

is transverse to L and hence the same is also true in some neighbourhoods of K
and L which then form the coverings required in Lemma 5.

If τY happens to be proper then α is continuous even in strong topologies and
X is a preimage of the open subset of maps f : Y → Jr(D,N) transverse to Z. �

Now we prove two corollaries of the previous theorem.
Proof of Theorem B. We apply Theorem A to D = M and

Y = M
� � jr(id)

// Jr(M,M) .

As σY = id = τY it is both proper and transverse to σZ for any Z. �

Corollary 4. Let M , N be manifolds, Y ⊆ Jr0,imm(Rd,M) and Z ⊆ Jr0 (Rd, N)
submanifolds. Then the subset{

f ∈ C∞(M,N)
∣∣ f∗|Y t Z}

is residual in C∞(M,N) with the strong topology, and open if Z is closed (as a
subset) and τY : Y →M proper.

Proof. Under the natural identification Rd×Jr0 (Rd, N) ∼= Jr(Rd, N) we can apply
Theorem A to D = Rd, the same M , N and Y but with Rd × Z ⊆ Jr(Rd, N) in
place of Z. �

Now we are finally able to prove our main theorem.
Proof of Theorem C. Consider first the special case s = 0 and

A = M ×A0 ⊆M ×N = J0(M,N) .

Then j0f t A iff f t A0 and under this assumption Lemma 3 provides a translation
between g|f∗A t f∗A[B] and f∗|Y t Z, where Z = Jr0 (Rd, A0) ⊆ Jr0 (Rd, N). The
genericity of f t A0 is the usual transversality theorem while the genericity of
f∗|Y t Z is the last corollary.



532 L. VOKŘÍNEK

The next step is to replace the transversality to A0 ⊆ N by a jet transversality
condition. Let A ⊆ Js(M,N) be a submanifold and consider

f∗A //
� _

j

��

A� _

��

M
jsf

//

g

��

Js(M,N)

P

It is possible to apply Lemma 3 to this situation and translate g|f∗A t f∗A[B] to
the transversality of the composition

Y
� � // Jr0,imm(Rd,M)

(jsf)∗
// Jr0 (Rd, Js(M,N))

to Jr0 (Rd, A). We cannot however apply Theorem A directly since we are not
interested in all maps M → Js(M,N) but only in the holonomic sections (those of
the form jsf). This means that in our proof of Theorem A, Q = Jr∗ (Rm, Js(Rm,Rn))
has to be replaced by its subspace Jr+s∗ (Rm,Rn) and in general there is no guarantee
that the new map γ (see (2)) will be transverse (after restriction) to Z = Jr0 (Rd, A).
This is however easily implied by κ t Jr0 (Rd, A) since again we can arrive at the
linear part of γ being a composition map (as in (3)) which is then easily identified
with κ. �

3. A general transversality lemma

We will formulate a basic lemma for deciding whether a given family of maps
contains a dense subset of maps with a particular transversality property. In a sense
this is just the essence of any proof of such a statement. We will be considering
maps ϕ : R→ C∞(S, T ). We denote by ϕ] its adjoint

ϕ] : R× S → T.

Lemma 5. Let S, T be smooth manifolds and Z ⊆ T a submanifold. Let there
be given two open coverings: U of S and V of T . Let R be a topological space and
ϕ : R→ C∞(S, T ) a continuous map where C∞(S, T ) is given the weak topology.
Assume that for every r0 ∈ R and every U ∈ U , V ∈ V there is a finite dimensional
manifold Q and a continuous map k : Q→ R with r0 in its image such that

Q× U k×incl−−−−−−→ R× S ϕ]−−−→ T

is smooth and transverse to V . Then the subset
X :=

{
r ∈ R

∣∣ ϕ(r) t Z
}
⊆ R

is residual in R.

Proof. Following the proof of the Theorem 4.9. of Chapter 4 of [1], let us cover S
by a countable family of compact discs Ki that have a neighbourhood Ui ∈ U and
at the same time we choose a covering of Z by a countable family of compact discs
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Lj that have a neighbourhood Vj ∈ V. Then the set X is a countable intersection
of the sets

Xij :=
{
r ∈ R

∣∣ ϕ(r) t Lj on Ki

}
and it is enough to show that each Xij is open and dense. The set X̂ij of maps
S → T transverse to Lj on Ki is open in C∞(S, T ) and Xij = ϕ−1(X̂ij) so it is
also open.

To prove the denseness we fix r0 ∈ R and choose a map k : Q → R with
r0 = k(q0) such that the map

l : Q× Ui → T

from the statement is smooth and transverse to Vj . By the parametric transversality
theorem (see e.g. Theorem 2.7, Chapter 3 in [2]) the points q ∈ Q for which
l(q,−) t Vj is dense in Q. In particular q0 lies in the closure of this set and hence
r0 lies in the closure of its image in R. But this image certainly lies in Xij . �
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