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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

ON T H E SET OF ALL SHORTEST PATHS OF A GIVEN LENGTH 

IN A CONNECTED GRAPH 

LADISLAV NEBESKY, Praha 

(Received May 9, 1994) 

Let G be a connected graph (in the sense of the book [1], for example). Let V, E 

and d denote its vertex set, its edge set and its distance function, respectively. We 

denote by E ^ the set of all finite nonempty sequences 

(0) u0,...,u{ 

where i ^ 0 and u0,... ,U{ G V. Similarly as in [2], instead of (0) we will write 

t*o .. -Ui. 

If a = vo . . . Vj and {3 = wo ... Wk, where j,k ^ 0 and Uo> • • •»vj > WQ, ... yWk G V, 

then we write 

a/3 = v0 .. .VjWo .. .wk. 

Let 7 = xo ... Xm, where m ^ 0 and Xo,..., xm G V. We write 

7 = Xm ... x0, | |7 | | = m, Aj = x0 and Z 7 = xm. 

If &/ C EJV, we define 

srf(n) = {a G st/\ d(Aa, Za)} = n 

for every integer n ^ 0. Pu t E = E A / U { * } , where * denotes the empty sequence in 

the sense tha t S* = S = *S for every S G Eyv, ** = * and * = *. 

As usual, by a walk in G we mean a finite nonempty sequence UQ ... U{ such tha t 

i ^ 0, UQ, . . . , U{ G V and {UJ, itj+i} G E for each integer j , 0 ^ j < i. Let W denote 

the set of all walks in G. Obviously, W C Eyv-
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Let a,/3 G S N , | |a | | , ||/3|| ^ 2, and let Aa = Af3 and Z a = Z{3. Then there exist 

u,v,w,z eV and ( ^ , ^ e S such that a = uvipz and [3 = it^'iv-. We define 

a I (3 = U</?2^ and a | /? = vuifrw. 

It is clear tha t if a , (3 G X/7, then a | /?, a t /? € X/A 

As usual, by a pa th in G we mean a finite nonempty sequence v0 ... Vj such that 

j ^ 0, VQ, ... ,VJ G V, the vertices v0,..., and Vj are mutually distinct and vQ ... Vj 

is a walk in G. Let g? denote the set of all paths in G. If a G «^, then | |a | | is called 

the length of a . Obviously, 

d(L*,D) = min(||/3||;/3 G ^ , Af3 = u, Z(3 = v) 

= min( | |7 | | ;7 G #x , A7 = u, Z 7 = v) 

for every pair of vertices u and u of G. 

Let a G #x . Then a is called a shortest path in C7, if 

||a|| =d(Aa,Za). 

Let . y denote the set of all shortest paths in G. Obviously, y C t?. 

The next theorem gives a characterization of y . 

T h e o r e m 0. Let &.<!&. Then & = y if and only if the following conditions 

A — G are fulfilled (for arbitrary u,v,w,z G V and a, ft G S j : 

A Ifuvaw G &, then {u,w} $. E. 

B Ifuvaw G &, then wavu G &. 

C Ifuvaw G &, then vaw G &. 

D If uvaw,vf3w G ^ , then uv/3w G ^ . 

E If uvaw,vu(3z G <^ and ^ / J , ^ } G F, tiien vawz G ^ . 

F Ifuvaw G ^ , {w, ~} G K, w ^ w <£ «^ for any </? G S and UU0;: (^ & 

for any i / ) G S , then vawz G ^ . 

G There exists <p G ^ such that A</? = H and Z</? = U. 

The characterization of y given in Theorem 0 is "almost non-metric" in the sense 

that the lengths of paths greater than one are neither considered nor compared in 

the conditions A — G. Note that Theorem 0 is a modification of Theorem 1 in [2]. 

Let n ^ 2. As follows from the definition, y(n) is the set of all shortest paths of 

length n in G. The proof of Theorem 1 in [2] contains an implicit characterization 

of y(n) under the assumption that each of the sets y(0),y(l),... ,y(n - 1) is 

known. The next theorem gives a characterization of y(n) under the assumption 

tha t only y(n - 1) is known. Note tha t the lengths of paths greater than n - 1 are 
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neither considered nor compared in the next theorem. Nonetheless, the knowledge 
of the distance function is assumed. 

Theorem 1. Let n ^ 2 be an integer, and let & C W. Assume that 

(1) 3>(n-l) =y(n-l). 

Then $(n) = y(n) if and only if the following conditions B n — H n are fulfilled (for 
arbitrary u,v,w, z G V and a, (5,7 G EJ; 
B n Ifuvaw G ffi(ri), then wavu G ffi. 
C n Ifuvaw G &(n), then vaw G ffi. 
D n Ifuvaw G &(n), v/3w G ^ , then uv(5w G ^ . 
E n Ifuvaw, vu/3z G :^(n) and ^ , 2 : } G £ , then Ucrojz G 8#.. 
F n Ifuvaw G ^ ( n ) , {w, 2:} G F, t̂(̂ ẑ D £ :^ for any cpEE and uvipz £ & 

for any ip G E. then vmUz G i^. 
G n If d(u,v) = n, then there exists p G S such that Ap = H and Z(D = v. 
H n Ifuav(3w G ffi(n), then wyuav £ &(n). 

P r o o f . I. Let &(n) = y(n). Then B n — E n , G n and H n can be verified easily. 
Consider arbitrary u,v,w,z G V and a G E such that uvaw G &(n), {w,z} G F, 

t̂(̂ :Ĵ v ^ :i^ for any (D G E and uvipz £ £#. for any ip G E. Since «^(n) = ^(71), we 
see that u ^ z, vaw G c^(n — 1), d(u,w) = n, d(v,z) ^ n, uipzw ^ y(n) for any 
0 G E and uvipz (£ y(n) for any ip G E. We get v ^ z. (Otherwise, HzmU G J^(n) 
and thus uzw G y(n)\ a contradiction). 

[f J(n, ~) = n + 1 , then d(v, z) = n. Let d(u, z) ^ n + 1. Since d(n, w) = n, we get 
d(u, z) = n. Hence, d(v, z) = n again. This implies that vawz G y(n) C ffi. Thus 
F n is verified, too. 

II. Conversely, let B n — H n be fulfilled (for arbitrary u,v,w,z G V and a, (5,7 G E). 
This part of the proof will be divided into two steps. In Step 1 we will prove that 
y(n) C &. This result will be used in Step 2. We will prove there that «^(n) C y . 

Step V If y(n) = 0, then y(n) C ^ . Let y(n) ^ 0. Consider an arbitrary 
Co £ y(n). According to G n , there exists Co £ & such that A£o = -4Co and 
Z£o = Z(0. 

(2) Put m = ||Co||- Obviously, m ^ n. We define C;+i = Ci 4 & a n d 
fi+i = Ci t & for each i G {0, . . . , m - 1}. Clearly, ||Cj|| = m and 
||£j || = n for each j G {0 , . . . , 772}. 

We want to prove that £0 £ ^ - To the contrary, let £0 ^ « -̂
Recall that Co € ^ and £0 G ̂  - St. There exists fc G {0 , . . . , m - 1} such that 

Co,. . . ,Cfc€^, & , . . . , & G ^ - ^ 
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and 

(3) either Cfc+i i @> or & + 1 £ J^ - & or k = m - 1. 

(4) There exist r,s,x,y € V and D, O G E such that 
C/c = xrOH and & = xcrsH. 

Then Cfc+i = rOHs and &+1 = rxas. Since & G ^ , d(x,y) = n. 
We see that xas € ^ ( n - 1) and therefore, d(x, s) — n - 1. 

Assume that there exists TEE such that xrsy G &. Since d(x, y) = n, xTsH G 
«^(n). According to Bn,usT:r G <^(n). Obviously, sax G y(n — 1). As follows from 
(1), sax G ^ . Since ysfx G <^(n), D n implies that ysax G «^(?i). According to B n , 
f^k— xasy £ ffi, which is a contradiction. Thus we see that 

(5) Xipsy fi & for any (D G E. 

Assume that d(r,s) < n — 1. Since d(x,y) = n, we have d(r, s) = n — 2 and 
d(r, H) = n — 1. This implies that there exists ir G E such that T7T5H G ̂ ( n — 1). By 
virtue of (1), r7rsH G &(n — 1). Since Cit £ &(n), it follows from D n that xrirsy G <^, 
which contradicts (5). Thus 

(6) • n - 1 ^ d(r, s) ^ n. 

We distinguish two cases. 
Case 1. Let Oc+i £ &• If d(r,s) = n - 1, then it follows from (1) that C/c+i € 

y(n — \), and therefore ra = n — 1, which is a contradiction. Thus, by virtue of (6), 
d(r,s) = n. This means that &+1 G y(n). 

Assume that £fc+i G &>. Since £fc+i,Cfc G ^ ( n ) , E n implies that £k G «^\ which 
is a contradiction. Therefore, ffe+i ^ ^ . This means that £/c+i e y - &. Since 
C/c+i G ̂ , it follows from (3) that k = m - 1. Hence, Cm £ ^ ( n ) . 

If m = n, then Cm = £o and therefore, according to Bn,£o £ < \̂ which is a 
contradiction. Thus m > n. 

(7) Clearly, there exist t G V and A, n, .v G E such that 
£0 = tAr, Co = tusvr and Cm = rXtfis. 

Since £0 G ^ ( n ) , we have Co G ^ ( n ) . Moreover, Cm € ^ ( n ) , 
which contradicts H n . 

Case 2. Let C/c+i ^ &• Combining the fact that (k G ̂  with (5) and F n , we see 
that 

there exists i\) G E such that xr^s G «^. 
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Since d(x,s) = n —1, it follows from (1) that x^s G y(n — l). Hence d(r, s) = n — 2, 
which contradicts (6). 

Thus £o G &. We have proved that 

(8) y(n) C Sf.. 

Step 2. If Sf\n) = 0, then 3?.(n) C ^ . Let ^ ( n ) ^ 0. Consider an arbitrary 
Co G ^ ( n ) . Since ^ C ^ , there exists £0 £ ^ such that ACo = -4£0 and ZCo = Z£0. 
We accept the convention given in (2). 

We want to prove that Co £ y • To the contrary, let Co ^ ^ - Then m > n. 
Clearly, there exists k G {0 , . . . , ra — 1} such that 

Co,-..,a e ^ , &,... ,& £ ^ 

and 

(9) either C/c+i £ -^ or &+i £ y or k = m-l. 

We accept the convention given in (4). Clearly, n — 2 ^ d(r,s) ^ n and n — 1 ^ 
d(r,y) ^ n + 1. 

Assume that d(r,y) = n — 1. Since Cfc £ &(n), C n implies that rDH G <^(n — 1). 
By virtue of (1), rgy G y(n — 1). Hence m — 1 = n — 1; a contradiction. Thus 
d(r,y) ^ n. 

We get d(r, s) ^ n - 1. Assume that d(r, 5) = n. Then £fc+i G ̂ ( n ) . Due to (8), 
&+i G ^ . Since C*,&+i £ -^(n), it follows from E n that Cfc+i € ^ - Due to (9), 
k = m — 1. Hence Cm G 3%(n). Recall that m > n. If we make the same observation 
as in (7), we get a contradiction. 

Thus 

(10) d(r,s) = n-l. 

Recall that d(r,y) ^ n. As follows from (10), d(r,y) = n. We see that 

there exists ^ G S such that r^sy G ^ . 

By virtue of (8), ripsy G &. Since C/c £ ^ ( n ) , D n implies that 

xr^sy G 3%(n). 

As follows from B n , ys^rx G &(n). According to C n , s^rx G < \̂ Since d(s,x) = 
d(x, s) = n — 1, (1) implies that 

si/Jrx G ,y(n — 1). 

Hence sxfcr G ̂ ( n — 2). We get d(r,s) = d(s,r) = n — 2, which contradicts (10). 
Thus Co £ y- We have proved that 3t\n) C «^\ 
It follows from (8) that &(n) = y(n), which completes the proof. D 
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R e m a r k 1. Recall that G is a graph in the sense of [1]. This means that V is 
finite. However, the finiteness of V was not exploited in the proof of Theorem 1. 

We will utilize Theorem 1 in the following proof of Theorem 0. 

P r o o f of T h e o r e m 0. I. Let first & = y . Consider arbitrary u,v,u\ z G V 
and a, (3 G E. It is easy to see that A — D, F and G are fulfilled. 

Assume that uvaw,vu/3z G & and {w,z} £ E. Then vaiv G y , d(u,w) = 
d(v,w) + 1, d(v, z) = d(u,z) + 1, d(u,w) ^ d(u,z) + 1 and d(v,z) ^ d(v,w) + 1. This 
implies that d(v,z) = d(v,w) -f 1. Since Ucriv G .y7, we get t;o;u'z G ̂  and therefore, 
Ucruj^ G ^ . Thus E is fulfilled, too. 

II. Conversely, let A — G be fulfilled (for arbitrary u,v,w,z G V and a, ft G E). 
We are to prove that ^(?i) = <y (n) for every integer ?i ^ 0. We proceed by induction 
on n. Since ^ C 0>, it follows from G that &(0) = /J^(0) = y(0). Combining G 
and A, we get &(1) = y(l). 

Let n ^ 2, and let ^ ( n - 1) = ^ ( n - 1). Clearly, B n - G n are fulfilled. Consider 
arbitrary r,s,t G V and K,/J,,V G E. Assume that rKtus,tusvr G £tf(n). According 
to B, s/Ii/tr G ̂ . First, let /z = *. Then 5trtr, £st/r G «^. According to D, stsvr G $. 
which contradicts the assumption that & C ^ . Now, let Lt / *. There exist x G V 
and 7r G E such that /.i = xn. We have 

sifxtKr, txirsvr G &. 

As follows from C, xtKr G ^ . According to D, xtxirsvr G ^ , which is a con
tradiction. This implies that H n is fulfilled, too. It follows from Theorem 1 that 
<%(n) = y(n), which completes the proof of Theorem 0. • 

R e m a r k 2. Theorem 0 (more exactly, a theorem similar to it) was generalized 
in [3]. Note that the idea of that generalization is very different from the idea of 
Theorem 1. 
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