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0. INTRODUCTION

By means of localization techniques of the type used in [9], a Radon-Nikodym
theorem was stated in [1] in the context of the locally convex spaces, using an in-
tegration with a deep bornological character, defined in 1983 by R. Rao and A. S.
Sastry. This vector integration cannot bee in general compared with the bilinear
vector integral used in [2] ([3], and in other papers appearing in their references).
In the context of the Banach spaces the integrable functions of [2] coincide with the
functions of L! following Dobrakov, if the space of operators is endowed with the
strong topology. The integral introduced in Definition 1 extends to the integral of
[2] and coincides with Dobrakov’s one [5] in the context of the Banach spaces, being
the space of operators endowed with the strong topology. By means of this integral,
a weak vector integration is introduced in Definition 2 which extends the integral of
[10] and allows us to give a Radon-Nikodym theorem about the derivation of a mea-
sure with values in a locally convex space Y with respect to a measure valued in the
space of the linear and continuous functions from a Banach space X into Y, endowed
with the pointwise convergence topology. This theorem extends the corresponding
one given in [9] for Banach spaces and measures of hounded variation.

Clearly every integrable function according to Definition 1 is weak integrable (Def-
inition 2) and the Radon-Nikodym type theorem, proved here in Theorem 8, allow to
state (Corollary 9) that for a given weak integrable function there exists an integrable
function (according to Definition 1) such that their integrals on every measurable
set coincide. The application of this result to the integrals of [5] and [10] would be
doubtless fruitful for both theories.
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1. PRELIMINARIES AND NOTATION

Let £ be a o-algebra of subsets of a set  and L(X.Y") the space of the linear and
continuous functions from a Banach space X into a locally convex Hausdorff and
complete space Y, endowed with the topology of the pointwise convergence. From
now on, a: ¥ — Y will be a countably additive vector measure, and u: ¥ — L(X,Y)
will denote a countable additive measure of bounded continuous semivariation, and as
usual |u|, and ||p||, will be the g-variation and the ¢-semivariation of p respectively,
for every ¢ € @, where @ is a saturated generating family of seminorms on Y.

U+ will be the family of all subsets A € £ such that ||u||,(A4) > 0 for some ¢ € Q,
and we will assume that every pairwise disjoint family contained in % is at most
countable (or finite). (Let us remark that this condition holds trivially if p verifies
the **-condition in the known Bartle’ sense—see for instance [1].)

Definition 1. A function f:Q — X is said to be p-integrable if the following
conditions are verified:

1.1 For every ¢ € @ and € > O there exists A € I such that |[u|4(4) < € and
f - Xq_a is a uniform limit of simple functions (simple functions and their
integrals are defined as usual, and the integral of f - Xq_ 4 is defined from the
integral of simple functions in a standard way).

1.2 For every g € Q we have

lim q(/ fdu) =0.
llell4(A)—0 A
ﬂ-EEf

Y being the set of all A € ¥ such that f - X, is a uniform limit of simple
functions.

If 1.1 and 1.2 hold, then

fdu= lim/ fdu.
B A€Zs JBnA

Definition 2. A function f:Q — X is said to be a weakly p-integrable function
if the following conditions hold:
2.1 f is y'u-integrable in the sense of Definition 1 for every y' € Y’ (as usual, Y’
denotes the dual space of V).
2.2 For every A € T there exists y4 € Y such that

v (ya) = /A fal'n)

for every y' € Y.
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If 2.1 and 2.2 hold then we will write y4 = [, fdpu.

Definition 3. We say that a set B € St is localized on a subset K C X (with
respect to a and p) if for every D € ©+ with D C B and € > 0 there exist E € &%
and b € K such that £ C D and

[y (a(A) — u(A) (b)) <e- |y ui(A),

for every y' € Y and A € ¥ with A CE.

3. MAIN RESULTS
Proceeding like in [9] the following lemma and proposition can be proved.

Lemma 4. If a set B € &% is localized on a compact subset i C X, then for
every € > 0 there exist a compact {1 C X with diameter less than (or equal to)
and D € ©% such that K1 C I\, D C B and D is localized on ;.

Proposition 5. Suppose that the following conditions are verified:

5.1 For every A € &1 there exist B € 1 and a compact subset I C X such that
B C A and B is localized on I\ .
5.2 q(a(A)) =0 if ||u|l4(A) =0 for every A € ¥ and q € Q.

Then, for every n > 1 there exists a measurable partition { A% }mer, € 1 of Q
(where I, CN) and a family { N} }.mer, of compact subsets of X with diameter less
than or equal to 1/n, such that
n € K such that

m m

5.3 For every n € N and m € [,, there exists x

! N 1 !
|y (“(B) —:“(B)( m | g ﬁly /.Il(B),

for every y' € Y’ and B € S with B C A"

m”*
5.4 For every m € I,y there exists j € I, such that AjFY C A% and K C K7
Moreover, it can be assumed that A} is localized on K for every m € I, aud
n € N.

Proposition 6. If” ”lim ly'a(A)| = 0 for every ¢ € Q and every y' € Y' with
wllq (A)—0
aesl

y'llg = sup{ly’(y)|l:y € Y with q(y) < 1, and for every A € ST there exist B € &+
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and a compact subset ' C X such that B C A and B is localized on I\, then « is
of bounded semivariation, y'« is of bounded semivariation for every y' € Y', and
6.1 lim  ¢(a(4)) =0

[lrellq (A)—0
a€Y

for every q € Q.

Proof. Let be ¢’ € Y, then there exists ¢ € () such that ||y'||, < 1. and
Proposition 5 implies the existence of a measurable partition (that we can assume
to be countable) {4, },en € &1 of Q and {2, }.ery € K such that the inequality
ly'(a(B) — w(B)(zn))] < |y'1|(B) holds for every n € N and B € ¥ with B C 4,,.
Then there exists § > 0 such that |y'a(A4)] < 1 for every A € T with ||u|l4(4) < 9,
and since ||u||, is continuous we can find j € N such that ||u||,( |J An) < 4. So for

n>j
every B € ¥ we have that
Jj Jj
(B < S 1y (@B A, = w(Ba A @)+ |y (3 mB A @) +1
n=1 n=1

J
< ! Tn !
<2 WHBO A + [max fleall ly'l(B) +1

n=1

< Iy !
<[+ max fleall ] 1/ l() +1

<1+ max |ja, |l ] Iellg() +1 =M < +.
1<n<

And therefore, ||y'a]|(2) < 2M < +c0.

Moreover, it follows from the Nikodym boundedness theorem that [laf|,(2) <
+00. So {y'a:y’ € Y/ ||y'qll < 1} is a family of uniformly bounded and uniformly
countably additive measures, and it follows from Theorem 1.2.4 of [4] (p. 11) that if
(Ch)nen C T is a pairwise disjoint sequence, then for every e > 0 there exists ng € N
such that

¢(a(B) = sup |ya(B)| <<
yle),-l
Ty ll <t

for every B € & with B C |J C,: this yields (6.1) since ¢(a(A4)) = 0if 4 € ©

verifies the identity ||x]|,(A) = 0. as it is easily deduced from the hypothesis and the
Hahn-Banach theorem. g

Proposition 7. If there exists a weakly p-integrable function f: Q@ — X such that
a(A) = [, fdu for everv A € S. then we have

7.1 lim "a(A) =0
{;,;”,,(./L)—-»o‘y ()] i

acl
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for every g € Q and y' € Y’ with ||y'|l, <1
7.2 For every A € &% there exist a set B € L1 and a compact subset K C X such

that B C A and B is localized on K .

Proof. 7.1 Let ¢ € Q and y' € Y’ verify ||y'||; < 1. Then
Wa)A) = [ fdwn)  (AeD)

and, therefore, y'a is |y’ u|-continuous and so 7.1 is satisfied.

72 If A € Tt then there exist go € @ and yj € Y’ such that ||u|l4(A) > 0,
luollee < 1 and [ygu|(A) > 0. Since the function f is yyu-integrable, there exists
Q; € ¥ such that

’
A

lyoul (R — ) < ly""#
and f - Xgq, is a uniform limit of simple functions. Let us consider B = AN Q; and
= f(B). Clearly K is compact since f-Xgq, is a uniform limit of simple functions,

and moreover

/
! ! A
110 (B) > lobul(B) > o (4) ~ (2 — ) > AL .

and B € ©*. Let us prove now that B is localized on K. In fact, if D € &, ¢ > 0
and D C B, then f(D) C I and there exist dy,...,d; € D such that f(D) C

UB (d;), ), soD—-UD with D; = Dn f~Y(B(f(d;),e)); and since D € &+

thexe exists j € {1,. k} suclx that D; € &, If we take b = f(d;) € f(D) C K, for
every A € ¥ with 4 g D; we have that f(A) C B(f(d;),e); and therefore,

ly'(a(A) = p(A) (1)) = 4A(f = f(dj)d(y'n)
< [Slelli 1£(a) = f(dp)l]ly'ul(A) < elyul(A)

for every y' € Y' and the proof is complete. O
Theorem 8. a has a Radon-Nikodym derivative with respect to u (i. e. there

exists a u-integrable function f:Q — X such that fA fdu = «a(A) for every A € X)

if and only if the following conditions hold:

8.1 Forevery g € Q andy' € Y' with ||y'|lq <1 we have

lim ‘a(A)| = 0.
HNH«:(E/\L)_’O’?J (Al
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8.2 For every A € T%, there exist B € &1 and a compact subset K C X such that
B C A and B is localized on I .

Proof. Clearly the conditions 8.1 and 8.2 are necessary, as follows from Propo-
sition 7, since every p-integrable function is weakly p-integrable (and the values of
the integrals coincide).

Suppose now that the conditions 8.1 and 8.2 are fulfilled. For every n > 1 there
exist a countable (or finite) measurable partition {A”, },.e;, € 1 of Q and a family
{I\] }mer, of compact subsets of X with diameter less than or equal to }—L, verifying
5.3 and 5.4. Keeping the notation of Proposition 5, let us consider

gn = Z fl:;:l)&’/\::, ('Il S N),

mel,

then (gn(w))nen is a Cauchy sequence for every w € € and there exists
f(w) = lim g, (w).
n

If e >0 and g € Q, for every n € N there exists 7, € N such that

llla( U 4%) < 5orre

mel,,

m>r,

and if A, = ( U Ajj‘,). we have [|ul|,(Ac) < ¢ and the sequence of simple

nenN mel,
m>r,
functions f, = ¢, - X U A, = > X is uniformly convergent to f on
mel, mel,
m<r, m<r,

Q- A..

Moreover, for every € > 0 and ¢ € Q Proposition 6 implies the existence of § > 0
such that ¢(a(4)) < 5 if A € ¥ verifies [|u][,(4) <o.

If B € T is such that [|u]l,(B) < min(d, §) and f- X is a uniform limit of simple
A,
functions, then we can find a simple function h = Y @;Xp, such that ||f(w) —
i=1
h(w)|| < 1 for every w € B. Then for every n € N and w € B we have that
lgn(w) — R(w)|| < 2 (ie., [0, —aj]l < 21 AL N D; N B # 0O, where m € I, and

m

1 < j < k); and therefore, for every y' € Y/ with ||y'||, < 1 and for every n € N we
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have that

y’(/}}f@) = /B(f ~h) d(y'p) +y’(/8hdu>

< ly'ul(B) +y' (32 m(D; 0 B)(as))

j=1
k T
<IyB) + 3 tim S u(D; 0 BA AL )
i=1 m=1
k
<Ersn Y| Y vuDinBA AL - )
m=1 j=1

D;NBNA;, #0

+Sup Z Z y'u(D;NBNAY ) (zh,)

m=1
D; mBnA 70

//\

= + 2ly'ul(B) + sup Z Iy (u(B N ALY (@l,) — (BN AR

m=1

+sup|Zya(BﬂA )

m=1

IN

=+ 20y ul(B) +sup 3 %wmwmm

m=1

+sup[ya (Bn( U A7)

ml

i &€
d <= et
5 +3|y wu|(B) + 355G +3l|u”q(B) + 3

//\

<e

and therefore, ¢( [ f du) < e; the function f is p-integrable.
Moreover, for every A € , n € N, ¢ € Q and 3’ € Y’ with [|y'l|; <1 we have

! : ! n
Y fdu—a(A > = lim y (/ f—gn)du +/ gndpu —a(AN. l,”))
</A () Trtoo Z AmA;;,( n) ANA®, (

m=1

~ 1
T om=1

< Sl:p [%[y’ul(/l N ( U A;fl)) Z [y ul(A ﬂAi%)]

m=1 m=1

2 2 2
< SlyulA) < £ <z
X nly pl(A4) < n”l"”q(A) S n”““q(ﬂ)
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and, therefore, a(A) = [, fdu. O

Corollary 9. If f:Q — X is a weakly u-integrable function, then there exists a

Je-11

for

1tegrable function g: Q@ — X such that

/fdu:/gd,u,
A A

every A € ¥.

Proof. It follows trivially from Theorem 8 and Proposition 7. |

(1]
(2
3l

(9]

(10]
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