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RADON-NIKODYM DERIVATIVES IN V E C T O R INTEGRATION 

FIDEL J. FERNANDEZ and P. JIMENEZ GUERRA, Madrid 

(Received March 19, 1993) 

0. INTRODUCTION 

By means of localization techniques of the type used in [9], a Radon-Nikodym 

theorem was s ta ted in [1] in the context of the locally convex spaces, using an in

tegration with a deep bornological character, defined in 1983 by R. Rao and A. S. 

S as try. This vector integration cannot bee in general compared with the bilinear 

vector integral used in [2] ([3], and in other papers appearing in their references). 

In the context of the Banach spaces the integrable functions of [2] coincide with the 

functions of L1 following Dobrakov, if the space of operators is endowed with the 

strong topology. The integral introduced in Definition 1 extends to the integral of 

[2] and coincides with Dobrakov's one [5] in the context of the Banach spaces, being 

the space of operators endowed with the strong topology. By means of this integral, 

a weak vector integration is introduced in Definition 2 which extends the integral of 

[10] and allows us to give a Radon-Nikodym theorem about the derivation of a mea

sure with values in a locally convex space Y with respect to a measure valued in the 

space of the linear and continuous functions from a Banach space X into Y, endowed 

with the pointwise convergence topology. This theorem extends the corresponding 

one given in [9] for Banach spaces and measures of bounded variation. 

Clearly every integrable function according to Definition 1 is weak integrable (Def

inition 2) and the Radon-Nikodym type theorem, proved here in Theorem 8, allow to 

s tate (Corollary 9) tha t for a given weak integrable function there exists an integrable 

function (according to Definition 1) such tha t their integrals on every measurable 

set coincide. The application of this result to the integrals of [5] and [10] would be 

doubtless fruitful for both theories. 
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1. P R E L I M I N A R I E S AND NOTATION 

Let E be a O-algebra of subsets of a set f£ and L(A\ Y) the space of the linear and 

continuous functions from a Banach space X into a locally convex Hausdorff and 

complete space Y, endowed with the topology of the pointwise convergence. From 

now on, a: E —> Y will be a countably additive vector measure, and \i: E -> L(X, Y) 

will denote a countable additive measure of bounded continuous semivariation, and as 

usual |/x|9 and \\/~i\\q will be the ry-variation and the ry-semivariation of/I respectively, 

for every ry G Q, where Q is a saturated generating family of seminomas on Y. 

E + will be the family of all subsets A G E such that ||lI||f/(A) > 0 for some q G Q, 

and we will assume tha t every pairwise disjoint family contained in E + is at most 

countable (or finite). (Let us remark that this condition holds trivially if It verifies 

the **-condition in the known Bartle ' sense—see for instance [1].) 

Def in i t ion 1. A function f:Q -> X is said to be [i-integrable if the following 

conditions are verified: 

1.1 For every ry G Q and e > 0 there exists AGE such tha t | | / i | |q(A) < e and 

/ • XQ-A is a uniform limit of simple functions (simple functions and their 

integrals are defined as usual, and the integral of / • XQ-A is defined from the 

integral of simple functions in a s tandard way). 

1.2 For every q G Q we have 

lim q[ / /d//, =0 . 
IMUMHo \JA J 

aeZf 

E / being the set of all A G E such that / • XA is a uniform limit of simple 

functions. 

If 1 A and 1.2 hold, then 

/ / d / i = lim / / d / / , 
JB AeljfJBnA 

Def in i t ion 2. A function / : ft -> X is said to be a weakly ji-integrable function 

if the following conditions hold: 

2.1 / i s y'/x-integrable in the sense of Definition 1 for every y' G Y' (as usual, Y' 

denotes the dual space of Y). 

2.2 For every AGE there exists yA G Y such that 

y'(yA)= f fd(y'ti) 
J A 

for every y' G Y'. 
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If 2.1 and 2.2 hold then we will write HA = fA /djLi. 

Def in i t ion 3 . We say that a set B G E + is localized on a subset K C X (with 

respect to a and n.) if for every I) G E + with D C B and e > 0 there exist E G E + 

and b G Iv such that E C D and 

|y / (a ( .r l ) -Ai ( .A)(6) )^e . | y , / i | ( .A), 

for every y' G Y' and A G E with A C F. 

3 . M A I N RESULTS 

Proceeding like in [9] the following lemma and proposition can be proved. 

L e m m a 4. If a set B G E + is localized on a compact subset K C X, then for 

every e > 0 fciiere exist a compact K\ C X with diameter less than (or equal to) e 

and D G E + snch fchafc Iv\ C Iv, D C B and D is localized on IvV 

P r o p o s i t i o n 5. Suppose that the following conditions are verified: 

5.1 For every A G E + there exist B G £ + and a coj^ipacfc subset K C X such that 

B C. A and B is localized on K. 

5.2 q(a(A)) = 0 if \\fi\\q(A) = 0 for every A G E and q G Q. 

Then, for every n ^ 1 fchere exists a measurable partition { A m } m e / n C E + of 11 

(where In C NJ and a family {K]n}1Ti£jn of compact subsets of X with diameter less 

than or equal to 1/n, such that 

5.3 For every n e N and m G In, there exists xnl G K]\ such that 

| y , ( a ( B ) - / i ( . B ) ( < l ) ) | ^ i | 2 / /
A i | ( - 5 ) , 

for every y' G Y' and B G E with B C A;;;. 

5.4 For eveiy 772 G I;l+i fcheiT^ exists j G I7l suda fchafc A'/^1 C 4 ? and Ivm
+1 C Iv)1. 

Moreover, ifc can be assumed that A]l
n is localized on Knl for every m G In and 

n G N. 

P r o p o s i t i o n 6. If lim h /a fA ) ! = 0 for every Q G Q and every ?/ G Y' with 
INUCAJ-x)1' 

ttGS 
|l/| | f / = sup{|2//(2/)||:y G Y wifch r/(u) ^ 1, and for every A G E + fchere exisfc B G E + 
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and a compact subset K C A' such that B C A and B is localized on K, then a is 

of bounded semivariation, y'a is of bounded semivariation for every y' G Y\ and 

6.1 lim q(a(A)) = 0 
ll/-IU(-4)->0 

for every q G Q. 

P r o o f . Let be y' G V, then there exists q G Q sucli that ||y'||<- ^ 1, and 
Proposition 5 implies the existence of a measurable partition (that we can assume 
to be countable) {An}n G^ C E + of ft and {rrn}ll€N C K such that the inequality 
\y'(a(B) - ii(B)(xn))\ ^ \y'{i\(B) holds for every n G N and B G E with B C An. 
Then there exists (J > 0 such that \y'a(A)\ < 1 for every AGE with ||/i||9(-4) < <5, 
and since \\fi\\q is continuous wre can find j G N such that ||//||g( IJ -4n) < o\ So for 

every B G E we have that 

i i 
|y'a(B)| ^ J2 WW8 nA^~ ^B n An)(xn))\ + |j/ ( £ /'(B n 4»)(*n)) | + 1 

7 1 = 1 7 1 = 1 

^ T \y'»\(B n An) + [max. ||:vn||] \y'fi\(B) + 1 
n = l 

^ [1+ max ||.cn||] \y'Li\(ft) + l 
l ^ n ^ j 

^ [1 + max ||;r?l|| ] ||/t||g(-l) + 1 = M < +oo. 
l ^ n < C j 

And therefore, ||g'a||(ft) ^ 2AI < +oo. 
Moreover, it follows from the Nikodym boundedness theorem that ||a'||9(in) < 

+oo. So {y'a:y' G Y\ \\y'q\\ ^ 1} is a family of uniformly bounded and uniformly 
countably additive measures, and it follows from Theorem 1.2.4 of [4] (p. 11) that if 
(Cn)neN C E is a pairwise disjoint sequence, then for every e > 0 there exists n0 G N 
such that 

q(a(B))= sup \y'a(B)\^E 
y'eY' 

l l y ' l l ^ -

for every B G E with B C IJ Cn: this yields (6+) since q(a(A)) = 0 if A G E 
?1 l> N-o 

verifies the identity ||//,||9(,4) = 0, as it is easily deduced from the hypothesis and the 

Hahn-Banach theorem. • 

Proposition 7. If there exists a weakly ji-integrable function f: ft —•> X such that 

a(A) = JAfd/.i for every AGE, then we have 

7.1 lim \y'a(A)\=i) 
HHUAJ-x) 

aes 
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for every q G Q and y' G Y' with \\y'\\q ^ 1. 

7.2 FoT every A G E + there exist a set B G E + aI2c7 a compact subset K C X such 

that B C A and B is localized on K. 

P r o o f . 7.1 Let O G Q and g' G V' verify \\y'\\q <C 1. Then 

(y'a)(A)= [ fd(y'ii) (A e E); 
J/i 

and, therefore, H'cY is \yf/ji\-contm\ious and so 7.1 is satisfied. 

7.2 If 4̂ G E+, then there exist q0 e Q and Ho G Y' such that |HU(-4) > 0, 

II2/0II90 ^ 1 a n d ,2/cH(^) > 0- Since the function / is H0L£-integrable, there exists 

Qi e E such that 

and / • XC2. is a uniform limit of simple functions. Let us consider B = A n Hi and 

A' = / (H) . Clearly A" is compact since f • XQ1 is a uniform limit of simple functions, 

and moreover 

\\H\UB) 2 \y'0u\(B) 2 \y'0n\(A) - \y'ofi\(n - fi.) £ M ^ - H > 0 

and B G E + . Let us prove now that B is localized on A". In fact, if D G E4", e > 0 
and D C D, then / (D ) C A' and there exist d\,...,dk G D such that / (D ) C 

A- k 

| j B(f(di),e), so D = | j Di with Di = D(l f~1(B(f(di),£)); and since D G E+ 
i = l i = l 

there exists j G { 1 , . . . , k} such that Dj G S + . If we take b = f(dj) G / (D ) C A, for 

every /4 G E with A C Dj we have that /(-4) C B(f(dj),s); and therefore, 

| î , ' (a(Л)-/.(Л)(6)) | = /(/-/(<*,•))<%'/.) 

< [sup ||/(0) - MOMIy'/.p) ^ e|*//i|(.4) 

for every y' G Y' and the proof is complete. • 

T h e o r e m 8. a has a Radon-Nikodym derivative with respect to /i (i. e. there 

exists a f.i-integrable function f:Cl —> X such that JA f dp. = a(A) for every A e E) 

if and only if the following conditions hold: 

8.1 For every q G Q and y' G Y' with \\y'\\q ̂  1 we have 

lim \y'a(A)\ = 0. 
IMU(A)->o' 

197 



8.2 For every A G E + , there exist B G E + and a compact subset K C X sizcii that 

B C A and B is localized on K. 

P r o o f . Clearly the conditions 8.1 and 8.2 are necessary, as follows from Propo

sition 7, since every /t-integrable function is weakly //,-integrable (and the values of 

the integrals coincide). 

Suppose now that the conditions 8.1 and 8.2 are fulfilled. For every n ^ 1 there 

exist a coun table (or finite) measurable par ti tion {A'in}mejn C E + of ft and a family 

{K1

ni}inein of compac t subsets of X with diame ter less than or equal to - , verifying 

5.3 and 5.4. Keeping the no ta t ion of Proposition 5, let us consider 

gn = J2 i ^ д . (7i Є N) 
ПlЄІn 

then (gn(H'))neN is a Cauchy sequence for every w G il and there exists 

f(w) = limgn(iu). 
n 

If £ > 0 and q G Q, for every n G f̂J there exists rn G N such that 

M u An
m)<^. 2n+l 

mel,, 
m > r „ 

and if A£ = IJ ( (J A]l
n), we have ||/j,||f7(A£) < e and the sequence of simple 

?i£N ^ me I„ 
m> r„ 

functions fn = gn • X IJ Ant = Yl X^XA^ is uniformly convergent to / on 
me I„ me In 
;;;<Cr„ ??^^r„ 

n- A£. 

Moreover, for every s > 0 and q G Q Proposition 6 implies the existence of d > 0 

such that q(cx(A)) < § if A G £ verifies | |/t| | f /(A) < o". 

If L? G £ is such that \\u]\(}(B) < 111111(0", | ) and / • XH is a uniform limit of simple 
k 

functions, then we can find a simple function h = J2 xj^Dj such that \\f(w) — 

h(iu)\\ ^ 1 for every w G B. Then for every 11 G N and w G B we have that 

\\gn(w) - h(w)\\ ^ 2 (i.e., ||.r;;, - r^H ^ 2 if A'>, n D ; n H 7- 0, where •/;? G I,, and 

1 ^ j ^ k); and therefore, for every y' G V with 11/yr11fy ^ 1 and for every /? G N we 
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have that 

y J^ / ф.) = JU - h) á(y'џ) +У'(Jв h àџ 

k 

4 |У7ЖЯ) + У ' ( £ M ^ П £)(*,)) 
A—Л 

< 

k r 

\\y'\\q(B) + VJ lim VJyX^nsnA;,1,)^-) 
7 = 1 7 7 1 = 1 

7 7 1 = 1 

fc 

E ^ й n s n л : ^ - ^ ; 
1 — 1 
j = l 

DjnBn/i;;;,^0 

+ sup 

r /c 

VJ VJ y ^ n ß n y Щ Ю 
? т ? . = 1 ч = 1 a = l j = l 

DjnBnA;;t#0 

< 
r 

p + 2|t/'M|(£) + sup E ^ ' ( ^ B n A^)0O - a(2? n Am))\ 
O r ^ 

? n = l 

+ sup | ] P y'a(B П Ar 

-i=i 

< | + 2|yV|(B) + sup J2 ~\V'H\(B n >C) 
O f Ti r л 

??г=l 

+ 
r 

s u p | i / ' a ( ß n ( U ^m))l 
m = l 

e є 
< | + %'/x|(B) + | < | + 3||A«||,(i3) + | *S e 

and therefore, g( J B /dLi) ^ s; the function / is /x-integrable. 

Moreover, for every A G S, n G N, g G Q and u' G F ' with ||H'||g ^ 1 we have 

[fd»-a(A))= lim Y,y'([ (f-gn)dv,+ [ gndn~ a(An A';n)) 

^su P ]T [ V / i | ( . 4 n ^ ) 4 ^ 
r i 11 

m = l 

< sup [iiy'H^n ( | J An)) + ^ E IfVPn^C)] 
? ? ? . = 1 7 7 1 = 1 

^ l\y'n\{A) < £||/.||,(,4) < ^||t.||,(n) 
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and, therefore, a(A) = fA f d/j,. D 

Corollary 9. If f:Q —)> X is a weakly fi-integrable function, then there exists a 

li-integrable function g:Vt —> A' such that 

fd/.i=g df.i 

J A J A 

for every AGE. 

P r o o f . It follows trivially from Theorem 8 and Proposition 7. D 

[9 
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