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INTROCTUDION 

It is an old question in the theory of quasi-uniform spaces which quasi-uniformities 
have a T2-completion, cf. [6, p. 71]. In [14] the methods of nonstandard analysis 
have been used to derive necessary and sufficient conditions for the existence of a 
T2-completion. 

In this paper we give a standard proof of the following sufficient condition given 
in [14]: if (X, Y) is a quasi-uniform T2-space containing a compatible uniformity tf/ 

then X possesses a T2-completion. More general, we prove here that Y possesses 
a T2-completion if and only if any compatible quasi-uniformity W D Y possesses a 
T2-completion. It follows from the methods of proof that the finest uniformity and 
the finest quasi-uniformity on a completely regular T2-space A" have a T2-completion 
exactly of the cardinality of the Stone-Cech compactification 0(X). A striking con
sequence of our main result is that every non-compact uniform T2-space has a T2-
completion which is different from the usual uniform completion. All these results 
are contained in the first section. 

It is a matter of fact that the construction of the T2-completion in section 1 does 
not yield T2-compactifications (except when the remainder is finite). In the second 
section we investigate a modified construction which is useful for locally compact 
spaces. In this case we can prove that every topological T2-compactification satisfying 
a certain natural condition can be considered as a quasi-uniform T2-compactification. 
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1. ^"COMPLETIONS. 

A completion of a quasi-uniform space (A", U) is a complete quasi-uniform space 

(V y//) tha t has a dense subspace quasi-isomorphic to (X/'U). The induced topol

ogy of a quasi-uniform space (X,Y) is denoted by T(T). Recall tha t two quasi-

uniformities are compatible if they induce the same topology A quasi-uniformity '/'' 

is point-symmetric if for each V G V, x G X there exists a symmetric U G 'U such 

tha t U[x] C V[x\. Throughout the paper we assume the following basic construction: 

1.1 Def ini t ion. Let (X, '/ ) be a quasi-uniform space and °?/ be a quasi-

uniformity on a larger set S such that the restriction °?/\X is a compatible weaker 

quasi-uniformity than y. We define a filter f7?/ on 5 x S in the following way: for 

V G y,U G °?/ define 

vu := U ( M x r N ) u U iv)x ( M u M n *))• 

xex yes\x 

By definition, fV is the filter generated by Vu with V G / \ U G °?/. 

1.2 P r o p o s i t i o n . / V i*> a quasi-uniformity on S finer than tf/, in particular 

r ( y / / ) C r ( % ) . 

P r o o f . It is easy to see that /<?/ is a quasi-uniformity. For the second statement 

let U G f/. Then V := U n K is in YC Now check that vf' C U. • 

Even in the case that °?/ is a uniformity it may occur that T('EV) is different from 

T(f/), cf. the proof of Proposition 1.8 or Theorem 1.12. However it is easy to see 

tha t i: (X/'U) —» (5 , fV) is a quasi-unimorphism. 

The following theorem is our main result. It is a modification of a nonstandard 

construction of a LVcompletion given in [14, Theorem 3.3]. In contrast to tha t result 

we now assume the existence of a larger complete space (S^?/). 

1.3 T h e o r e m . Let (X, U) be a quasi-uniform space. If ?/ is a complete quasi-

uniformity on a larger space S such that °?/\X C "U are compatible then S is complete 

with respect to fV. 

P r o o f . Let /F be a '/<?/-Cauchy filter on S and lot U G °?/. We now consider two 

cases: in the first one we assume that Gp '•— FC\X is non-empty for all F G /F. Then 

{GF > F G ^ } generates a filter (/f on S and we claim that (/J is a ^ / -Cauchy filter: 

for U G °?/ there exists V G /•' with V C Uil(X xX). Since ;T is a /V-Cauchy filter 

there exists y G S and F E . ? such that F C \\r[y] C U[y] (note tha t V[y] C U[y] if 

/y G A"). By ^/-completeness // has an adherent point z G 5 , i.e., tha t GpnU[z) / 0 
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for all F G & and U e °?/. In the case of z G X we obtain FnVu[z]^0 since °?/\X 

and V are compatible. If z G S \ X then obviously F n Vt/[^] / 0. 

In the second case there exists F0 G ^ with F0 D A" = 0. Since & is a TV-Cauehy 

filter there exists F G Ĵ " with F C Vt/[y] for some y G S. But y can not be in X; 

otherwise we would have F C V[y] and therefore F D F0 C V[y] fl F0 C X n F0 = 0, 

a contradiction. Since H £ A" we obtain F C U[y] D X U {g}. Hence we obtain 

F H F0 = {y}. Thus Ĵ " is the ultrafilter consisting of all subsets B C S with y G 13. 

Therefore ^ converges to u and the proof is complete. • 

1.4 R e m a r k . A short review of the proof shows tha t (S, "/<?/) is convergence 

complete if (S,tf/) is convergence complete. 

1.5 Corol lary. Let i = 1 or i = 2. If (X, V) possesses a Ti-completion then any 

compatible quasi-uniformity 1/r D Y possesses a Ti-completion. 

P r o o f . Let ( 5 , ? / ) be a ^-comple t ion of (N, / ' ) . Since f / |K = r C /A 

induce the same topology # V is a complete quasi-uniformity in which (K, W) is 

embedded. Now consider the closure of that subspace in S with respect to #<?/. For 

the separation property just note that T(f/) C r ( # V ) by Proposition 1.2. • 

1.6 Corollary. Let (X,Y) be a quasi-uniform T2-space. It there exists a com

patible uniformity W C Y then (K, Y) possesses a T2-completion. 

P r o o f . A uniform F2-space W possesses a F2-completion (S, %). • 

1.7 Corollary. Let (K, Y) be a non-compact uniform F2-space. Then tiiere exists 

a T2-completion which is not a uniformity 

P r o o f . It is a well-known fact tha t Y contains a totally bounded uniformity 
J?/Q. Then the completion (5,'?/) of (X, <%) is a F2-compactification. Theorem 1.3 

shows that Yo?/ is a F2-completion of (X, V). The next proposition shows that EV 

is not uniform on S. • 

For the second s ta tement of the next proposition note tha t a locally comj ;>ct 

Hausdorff space (K, Y) is an open subset in any (topological) Hausdorff extension S 

of (X,Y). 

1.8 P r o p o s i t i o n . Let X be dense in the space (S,6?/) and 1 / 5 . Then 'I ?/ 

is not uniform and Yo?/ / °?/. If (S,°?/) is a pointsymmetric Hausdorff space ami if 

(X,T(Y)) is open in (5 , T(^?/)) then (S, EV) is point-symmetric. 

P r o o f . Let y G S with y g X. Then we have V[j~\y] = {z G S: y G %[z]} = 

{y}. Hence the induced topology of TV is discrete at y G 5 . On the other side 
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Vu[y] — {y} U (U[y] n X) is different from {y} since y is in the T(°?/)-closure of X. 

It follows that y<?/ is not uniform. 

Recall that a quasi-uniformity W is point-symmetric iff T(W) C T(W~1). Since 

r(#?/ ) is discrete at y G S \ X we only need to consider the case y G Ar. Let 

VL/[H] = V[y] be a neighborhood. Since $/ (and therefore f ) is point-symmetric 

we can find symmetric \\ G Y, Ui G ^ with Vi[H] C V[y] and Ui[y] C U [•</]. 

Since X is an open subset we can assume that U\[y] C X. It suffices to show 

that Vw~l[y] C V[y). Let x G V^~\y]. Then (:r,H) G VW r If x is in A 

then y G Vi[x] and, by symmetry of Vi, x G Vi[y] C V[y]. If £ G S\X then 

y G (Ui [#] n I ) U {#}. Since y G X we have y 7- x, in particular y G U\[x]. The 

symmetry yields x G Ui[y] C A", a contradiction. • 

1.9 Corollary. Let X be a completely regular Hausdorff space. Then the 

finest compatible uniformity and the finest compatible quasi-uniformity have a 

T2-completion of the cardinality of j3(X). 

P r o o f . Let "Y be the filter considered in Corollary 1.9. Let W be the weak uni
formity induced by the set Cb(X, R) of all bounded continuous real-valued functions. 
Then W and "Y are compatible and trivially W C Y. Moreover W is totally bounded 
and it is well known that the completion 9/ of W is the Stone-Cech compactification 
/3(A). Now apply Theorem 1.3. • 

1.10 Theorem. Let (X, Y) be a completely regular quasi-uniform space. If Y 

contains the Pervin quasi-uniformity £? (with respect, to T) then 'V possesses a T2-

completion. 

P r o o f . & C "Y contains a compatible uniformity, see the proof of Theorem 3.11 

in [14]. D 

The next two results show that the quasi-uniformity TV is almost never a com
pactification. 

1.11 Proposition. Assume that Y is precompact. Then S is precoinpact with 

respect to Y<?/ iff S \ X is finite. 

P r o o f . Choose V G Y and U G 9/. If fV is precompact there exists 
n ^^ 

2/i,---,2/n G S with S C [J Vu[iji]. Since Vv C X U {y} we obtain S C A U 
7 = 1 

{y i , . . . , yn}. For the converse assume that (X, Y) is precompact. Hence there exists 
:Ti,. .. ,xm G A with A C V[.v{] U . . . U V[xm]. Let S = X U {yu ... , y n } . Then 

m ^^ n 

5 C U Vu[xi]\J U Vu[yj]. D 
i=l j = l 
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1.12 Theorem. Let (X, V) be a precompact quasi-uniform space and (S,6?/) be 

a complete Hausdorff space such that °?/\X C V are compatible. Then the following 

statements are equivalent for V<?/: 

a) S is precompact. 

b) 5 \ X is finite. 

c) S is a Hausdorff compactihcation 

d) S is regular. 

P r o o f . Obviously c) implies d). For the converse note at first that (X,'V) 
is precompact and dense in S. By Theorem 1.3 5 is a complete space containing a 
dense precompact subspace X. Since S is regular a well-known Corollary in [6, p. 53] 
shows that S is compact. Proposition 1.11 yields the equivalence of a) and b) and c) 
=> a) is clear. For a) => c) note that S is complete (Theorem 1.3) and precompact 
and therefore compact. • 

2. HAUSDORFF COMPACTIFICATIONS 

2.1 Definition. Let °?/ and V as in Definition l.L Define 

Vu(S) := | J ({*} x V[x]) U ( J {j,} x U[y]. 

xex yes\x 

Let T^(S) be the filter generated by the sets Vu(S) with U G °?/, V G Y. 

As before, Yq/(S) is a quasi-uniformity and we have °?/ C Vy/(S) C Y<$/. 

2.2 Proposition. The quasi-uniformity (X,V) is an open subspace of (S, Vy/) 
and Vf/(S). In particular, if S is a compact regular space then X is locally compact. 

P r o o f . Let x G X. Then x G V\j[x] = V[x] C X. Hence X is open in S. The 
case V»}/(S) is similar. • 

2.3 Proposition. If(X,Y) is precompact and (S,°?/) is hereditarily precompact 

then S is precompact with respect to Vc?/(S). 

P r o o f . Let Vu(S) be given with V G V and U G °?/. Since S is precompact 
with respect to Y and S \ X is precompact with respect to ^ | ( 5 \ X) we obtain 
X C V[xv] U . . . U V[xm] and {S \ X) C U[yx] U . . . U U[yn] for some xu ..., xm E X 
and yi,. .. ,yn G 5 \ A". Now observe that Vu(S)[xi] = V[x{] and Vt/[ui] = U[?/i] for 
i = 1 , . . . , in and j = 1 , . . . , n. The proof is complete. • 
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The last proposition has an interesting consequence: Let (X, Y) be a precompact 

T2-uniformity and let (5 , °?/) be the (unique) uniform Hausdorff completion of '/'. 

Then (S,Y^(S)) is precompact and Hausdorff, cf. Proposition 1.2 and 2.3. If 5 is 

complete then 5 is a compact Hausdorff space and therefore A" is locally compact by 

Proposition 2.2. Hence an analogue of Theorem 1.3 for / % ( 5 ) can only be expected 

for locally compact spaces. More precisely, we prove 

2.4 T h e o r e m . If (X,T(Y)) is open in (S,T(°?/)) and (S,°?/) is a complete quasi-

uniformity such that °?/\X C Y are compatible then 5 is complete with respect to 

%{S). 

P r o o f . Let & be a TV(5)-Cauchy filter. Case 1 in the proof of 1.3 can be 

treated as in 1.3. Hence we can assume that there exists Fo £ ^ such tha t FQDX = 0. 

It is clear tha t & is as well a ^/-Cauchy filter. Hence there exists an adherent point 

go C 5 by ^ -comple teness . It suffices to show that y{) is an adherent point of J^. 

At first we consider the case y0 G 5 \ X. Let Vu(S) — U[go] be a neighborhood of 

Ho and let F G ^ . Then F n V^i(S)[y0] = Fn U[y0] ^ 0. 

In the other case we have IJQ G X. Since (X, T(Y)) is open in (5, T(0?/)) we can 

find U G f/ such tha t U[Ho] C X. Hence Fo H U[y0] C Fo H A" = 8, a contradiction. 

Hence yo C X is impossible. • 

2.5 T h e o r e m . If (X, Y) is locally compact and (S, °?/) is compact Hausdorff such 

that °?/\X C y are compatible then S is compact with respect to Y^/(S). 

P r o o f . Let (Tx)xes be an Y<?/(5)-open covering of 5 with x G Tx. For x G 

S\X there exists Ux G °?/ such that Ux[x] C Tx. For x G X there exists Vx G Y 

such tha t re G Vx[x] C (X C\ Tx) by local compactness. Since <?/\X and Y are 

compatible there exists Ux G ^/ such that x G Ux[:v] C Vc[#]. Since (Ux[x])xex is a 

covering of 5 the ^ -compac tnes s implies that there exists a finite subcovering, say 

{Uri [^ i ] , . . •, Ux„ [#n]}- Then {TXl,..., TXn } is the desired finite subcovering. The 

proof is complete. • 

Recall tha t a topological Ti-compactification K of the topological space X consists 

of compact T2-space K and a topological embedding i: X -> K such tha t i(X) is 

dense in K. A quasi-uniform Ti-compactification of the quasi-uniform space (X, Y) 

is a compact quasi-uniform T2-space (K,YK) and a quasi-uniform embedding i: 

X —> K such tha t i(A) is dense in K. Clearly every quasi-uniform compactification of 

(X, Y) induces a topological compactification; but observe that this correspondence 

is in general not injective, cf. Proposition 3.48 in [6]. 

It is a natural question whether for every topological T2-compactification K of 

the quasi-uniform space (X, Y) (seen as a topological space) there exists a quasi-
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uniformity YK on K such that (A~, YK) is a quasi-uniform T2-compactincation of 
(X,'Y). Since every compact IVspace has a (unique) compatible uniformity °?/(K) 

which is the smallest compatible quasi-uniformity we obtain the following necessary 
condition for our problem: 

(*) The restriction of the associated uniformity °?/(K) to the subspace X is smaller 
than or equal to Y. 

It is shown in [6, p. 69] that (*) is also sufficient provided that Y is totally bounded. 
We show that (*) is sufficient provided that X is locally compact: 

2.6 Theorem. Let (X, Y) be a locally compact quasi-uniform Hausdorff space 

and K a topological compactitication of (X,T(Y)). Then K is a quasi-uniform T2-

compactification of (X,Y) for a quasi-uniformity Y on K iff (*) holds. 

P r o o f . Suppose that (*) holds. Define °?/ := °?/(K) and S := K. Now 
Theorem 2.5 shows that (A~, Y^/(S)) is a compact space which contains (X,'Y) as a 
quasi-uniform dense subspace. • 

References 

[1] J. W. Carlson and T. L. Hicks: On completeness in quasi-uniform spaces. J. Math . 
Anal . App l . 34 (1971), 618-627. 

[2] D. Doitchinov: A concept of comp leteness of quasi-uniform spaces. Topology App l . 38 
(1991), 205-217. 

[3] P. Fletcher and W. Hunsaker: Symmet ry conditions in t e rms of open sets. Topo logy 
Appl. ^ 5 ( 1 9 9 2 ) , 39-47. 

[4] P. Fletcher and W. Hunsaker: Uniformly regular quasi-uniformities. Topology Appl . 37 
(1990), 285-291. 

[5] P. Fletcher and W. Hunsaker: Comp leteness using pairs of filters. Topology Appl . 44 
(1992), 149-155. 

[G] P. Fletcher and W. F. Lindgrcn: Quasi-uniform spaces. Marcel Dekker. New York, 1982. 
[7] P. Fletcher and W. F. Lindgrcn: Compactif ications of totally bounded quas i-uniform 

spaces. Glasgow Math . J. 28 (1986), 31-36. 
[8] P. Fletcher and W. F. Lingren: (7-complete quasi-uniform spaces. Arch. Math . 50 (1978) , 

175-180. 
[9] P. Fletcher and W. F. Lindgren: A construction of the pair comp le t ion of a quasi-uniform 

space. Canad . Math . Bull. 21 (1978), 53-59. 
[10] II.-P. Kiinzi: A regular space without a uniformly regular quasi-uniformity. Monatshefte 

Math . 770 (1990) , 115-116. 
[11] II.-P. Kiinzi: Nonsymmetr ic topology. Szekszard, Hungary, To appear in the Proceed

ings of the conference "Colloquium on Topology 1993". 
[12] II.-P. Kiinzi and P. Fletcher: Extension proper t ies induced by complete quasi-

uniformities. Pacific J. Math . 120 (1985), 357-384. 
[13] II.-P. Kiinzi, M. Mrsevic, I. L. Reilly, M. K. Vam.ananiurthy: Convergence , precom-

pactness and symmet ry in quasi-uniform spaces. Math . Japonica ^ 7 ( 1 9 9 2 ) , 35-52. 
[14] II. Render: Nons t anda rd me thods of completing quasi-uniform spaces. Topology Appl. 

62 (1995), 101-125. 

315 



[15] H. Render: Generalized uniform spaces and Applications to function spaces. Submitted. 
[16] S. Salbany and T. Todorov: Nonstandard and standard compactifications of ordered 

topological spaces. Topology Appl. ^7(1992), 35-52. 
[17] M. B. Smyth: Stable compactification I. J. London Math. Soc. 45 (1992), 321-340. 
[18] A. J. Ward: A generalization of almost compactness, with an associated generalization 

of completeness. Czechoslovak Math. J. 25 (100) (1975), 514-530. 

Author's address: Fachbereich 11 Mathematik, Gerhard-Mercator-Universitat Duis-
burg, Lotharstr. 65, D-47057 Duisburg, Federal Republic of Germany 

316 


		webmaster@dml.cz
	2020-07-03T10:47:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




