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1. INTRODUCTION

Let M, denote the set of all . x n matrices over the Boolean algebra {0,1}, and
let V= {ay,...,a,} be a finite set with n > 2. By a binary relation on V' we mean
a subset @ of V- x V. The set of all binary relations on V (including the empty
relation) is denoted by B, (V). The map

Q — I'L[(Q) = ('m.ij)

where mi; = 1 if (as,a;) € Q and my; = 0 otherwise, is an isomorphism of B, (V)
onto AM,,.

Let G,.(V') be the set of all directed graphs with n vertices {a1,...,a,}. Then
cach matrix in M,, can be regarded as the adjacency matrix of G € G, (V).

It is well known that there is a one to one correspondence between B, (V), M,
and G, (V):

Q +— M(Q) +— G(Q),

where G(Q) is the graph corresponding to the matrix M (Q).

In 1983, S. Schwarz ([1]) introduced a concept of the common consequent as fol-
lows.

Definition 1.1. Let Q € B, (V). We say that a pair of vertices (a;, a;), a; # a;,
has a common consequent (c.c.) if there is a n integer [ > 0 such that

(1.1) a: Q' Na; Q" # 0.

If a;, aj have a c.c. then the least integer > 0 for which (1.1) holds is denoted by
LQ((!,’. (lli)‘

! T'his rescarch was supported by NNSI of P.R. China.
This work was done while the author was visiting the Department of Mathematics, The
Chinese University of Hong Kong.
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In 1990, we ([2]) introduced a concept of the generalized vertex exponent (G.V.E.)
for M(Q).

Definition 1.2. Let Q € B, (V). The generalized vertex exponent of Q, denoted
by expg (1), is the least integer [ > 0 such that

n

(1.2) ()a:Q" #0.

i=1

In terms of Boolean matrices. the common consequent in [1] means that the rows
corresponding to a; and a; in M(Q') have a 1 in the same column, while G.V.E.
in [2] means that there is a column of all 1’s in M (Q").

Naturally we can extend the common consequent to the & common consequent
(k-c.c.) as follows.

Definition 1.3. Let Q € B, (V). We say that a group of vertices {a;,,...,a;, } C
V ={ay,...,an}, 2 <k <n, a; #a;,,t#u, has a k-common consequent (k-c.c.)
if there is an integer [ > 0 such that

k
(1.3) (a:,Q #0.
7j=1

If a;,, ..., a;, have a k-c.c. then the least integer [ > 0 for which (1.3) holds is
denoted by Lg(ai,, ..., ai,).

If there is at least one group (a;,,...,a; ) for which Ly(aj,,...,a; ) exists, we
define Lg(k) = max Lo(ai,,....a;,), where (a;,,...,a; ) runs through all groups
with & elements for which L¢(a;,,...,a;,) exists. If Al = M(Q), then we write
Lo(k) = La (k). If there is no group (ai,, ..., a;, ) for which Lg(a;,, ..., a; ) exists.
we define Lg(k) = La(k) = 0.

In terms of Boolean matrices, k-c.c. means that the rows corresponding to a;, . ..
a;, in M(Q') have a 1 in the same column.

Clearly, 2-c.c. is the common consequent in [1] while n-c.c. is the generalized vertex
exponent in [2], which was obtained by Schwarz ([3]).

It is well known that a relation @ is called primitive if there is an integer t > 0
such that Q' = V x V. Let P,(V) be the set of all primitive relations in B, (V).
Then it is easy to see that if Q € P,(V), then Lg(a;,....,a;, ) exists for any group
(aiys---yai,), 2 < k< n. We define

L(k) =max{Lq(k) | Q € P, (1)}.
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As we know, a Boolean square matrix A is called reducible if there is a permutation
matrix P such that PAP™! is of the form

B 0

Cc D)’
where B, D are square matrices. Otherwise it is called irreducible. Let IR,(V) be
the sct of all irreducible relations in B, (V). For Q € B,,(V), we define

L(k) = max{Lg(k) | Q € IR,.(V)}.
Up to now, we have known the following results:

in?=n+1 ifniseven,
L(2) =

2 —n+3  ifnisodd, (S. Schwarz 1985 [1])

(or L(2) = in? — In+1-[2]),

L(n) =n® - 3n+ 3. (S. Schwarz 1986 [3])

In this paper we investigate L(k) and L(k), 2 < k < n—1, and obtain some special
bounds for L(I) and L(k). Generally, we have

k-1

L(k)sL(k)g[ n](n—l)+1, 2<k<n—-1.

In many cases this result is the best possible.

2. PRELIMINARIES

By the first projection I1(Q) of Q we mean the subset of V' consisting of all a; € V
for which a;Q # 0.

The following lemmas are obvious.

k
Lemma 2.1. If [I(Q) = V, then () a;Q" # 0, {ai,,...,a;,} C V, implies
ji=1
x
N ai, Q™" # 0 for any integer t > 0.
Ji=1

Lemma 2.2. If2 < k) < ky < n, then

Lo(ky) < Lo(k2), Q€ Bu(V).

(1
[\V]
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Q € B, (V) is irreducible if and only if G(Q) is strongly connected. (See, e.g.. [1].)

If Q is irreducible, then for any a; € V there is a least integer h; = h(a;), 1 < h; <
n, such that a; € a;Q". Moreover, M(Q) is permutation cogredient to a matrix of
the form

0 4 ... 0 0
0 0o ... 0 0
0 0 ... 0 As-
A¢ 0 .00 0

where A; is a v; X viy| submatrix, d = (hy,...,h,). It is equivalent to the assertion
that the set V' = II(Q) admits a decomposition iuto  disjoint nonempty subsets
V=V u...UV,such that

QCc (WM xT1H)u(VexV)u...u(lyx 1),

where |V;| = v; and v441 = v;. The number d (1 < d < n) is called the index of
imprimitivity of Q. The sets 17, ..., Vy are called the sets of imprimitivity of ).
is primitive iff it is irreducible and d(Q) =1 (see, e.g., [1]).

The following lemma is known.

Lemma 2.3 ([1]). Let Q be irreducible, d > 1 and let V' be one of the sets of
imprimitivity of Q. If a; € V"', then there is an integer ko > 0 such that for any
k > ko we have a;Q* = V',

For k-c.c. we have

Theorem 2.4. Let Q € B, (V). Suppose that () is irreducible and d(Q) > 1.
Then Lo(ai,, - .., a;, ) exists iff a;, ..., a, are contained in the same set of imprim-
itivity of Q.

Proof. a) Suppose that a; € V', j=1,....k Then (by Lemma 2.3) there is
an integer kg such that for any & > ko we have (1;/(2""' =V j=1,..., k. Hence
Lo(as,,...,a; ) exists.

b) Let a;, € V' a;, ¢ V' j=2,.. . k.say a;, € V" V' # V" By Lemma 1.1 [1]
Lo(ai,,ai,) does not exist. Hence Lo(ai, - .., a;, ) does not exist, either. O

According to Lemma 2.2 and the results of [1] and [3]. we have
L(2) < L(k) < L(n).

namely in? — 2 4+1—[2] <L(k) <n? =3n+3,2<k<n.
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3. ESTIMATIONS OF L(k) FOR A PRIMITIVE RELATION
We need the following lemma in [1] to derive a better estimate of L(k).

Lemma 3.1 ([1]). Let Q be irreducible, Q € B, (V), n > 2 and let V; be a
nonempty proper subset of V.. Then V{Q contains at least one element of V' which
is not contained in V.

Corollary 3.2. Let Q be primitive, Q € B,,(V),n > 2anda; € V. Ifa;Q° = a;Q*
for some 1 < s < t, then a;Q° = V.
Lemma 3.3. Let V = {ay,...,a,} and let V,..., Vi (2 < k < n) be the subsets

k
of Vowith |Vi| 2 r>0,i=1,... k. Ifr > ["A;ln] +1, then (| Vi # 0.
=1

Proof. First of all, we prove that

L

(3.1) IU Vi

=1

> kr —(k—=1)n, 2<k<n.

2
If k=2, l N v,-] > Vil + [Va] = [V] > 20 — 3.
1=1

3
If = 3, } N V:
i=1

2
> V3| = (Hl - ~ N Vi ) >r—n+(2r—-n)=3r-2n.
i=1

k=1
Suppose that l N Vi‘ >(h-1r—(Kh-=2n,2<k<n—-1 Then
i=1

)é Vi > vl - (V1 - 1(51&

=kr—(k—1)n, 2<k<n.

) >r—n+[k=1r—(k-2)1]

Iitr > [",\;ln] + 1, by (3.1)

k L
(3.2) ‘gv,—t 2/{([1‘ B 1/)] +1) —(k=1)n.
Case 1. k|n.
According to (3.1)
&
'ﬂvi Sh=n+k—(k=Dn=h>0
i=1

Case 2. k{n.

(a1
8]
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Let n =ak+t, t=1,...,k—1, ais an integer, a > 1. According to (3.1) we have
- t
‘Ol 14] > L:([(k “la+t- E] + 1) — (k= 1)(ak + 1)
=k[(k-1)a+t—1+1) - (k—1)(ak+t)=1t>0.
k
Hence iDI Vi # 0. O

Note that if Q is primitive, Q' is primitive for any ¢t > 1. We have

Lemma 3.4. Suppose that Q) is primitive, Q € B, (V'), n > 2. Recall that h; is
the least integer for which a; € a;Q" . Then

Lg(ai,, ... ai) < [k — 171] max(li, ... 0, ).
Proof. Consider the chain
(3.3) ai, € a;, Q" Cai, Q" C - Ca,QUT M (j=1,.. k).
By Lemma 3.1 and Corollary 3.2 we have
|a,~,(2[k‘;‘ln]h” 2 [k ; 1”] + 1.

Let h = max(h,,...,h;, ). Multiplying each term in (3.3) by Q[k*;'l"](h""d) (define
Q° = I), we obtain

a;, QU M=) gy QP m=hi) g QU IR
! ! 1 ’

whence |aiJ.Q[AL;-‘”]h| > [&Z—ln] +1,j=1, ...,k Therefore by Lemma 3.3

k
ﬂ aijQ["k;""]h £0.

i=1

Hence Lg(ai,, ..., a;,) < [52tn] max(hi,, ... i, ). O

Let the lengths of the largest circuit and the least circuit in G(Q) be h and hq.
respectively. We have

Corollary 3.5. Let Q be primitive, Q € B, (V). If h, < n — 1, then

k —

(3.4) Lo(k) < [ 1n] (n—1).
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In order to obtain better estimates of L(k) using hg, we establish the following
lemma.

Lemma 3.6. Let Q be primitive, Q € B, (V) andn > 4. Denote L, = ([%tn] —
1)/10 + n. Then for any a; € V we have

k-1

la; Q" r

2[ n]+1.

Proof. Let C be a circuit of length hg. Denote by V(C) the set of vertices of
C. For Yu € V(C) we have u € uQ".

For any a; € V — V(C), there is a path of length &;, 1 < A; < n — ho, joining a;
with some u; € V(C). This means: there is u; € V(C) such that u; € a;Q*, where
ki < n — hg. Consider the chain

k=1
T

n] hq

uj € u; Q" C u; QM C - C u;Ql
and for any integer ¢t > 1, then chain
Q' Cu;QM T o C ujQ[l'%l”]"““,
For any t > 0 we have

k-1
k

[-ujQ[L'%l"]h”Hl > [ 11] +1.

Now, since u; € a;Q*, we have

[I\:—ﬂ 1”’] + 1 < |ujQ["—l——l1L]/l()+l| < IaiQ["L;_ln]h“—}—t—{—k; .

Putting t =n — hg — k; > 0, we have

k-1
k

l(L.iQLll > [ n] +1.

If u belong to C, the chains

u€uQ" cuQ* c .- 'u.Q[L’T_l”]'“’,
“'QL C th”-{—t C uQZ/m—{-t Cc---C ,“‘Q[Li__—ln]h(w#t
show that for any ¢t > 0

k-1
k

L—1
T

luQU7 mlhott] > [ n} + 1.

Putting t = n — hy we obtain [uQ%| > [%n] + 1. O



Lemma 3.7. Let () be primitive, Q € B,(V), n > 2. Suppose that hg < n — 3.
Then

Lo(k) < ([A ; ln] - 1)(71 —-3) +n.

Proof. Denote L = [ ]ho+n—ho Since |a; Q51| > [}”,\1 ] + 1, we have

k
Na;, @ #£0  aud  Lo(k) < Ly [/‘ - 171}(11 ~3)+n.

. \
=1

N

O

Remark. Ifn > 2, then [T”] (n=3)+n< ["—u] (n—1)+1. By Lemma 3.7
and by (3.4) we need to consider only hg > n —2, I = n.

Applying an argument analogous to [1] we treat ouly two cases as follows.
Case 1. The relation Q given by the graph in Figure 1: hg = n -2, h = n
(n =5, nis odd).

ay a as

We shall prove that

(3.5) Lo(k) < [’”; ,,,] (n—2) +2
Consider the chains
az € a3Q" " C azQ* N ... C U;Q ~L ) (n—2)
and
(36) @@ CayQ" T CagQEn I € C QU

and denote Ly = [k—;ln](n —2). For any integer t > 0. (3.6) implies |a3QF>*| >
[Edn] +1.
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Since a; = a1Q?, as = a2Q, we have

k-1
k

. 1 .
|a,lQL2+21>[ n]+1, |a2QL2“|2[ n]+1.

Further. for 3 < i < n we have a; = a3Q?~3, whence

) ) , k-1
laz Q"2 = agQ2Q T IH = jq, QP27 = [ k ”] +1
Putting t =i — 1 (n > 5),we have
’a-QL2+2|>{k_1n]+1 3<ign
‘1 =z A‘/ , - ~X M
Hence by Lemma 3.3
k—1
Lok) < Ly+2= [ r n] (n—2)+2.
Case 2. The relation @ given by the graph in Figure 2.
ay az as
—0) o . o e
Up Ap—1 (p—2 © )
Fig. 2

Using an argument similar to that in the proof of Lemma 2.9 in [1], we can obtain
the following conclusion.

If My is the least integer m > 0 such that a;Q™ Nay Q™1 N...Nay Q™M1 £ )
for {si....,sk—1} C{1,...,n}. s; #s; if i # j, then

(3.7) LQ(I\,) = My + 1.
In [1], it was proved that

(38) (1,2(271—1 = {0,2,(1,1 },
a, QR 1) = {az, a1 an, a0y, . Jay_(ony}, 2<k<n—1.
Let now Lo = [l‘k;ln] (n —1). Since

ay C (I~_>( n-t Cc---C (1.2(2[,;[_1'!](”_1)
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we conclude that |a2Q"°| > [52n] + 1 and also [a2Q"**| > [E2n] + 1 for any
k=1
s > 0. Hence for any {si,...,sk—1} C {1,...,n =2}, () a2QFo*s # 0, where
i=0
so = 0. This implies My < Ly.
According to (3.7)

(3.9) Lo(k) < Lo+1= [kk 171](7:«1)+1.

Hence we obtain the main result from the above conclusions.

Theorem 3.8. If Q) is a primitive relation, Q € B, (V'), n > 2, then

k
(3.10) Lo(k) < Lo+1= [ B 1n](n— I)+1. 2<hk<n—-1

The following example shows that sometimes the bound is sharp for primitive
relations given in Figure 2.

Example. Let Q be the relation defined by the graph in Figure 2, Q € B, (V7).
M = M(Q).

Ifn=7 k=3, then

00 0 1 1 11 1 1.0 01 1 1
11 0 0 1 1 1 1 1.1 0 0 1 1
1 11 0 0 1 1 1 111 0 01
M*=]1111001), MPF=|11111°00
1 11 1 1 00 01 1 1 110
01 1 1 1 10 00 1 1 1 1 1
00 1 1 1 11 1 10 1 1 1 1
For M?* we have a;Q** N a3Q** N asQ* = O while for any a;, a;j, a, we have
@; Q% Na;Q* Na,Q* #0. Thus Lg(3) = 25.
The bound (3.9) gives [2 x 7](7—1) +1 = 25.
If n =6, k = 3, then the bound (3.9) yields
9
[:3 xﬁ](6—1)+1:21.
However,
1 1.0 0 1 1 1 1.0 0 1 1
1 1.1 0 0 1 1 1.1 0 0 1
1 1 1 1 0 0 ' 1 1.1 1 0 0
A/ ?6 = A/]!() =
s 01 11 10} 6 01 1110
0 0 1 1 1 1 0o 0 1 1 1 1
1 1 0 1 1 1 11 0 1 1 1
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It is easy to see that a; Q'° N a3Q'® N as;Q'® = @ while for any a;, a;, a,, we have
a; Q' Na;Q'" Na, Q' # 0. Thus Lo(k) =17 < 21.

Sometimes the bound in Theorem 3.8 is the best possible. For example when
k =2 and n is odd Schwarz had shown that the bound (3.10) is the best possible.

4. ESTIMATIONS OF L(k) FOR IRREDUCIBLE RELATION

Since we know the bound of L(k) for a primitive relation, we shall consider only
imprimitive relations. Noticing that L(k) does not exist for n = 2, we may suppose
n > 3.

Theorem 4.1. Suppose that Q € B, (V), n > 3, Q is irreducible and d(Q) > 1.
Denote mtin Vil = B.

a) If B < k and Lg(k) exists. then Lg(k) < d—1.

b) If B 2 k and Lg(k) exists, then

Lo(k) <d -1 +d([5;—1/3](5— 1)+ 1).

Proof. Without loss of generality we may suppose that the matrix representa-
tion of @ is of the form

0 B 0 0

0 0 0 0

0 O 0 Bd.—l

B, 0 0 0

In this case we have
Ay 0
M(Q%) = ,

0 Ay

where Ay are primitive v, X v, Boolean matrices, II(A;) = V, are the sets of im-

d d

primitivity of @, and |J Vi =V, 3 v; = n. By Theorem 2.4, Lg(ai,, .. .,a;, ) exists
t=1 =1

iff a;,, ..., a;, are contained in the same set of imprimitivity of Q, say V;. Suppose

that this is the case and vy > 2. Applying Theorem 3.8 we have

Lo(k) < (l([k B 11},](1& -1)+ 1).




Let [Vo| = 8. Counsider the following two cases

a) Vol =B < k.

If |Vi|] < k, t .., d, then no k clements of 1" have a c.c. In any V; with
[Vi| > k choose k verti('es ai, . @, . Since Vo = 17Q" for some u, 1 <u < d—1.
we have alQ” = = arQ", i.c. Lo(k) exists and Lo(k) < d — 1.

b) |Vo| =

For any ap, ..., ax € Vp we have

k-1
) < d| | —— - = L-
Mxm\d([k ghﬁ n+1) Ls.
i.e.
k
M a:Q™ #0.
=1
Let Vi # V4 be any set of imprimitivity, a;,

o, € Vy SlllCC Vo = Q" for
some u, 1 <

u<d—1 Then «;Q* C Vp,i=1, ..., k. Therefore ﬂ a;iQ QL £ 0.

LQM)gu+L3<d—1+dqiT140%—U+l)

]
Write n = ad + o, where a > 1 s an integer and 0 < a; < d — 1. Then the least
of the number |Vi],... |Vi] is < a.
We have k < B < =1,
Let N(B,k) = ["A;l/i](’} — 1) 4+ 1. This is an increasing function of 3. If Lo (k)
exists, we have

Lo(k) <d—=1+dN(B,k) <d—-14dN(ak)

:(l—1+(1([k;1 ' n—dal]<u—(u _1> +1).

d

Putting here a; = 0 we have

Corollary 4.2. Let Q € B, (V), Q is irreducible. n > 3. d(Q) > 1. If Lo(k)
exists, then

Lo(k) <d=1 +(l<[kk%l : %] ('{—; - 1) + 1)

_([<[I~;1 %]('_’_1) )_ :[u.:)](’)_(1)+)(1_1
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Denote [’”—;l . %] (n —d)+2d—-1= f(d). In order to prove
k-1
T n] (n—1)+1

for an irreducible relation, we shall prove

(4.1) Lo(h) < |

(4.2) Fd) < [’”' - 1n] (n—1)+1.

Since for & = 2 Schwarz ([1]) had shown that (4.1) holds, we consider only k& > 3. It
is easy to prove that f(d) is a decreasing function if d € (0, ,/k.z;k’n], while f(d) is
an increasing function if d € (, / "ﬁ%n,n) (d =n, M(Q) is a permutation matrix,

L(k) does not exist.) Thus

f(d) < max (£(2), f(n 1))

k-1, k-1 h—1 n
= max n° — 3, — — 2"—3)
mu( ok n 2 n -+ L 'n.—l+ n
6 n =4,
< (3<k<n).
k-1 k-1
n? — n+3 n>=5
2k k

But if n =4, k = 3, then [k%lu](n— H+1= [é X 4] x3+1=7>6.
If n > 5 then it is not difficult to prove
k=1, k-1
n? —

2k k
Hence (4.2) holds for n > 3, 2 < k < n. We have

n+3< [A—;—ln] (n—1)+1.

Theorem 4.3. Suppose that Q € B,,(V), n > 3, Q is irreducible. If Lg(k) exists,
2 < k < n. we have

b —

(4.3) Lo(k) < [ ln](n,— 1) +1.

Remark. Applying (4.3) for k = n — 1, we have
Z(n —1)<n*=3n+3,
while by the result of Schwarz ([3])

L(n) =n*=3n+3.
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