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k-COMMON CONSEQUENTS IN BOOLEAN MATRICES 1 

BOLIAN LlU, Guangzhou 

(Received Octobe r 31, 1994) 

1. INTRODUCTION 

Let Mn denote the set of all n x n matrices over the Boolean algebra {0,1}, and 

let V = {O i , . . . ,O n} be a finite set with n ^ 2. By a binary relation on V we mean 

a subset Q of V x V. The set of all binary relations on V (including the empty 

relation) is denoted by Bn(V). The map 

Q^M(Q) = (inij) 

where ///,j = 1 if (O;,Oj) G Q and mi3- — 0 otherwise, is an isomorphism of Bn(V) 

onto Mn. 

Let Gn(V) be the set of all directed graphs with n vertices { a i , . . . , a n } . Then 

each matrix in Mn can be regarded as the adjacency matrix of G G Gn(V). 

It is well known tha t there is a one to one correspondence between Bn(V), Mn 

and Gn(V): 

Q <—> M(Q) < - » G(Q), 

where G(Q) is the graph corresponding to the matrix M(Q). 

In 1983, S. Schwarz ([1]) introduced a concept of the common consequent as fol­

lows. 

Def ini t ion 1.1. Let Q G Bn(V). We say that a pair of vertices (O^Oy), a,- ^ a-,, 

has a common consequent (c.c.) if there is a n integer / > 0 such tha t 

(1.1) aiQ
lnajQl / 0. 

If O/, cij have a c.c. then the least integer / > 0 for which (1.1) holds is denoted by 

Fg(O/,Oj). 

This research was suppor ted by NNSF of P.R. China. 
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Chinese University of Hong Kong. 
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In 1990, we ([2]) introduced a concept of the generalized vertex exponent (G.V.E.) 

for M(Q). 

Def in i t ion 1.2. Let Q G Bn(V). The generalized vertex exponent of Q, denoted 

by e x p g ( l ) , is the least integer I > 0 such that 

71 

(1.2) f > ^ ' / 0 -

In terms of Boolean matrices, the common consequent in [1] means tha t the rows 

corresponding to at- and aj in M(Ql) have a 1 in the same column, while G.V.E. 

in [2] means tha t there is a column of all Ls in M(Ql). 

Naturally we can extend the common consequent to the k common consequent 

(k-c.c.) as follows. 

Def in i t ion 1.3. Let Q G Bn(V). We say that a group of vertices { a t l , . . . , aik } C 

V = { a i , . . . , a n } , 2 ^ k ^ ?i, a7, ^ aiu, t ^ u, has a k-common consequent (k-c.c.) 

if there is an integer / > 0 such tha t 

k 

(1.3) Pla.-QVfl. 
i = i 

If a,ix, . .., aik. have a k-c.c. then the least integer / > 0 for which (1.3) holds is 

denoted by LQ ( a t l , . . . , a l A) . 

If there is at least one group ( a ^ , . . . ,ar-A.) for which L g ( a 7 l , . . . , a lA) exists, we 

define L Q (k ) = max LQ^J,,-, , . . . , a2A), where ( a z i , . . . , a?A) runs through all groups 

with k elements for which Lq(a.il,... ,a?-A.) exists. If M = M(Q), then we write 

L Q (k ) = LM(k). If there is no group ( a t l , . . . , aik.) for which LQ(a,il,..., a,A) exists, 

we define L Q (k ) = LMW = 0. 

In terms of Boolean matrices, k-c.c. means that the rows corresponding to a?1, . . . . 

aik. in M(Ql) have a 1 in the same column. 

Clearly, 2-c.c. is the common consequent in [1] while1 O-c.c. is the generalized vertex 

exponent in [2], which was obtained by Schwarz ([3]). 

It is well known that a relation Q is called primitive if there is an integer / > 0 

such tha t Ql = V x V. Let Pn(V) be the set of all primitive relations in Bn(V). 

Then it is easy to see that if Q G Pn(V), then LQ(<IU ,. .. ,a?, ) exists for any group 

(aii,..., ciik), 2 ^ k ^ n. We define 

L(k) = max{L Q (k ) \QePn(V)}. 
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As we know, a Boolean square matrix A is called reducible if there is a permutation 

matrix P such that PAP~l is of the form 

B 0 

C D 

where H, D are square matrices. Otherwise it is called irreducible. Let IRn(V) be 

the set of all irreducible relations in Bn(V). For Q G Bn(V), we define 

L(k) = max{LQ(k) \ Q G IRn(V)}. 

Up to now, we have known the following results: 

\n2 —7i + l if n is even, 

\n2 -7i + | if n is odd, (5. Schwarz 1985 [1]) 

(orL(2) = l H 2 - i n + l - [ f ] ) , 

L(n) = n2 - 37i + 3. (§. Schwarz 1986 [3]) 

In this paper we investigate L(k) and L(k), 2 ^ k ^ n — 1, and obtain some special 

bounds for L(K) and L(k). Generally, we have 

w = L- .., з 

L(jfc) < L(Jfc) ^ 
fc-1 1 

n n - l ) + l, 2 < A : ^ n - l . 
k 

In many cases this result is the best possible. 

2. PRELIMINARIES 

By the first projection Ii(Q) of Q we mean the subset of V consisting of all ai G V 

for which aiQ ^ 0. 

The following lemmas are obvious. 

k 

Lemma 2.1. If U(Q) = V, then f| a{jQ
[ ^ 0, {ah,...)ah} C V, impiies 

i = i 
A-

f| «i,-QZ+f # ^ for a i i y integer l > 0. 
.7 = 1 

L e m m a 2.2. If 2 ^ fci ^ fc2 ^ ?i, tiien 

LQ(kl)^LQ(k2)1 QeBn(V). 



Q G Bn(V) is irreducible if and only if G(Q) is strongly connected. (See, e.g., [1].) 

If Q is irreducible, then for any O2- G V there is a least integer hi = b(O;), 1 ^ /i,- ^ 

71, such tha t a,i G ciiQlli. Moreover, M(Q) is permutation cogredient to a matr ix of 

the form 
/ 0 Ai . . . 0 0 \ 

0 0 . 

0 0 . 

\Ad 0 . 

0 0 

0 0 / 

where A\ is a U; x D7;+L submatrix, O7 = ( b i , . . . , / i ,J. It is equivalent to the assertion 

tha t the set V = U(Q) admits a decomposition into d disjoint nonempty subsets 

V = Vi U . . . U V, such that 

QC(\\ x V2)U(V2 x V 3 ) U . . . U ( V / X V L ) , 

where |V | = v\ and va+v = vi- The number c/ (1 5̂  d <̂  O) is called the index of 

imprimitivity of Q. The sets V, . . . , Vci are called the sets of imprimitivity of Q. Q 

is primitive iff it is irreducible and d(Q) = 1 (see, e.g., [1]). 

The following lemma is known. 

L e m m a 2 .3 ([1]). Let Q be irreducible, d ^ 1 mid let V be one of the sets of 

imprimitivity of Q. If r/,z- G V', then there is an integer k0 ^ 0 such that for any 

k ^ k0 we have ciiQkd = V. 

For k-c.c. we have 

T h e o r e m 2.4 . Let Q G Bn(V). Suppose that Q is irreducible and d(Q) > 1. 

Then LQ(CII1 , . . . , O; A) exists iff a^ , . . . , O?A. are contained in the same set of imprim­

itivity of Q. 

P r o o f , a) Suppose that O; G V, j = 1,. . . ,k . Then (by Lemma 2.3) there is 

an integer k0 such that for any k ^ ko we have aitQ
dk = V', j = 1, . . ., A;. Hence 

Lq(Oi1,. . . ,O?;J exists. 

b) Let On G V7, Of, £ V'. 7 = 2 , . . . ,k , say O?-, G V". V' / V". By Lemma 1.1 [1] 

Lg(O7 l , O,-2) does not exist. Hence LQ(CIU , . .. , O;A ) does not exist, either. • 

According to Lemma 2.2 and the results of [1] and [3], we have 

L(2)^L(k) ^L(n). 

namely \n2 - f + 1 - [f\ ^ L(k) <: n2 - 3u + 3, 2 <C k <C n. 
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3. ESTIMATIONS OF L(k) FOR A PRIMITIVE RELATION 

We need the following lemma in [1] to derive a better estimate of L(k). 

L e m m a 3.1 ([1]). Let Q be irreducible, Q G Bn(V), n ^ 2 and let VY be a 

nonempty proper subset of V. Then V\Q contains at least one element of V which 

is not contained in V\. 

Coro l lary 3.2. Let Q be primitive, Q G Bn(V), n ^ 2 and en G V. IfcnQ8 = ciiQ1 

for some 1 ^ s < t, then ciiQs = V. 

L e m m a 3.3. Let V = {Oi,..., an} and let 1 4 , . . . , 14 (2 ^ k ^ n) be the subsets 
k 

of V with \Vi\ ^ r > 0, i = V . . . , k. If r ^ [^n] + V then f] V ^ 0. 
7 = 1 

P r o o f . First of all, we prove that 

k 

(3.1) U Vp Aт- (k- l)n, 2 <. A: < 

If A: = 2, 

If A: = 3, 

f ) V 
1 = 1 

Ï= I 

^ | i | + | 2 | - | V | ^ 2 r - З n . 

SHV3|- W\- Ґ ÌV 
7:=i 

^ r — n + (2r — n) = Зr — 2?г. 

/ c - 1 

Suppose that f] VA ^ (k - l)r - (k - 2)?i, 2 <: k ^ n - 1. Then 

n vi\ > \Vk\ - (|V'| - | f] V;|) > /• - u + [(A: - !)/• - (A- - 2)i 
7 = 1 

= kr - (k - l)/г, 2 ^ : ^ n. 

If/- ^ [-^±u] + 1 , by (3.1) 

k , 

(3.2) | f| V;\ 2 *<([-]—"] + l) - ('• ~ -)«• 

7 = 1 

C a s e 1. k \ n. 

According to (3.1) 

П* ï> (k - l)n + A: - (k - l)n = k > 0. 

C a s e 2. A; i ?r. 



Let n = ak + t, t = 1,..., fc - 1, a is an integer, a > 1. According to (3.1) we have 

k 

\f]Vi\ 2k([(k-l)a + t--] +l) -(fc-l)(afc + 0 
z = l 

= fc[(fc - l)a + l - 1 -f 1] - (fc - l)(afc + t) = t>0. 

k 

Hence f] V{ / 0. • 
2 = 1 

Note that if Q is primitive, Ql is primitive for any t > 1. We have 

Lemma 3.4. Suppose that Q is primitive, Q G Bn(V), n ̂  2. Recall that hi is 
the least integer for which Ot- £ aiQhi. Then 

[fc — 1 1 
LQ(ail,..., a,A) ^ —— ?zj max(/t/1 , . . . , b?-, ). 

P r o o f . Consider the chain 

(3.3) aij E ai.QhiJ C aiXf1^ C • • • C a i .Q
[^ i , l ' / , '> (j = 1, . . . ,fc). 

By Lemma 3.1 and Corollary 3.2 we have 

r f c -1 la^Q1 k J *- | ^ 1^—— 7/j -f 1. 

Let h = max(hil,...,hh). Multiplying each term in (3.3) by Q-V n .C l 's-) (define 
Q° = 7), we obtain 

fl._Q[i¥in](/l-hi.) c aijQ^,+[¥'#-m c ••• C a i . Q l ^ ^ , 

whence | a i j Q
[ ^ l i n ] / l | ^ [ ^ n ] + 1, j = 1, . . . , fc. Therefore by Lemma 3.3 

i = i 

Hence LQ(aix,... ,aik.) ^ [ ^ n ] max(/i»1,..., b?A). • 

Let the lengths of the largest circuit and the least circuit in G(Q) be h and bo, 

respectively We have 

Corollary 3.5. Let Q be primitive, Q G Bn(V). Ifh ^ n - 1, then 

(3.4) Lg(fc)< [ ^ ^ C ^ - 1 ) -
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Iii order to obtain better estimates of L(k) using bo, we establish the following 

lemma. 

L e m m a 3.6. Let Q be primitive, Q G Bn(V) and n ^ 4. Denote L\ = ( [ ^ - n ] -

l )bo F n. Then for any O; G V we have 

VHQU\> [^4r»]+--

P r o o f . Let C be a circuit of length bo- Denote by V(C) the set of vertices of 

C. For Vw G V(C) we have u G HQ/l,). 

For any O; G V — V(C) , there is a path of length A:;, 1 ^ k; ^ n — bo, joining O; 

with some Uj G V(C) . This means: there is Uj G V(C) such that Hj G aiQki, where 

A:7 ^ n — bo- Consider the chain 

Uj G HjQ
/l,) C UjQ

2h» C • • • C I ^ Q - T ^ ' 1 " 

and for any integer t ^ 1, then chain 

HiQ* C HiQ
/l,,+i C • • • C U j Q ^ * 1 ] ' 1 " - " . 

For any l ^ 0 we have 

r/,-1 i , . . r k - 1 1 

+ 1. 

Now, since itj G ciiQki, we have 

[ ^ n ] + 1 <C I ^ Q t ^ n l ^ + ̂ l ^ |a.g[iifl„]fcll + t+fei 

Put t ing t = n — IIQ — ki ^ 0, we have 

i"^Lli^ [ n r n ] + L 

If H belong to C, the chains 

u G HQ/l,) C HQ2/l,) C • • • C u Q ^ n ' / l , \ 

uQ* C HQ/l,,+/ C uQ2h"+l C • • • C •uQ-^r1"-'1"*' 

show tha t for any t ^ 0 

| M g l - i n l , l | 1 + t | ^ jfc^2nj + L 

Put t ing t = n - h0 we obtain \aQLl\ ^ [ ^ - n ] + 1. D 
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Lemma 3.7. Let Q be primitive, Q G Bn(V), n ^ 2. Suppose that Ji0 ^ n - 3. 

Then 

LQ(k)^ ( [ * z i n ] - l ) ( H - 3 ) + 7i. 

P r o o f . Denote Lv = [ V 1 " ] ^ + n - ft0. Since |r/?Q
Ll | ^ [ ^ n ] + 1, we have 

f]aijQLl^9 and L0(fc) < Lx <~ 
i=\ 

k - ì 
(77. - 3) + П. 

D 

R e m a r k . If 7i ^ 2, then [^-n] (n - 3) + 71 ^ [ n r 1 " ] (n - 1) + 1. By Lemma 3.7 

and by (3.4) we need to consider only Ji0 ̂  7i — 2, Ji = //. 

Applying an argument analogous to [1] we treat only two cases as follows. 

Case 1. The relation Q given by the graph in Figure 1: lto = n — 2, h = n 

(n ^ 5, n is odd). 

0>n-l 

Fig. 1 

We shall prove that 

(3.5) LQ(k) < 

Consider the chains 

k- 1 
71 (71-2) + 2 . 

and 

(З.G) 

0.3 € a,Qn~2 C < i 3 Q 2 ( n " 2 ) C • • • C a : , ^ 1 ^ " 1 1 " " 2 ' 

азС?' С о.з(?"-2 + ' С « 3^ 2 ( п-' 2 ) + ' С • • • С а : (( 1>1^ 1"] ("- 2)+', 

and denote L2 = p i r » ] ( n " 2>- F o r a nY integer t > 0, (3.6) implies \a3Q
L-+'\ > 

[-=--«] + 1. 
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Since O3 = OiQ2, O3 = a2Q, we have 

l«iQL2+2l ^ [^n] + 1, \a2Q
h2+z\^ \-—n\+l 

k-l 

Further, for 3 < i ^ n we have o; = a.^Q1 3 , whence 

|o 3 Q L l + t | = |a3Qj-3Qf'2-<,'-3)+t| = |a,o,L2-( l-3)+i | ^ [ 
fc-1 

?г + 1 . 

Putting t — i — 1 (?i ^ 5),we have 

k Q b 2 + 1 ^ 
fc- 1 

+ V 3 < І ^ 71. 

Hence by Lemma 3.3 

LQ(k) ą L2 + 2 = [-^—"] (" - 2) + 2. 

Case 2. Tlie relation Q given by the graph in Figure 2. 

Using an argument similar to that in the proof of Lemma 2.9 in [1], we can obtain 
the following conclusion. 

If Mo is the least integer m > 0 such that a2Q
m na2Q

m+Sl n . . . n a 2 Q m + s * - 1 ^ 0 
for {.S!,...,5it-i} C {l,...,7i}, .Si 7- Sj if?' ^ j , then 

(3.7) LQ(fc)=M0 + l. 

In [1], it was proved that 

(3.8) a 2 Q n - 1 = {-2,a1}, 

a 2 g * ( n - i ) = {a2,ai,o.n,o„,_1,...,o, l_ ( f c_2 )}, 2 < k < n - 1. 

Let now L 0 = [ T r » ] ( n - 1)- Since 

o.-2 C o - j Q " - 1 C • • • C a 2 g l i T a " l ( ' l - 1 ) 
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we conclude that |O2QL,)| ^ [V^ n ] + 1 a n d a l s o Vl2QL{)+s\ ^ [nr™] + 1 f o r a n v 

;s > 0. Hence for any {si,...,Sfc_i} C { 1 , . . . 

;3o = 0. This implies M0 ^ LQ. 
According to (3.7) 

- k - 1 

A : - l 

(3.9) LQ{k) sC L0 + 1 = 

2}, fl « 2 0 > + s ' ^ 0, where 
z'=0 

1) + 1. 

Hence we obtain the main result from the above conclusions. 

Theorem 3.8. If Q is a primitive relation, Q E Bn(V), n ^ 2, then 

k 
(3.10) LQ{k) sSEo + l = [—£—n](n- l ) + l. 2 0 « * n 1. 

The following example shows that sometimes the bound is sharp for primitive 

relations given in Figure 2. 

Example. Let Q be the relation defined by the graph in Figure 2, Q E _?;i(V), 

M = AI(Q). 

If n = 7, k = 3, then 

м 7

2 4 = 

/0 0 0 1 1 1 1\ 

1 1 0 0 1 1 1 

1 1 1 0 0 1 1 

1 1 1 1 0 0 1 

1 1 1 1 1 0 0 

0 1 1 1 1 1 0 

V 0 0 1 1 1 1 1 / 

Mf = 

/l 1 0 0 1 1 1\ 

1 1 1 0 0 1 1 

1 1 1 1 0 0 1 

1 1 1 1 1 0 0 

0 1 1 1 1 1 0 

0 0 1 1 1 1 1 

V 1 1 0 1 1 1 1 / 

For M 2 4 we have OiQ24 n a^Q24 n O5Q24 = 0 while for any O;, Oj, Or we have 

CHQ'25 n O^Q25 n OrQ
25 # 0. Thus LQ(3) = 25. 

The bound (3.9) gives [§ x 7] (7 - 1) + 1 = 25. 

If n = 6, k = 3, then the bound (3.9) yields 

x б (6 — 1) + 1 = 21. 

However, 

м 6

1 6 = 

/1 1 0 0 1 1 \ 

1 1 1 0 0 1 

1 1 1 1 0 0 

0 1 1 1 1 0 

0 0 1 1 1 1 

Ví 1 o 1 1 1 / 

ЛC = 

/l 1 0 0 1 1\ 

1 1 1 0 0 1 

1 1 1 1 0 0 

0 1 1 1 1 0 

0 0 1 1 1 1 

Ví 1 o 1 1 1/ 
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It is easy to see that OiQ16 H a3(316 H a5<316 =- 0 while for any O;, Oj, a r , we have 

cijQ17 n ajQ
17 n arQ

17 ^ 0. Thus LQ(k) = 17 < 21. 

Sometimes the bound in Theorem 3.8 is the best possible. For example when 

k = 2 and n is odd Schwarz had shown that the bound (3.10) is the best possible. 

4. ESTIMATIONS OF L(k) FOR IRREDUCIBLE RELATION 

Since we know the bound of L(k) for a primitive relation, we shall consider only 
imprimitive relations. Noticing that L(k) does not exist for n = 2, we may suppose 
n ^ 3. 

Theorem 4.1 . Suppose that Q £ Bn(V), n ^ 3. Q is irreducible and d(Q) > 1. 

Denote min |V | = (3. 

a) If /3 < k and LQ(k) exists, then LQ(k) ^ d — 1. 

b) If (3 ^ k and LQ(k) exists, then 

LQ(k) < d - 1 + d.([^li] (0 - 1) + l ) . 

P r o o f . Without loss of generality we may suppose that the matrix representa­

tion of Q is of the form 

(° Hl . . 0 o \ 
0 0 . . 0 0 

0 0 . . 0 Bd-i 

Ы 0 . . 0 o / 

Iii this case we have 

M(Qd) = 

' A i °\ 
AJ 

where Ak are primitive Vk x Vk Boolean matrices, Yl(Ak) = Vk are the sets of im-
d d 

primitivity of Q, and (J Vt = V, Yl v* ~ n- By Theorem 2.4, LQ(a^,..., aik) exists 
t=\ 7 = 1 

iff a-ij, ..., O7;A are contained in the same set of imprimitivity of Q, say Vt. Suppose 

that this is the case and vt ^ 2. Applying Theorem 3.8 we have 

-k-\ 
LQ(к) ^ ^([-j-v^vt - 1) + l). 
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Let | Vo| — /3- Consider the following two cases. 

a) | V 0 | = / 3 < f c . 

If |V| < fc, t = V . .., cl, then no fc elements of V have a c.c. In any V with 

|V| ^ fc choose fc vertices O?1. .. ., a,ik. Since V0 = VtQ
u for some u, 1 ^ u ^ d — 1, 

we have OiQu = . .. = a,kQu, i.e. LQ(k) exists and LQ(k) ^ d — 1. 

b) |Vb|=/3^fc. 

For any Oi, ..., a/, G Vo we have 

r fc-1 
L Q ( A ; K Ѓ / ( [ " І ~ / 3 ] ( / 3 " 1 ) + 1 ) = L З ' 

i=i 

Let Vt 7̂  Vo be any set of imprimitivity, a\, .... r//. G V. Since Vo = V/Qu for 
k 

some H, 1 ^ u ^ d - 1. Then cnQu C V0, i = V ..., fc. Therefore f| cnQuQL* ^ 0. 

2 = 1 

fc- 1 LQ{k) < u + L, < d - 1 + rf([- - ' ] (j - 1) + l ) • 

D 

Write n = ad + a i , where a ^ 1 is an integer and 0 ^ o:i ^ d — 1. Then the least 

of the number |Vi | , . . . , |V| is ^ a. 

We have fc ^ p <: ^ f V 

Let N{(3,k) = [^li]{li - 1) + 1. This is an increasing function of /J. If LQ(k) 

exists, we have 

LQ(k) ^ d - l + dN{ß, k) ^ d - l + Í/ЛҶÍ , fc) 

fc — 1 n — a[ i ( ÌÌ — Q'i 
= d - 1 + d 

Putting here a\ = 0 we have 

d 
1 + 1 

Corollary 4.2. Let, Q G Bn(V), Q is irreducible, n ^ 3, d(Q) > 1. If LQ(k] 

exists, then 

fc — 1 / / i / n ^ ) « « - i + < [ ^ -;]G-o+' 
"(ІVJІG-)-')—[+;>-«>+2«-1-
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Denote [ ^ • g] (n - d) + 2d - 1 = f(d). In order to prove 

fc-1 

Å: 
(4.1) LQ(k) ^ 

for an irreducible relation, we shall prove 

(4.2) 

( n - l ) + l 

/(<•)< [^-г--»|(n-l) + l. 

Since for A; = 2 Schwarz ([1]) had shown tha t (4.1) holds, we consider only fc ^ 3. It 

is easy to prove that f(d) is a decreasing function if d G (0, y ^~n , while f(d) is 

easing function if d G (y ^jrn^n) {d = n, M(Q) is a permu ta t ion ma trix, an incr 

LQ(K) does no t exist.) Thus 

f(d)^max(f(2),f(n-l)) 

' f c - 1 / f c - 1 
= max ( ———n 

(G 

n , . . 2 ; 71 + 3 , — 
2fc fc fc ?г - 1 

+ 2/г - 3 

n = 4, 

< 
(3 ^ fc < n) 

fc - 1 9 fc - 1 
. ?г2 n + 3 /г > 5. 
I 2fc fc 

Bu t if 7i = 4, fc = 3, then [^n] (n - 1) + 1 = [f x 4] x 3 + 1 = 7 > 6. 

If // ^ 5 then it is no t difficult to prove 

fc-1 fc-1 
-n + 3 ^ 

2k k 

Hence (4.2) holds for n ^ 3, 2 < k < n. We have 

[ÏÇІ»](»-D + 1. 

T h e o r e m 4.3. Suppose that Q G Bn(V), n ^ 3, Q is irreducible. If L Q ( / J ) exists, 

2 < fc < 7i, we have 

(4.3) i c 
- f c - 1 

( A : K [ ~ T ~ n ] ( n _ 1 ) + 1. 

R e m a r k . Applying (4.3) for fc = n — 1, we have 

L(n — 1) ^ ?i2 — 3/I + 3, 

while by the result of Schwarz ([3]) 

L(n) = n 2 -37/.+ 3. 
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