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1. INTRODUCTION

The investigation of arithmetical properties of partly ordered groups (po-groups)
has its origin in the study of arithmetics of integral domains. Especially the notion
of a Kronecker function ring is of great importance in the theory of divisibility of
integral domains. This notion was introduced by W. Krull in order to study the
arithimetics of integral domains. The principal advantage of the extension process
which leads from an integrally closed domain A to its IXronecker function ring I(.A4)
is the fact that I'(A4) is a Bezout domain, i.e. any finitely generated ideal is principal.

Another historical source of a study of arithmetics of po-groups was the work of
S.I. Borewicz and I.R. Shafarevicz [4], where the concept of an integral domain with
the theory of divisors was introduced. It was observed for the first time by L. Skula
[22] that an integral domain has a theory of divisors if and only if it is a Krull domain.

In the course of time it has become more and more clear that all this arithmetical
notions in integral domains have their purely multiplicative analogues in (commu-
tative) semigroups with cancellation law. One of the first such observations was
done again by Skula who defined the notion of a semigroup with divisor theory [21].
Since divisibility properties of integral domains and semigroups with cancellation are
mostly represented by properties of order relations of their groups of divisibility, a
very natural and fruitful generalization was to investigate arithmetical properties of
po-groups. The principal tool for the investigation of these properties in po-groups
scems to be the notion of an r-ideal which has its origin in a paper of Lorenzen [13].
We will not be dealing here with a history of this notion, see e.g. [2], [12]. We recall
only that by an r-system of ideals in a directed po-group G we mean a map X — X,
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(X, is called an r-ideal) from the set of all lower bounded subsets X of G into the
power set of G which satisfies the following conditions:

(1) X C X,

(2) XCV, = X, CY,,

(3) {a}r = a.G*T = (a) for alla € G,

(4) a.X, = (a.X), for all « € G.

The theory of r-ideals of po-groups seems to be a tool which enables us to establish
relationships between arithmetical properties of integral domains and the theory of
po-groups. There exists a lot of works justifying these processes, one of the last result
in this direction being a paper of A. Geroldinger and the first author ([6]) where it is
proved that properties of being a PVMD (Priifer v-multiplication domain). a domain
of Krull type, or an independent domain of Krull type, are purely multiplicative ones
and can be expressed by using r-ideals in the corresponding groups of divisibility.
For example, a domain 4 is a PVMD iff G(A) has a theory of quasi-divisors (see [2].
[16] for definitions).

From the point of view of the r-ideals theory the notion of a Kronecker function
ring, or a domain of Krull type, or PVMD, have the same common background in
the r-ideal theory, namely the notion of a Lorenzen r-group. Recall that for any
r-closed po-group G' with an r-system (i.e. 4,: A, C Gt for any finite 4 C G). to
an r-system r we can associate another r-system denoted by », such that

A, ={9€eG: g\, CA, xK,, for some finite ' C G}

whenever A C G is finite. The principal property of this r-system », is that the
monoid of finitely generated r,-ideals (under r,-multiplication, see e.g. [2].[12]) sat-
isfies the cancellation law and hence possesses a quotient group A,(G) which is
called the Lorenzen r-group of G. This group is a lattice ordered group if we set
A(G)T ={A,, /B, : 4,, C B,,} and, moreover, A, () contains G as an ordered
subgroup. Then this common background of the above mentioned notions can be
described as follows:
(1) A domain A is a PVMD iff the embedding G/(4) = A(G(4)) is a theory of
quasi-divisors ([6]).
(2) A domain A is of a IKXrull type iff the same cmbedding as in (1) is a theory of
quasi-divisors of a finite character ([6]).
(3) G(IW(A)) = A(G(A)).
Hence it seems worthwhile to investigate other properties of Lorenzen r-groups
since these properties can reflect some arithmetical properties of integral domains.
In this paper we investigate some of these properties of Lorenzen r-groups of
po-groups. First we describe relationships between the structure of o-ideals in a po-
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group and some l-ideals of its Lorenzen r-group. If a po-group G has a theory of
quasi-divisors of a finite character, there exists a defining family W of t-valuations
w: G — Gy of G such that W satisfies some approximation theorem (see [16]). Then

there exists a special subset K(W) of [[ G (called the set of compatible elements)
weW
and we show that even in a rather general case (G is only defined by a family of

r-valuations of a finite character) the set (W) is an [-group which is isomorphic
to A.(G) for rather general r-systems. Finally, we show that a po-group G with
a theory of quasi-divisors (more generally, r-Priifer po-groups) may be defined as
a po-group with G/H an o-group for any minimal r-local o-ideal H of G, and it is
shown that in this case G and A, (G) behave analogously with respect to the property
v-system = t-system.

2. LORENZEN r-GROUP

Let G be a directed commutative partly ordered group (po-group) and let » be an
r-system of ideals defined on G. Recall that an r-system is called a v-system, if

X.= (] W),

XCl(y),yed

and it is called a t-system, if

X, = U Y,.

YCX,Y finite

An r-system r is said to be of a finite character, if

X, = U Y.

YCX,Y finite

An r-ideal X, is finitely generated if X, = Y, for some finite subset Y. Clearly,
any t-system is of finite character and for any r-system r of a finite character on G,
X, C X, (r £t in symbol). Ou the set Z,(G) of r-ideals we may define an ordering
by X, < Y, iff Y, C X, and a multiplication X, x Y. = (X,Y,), = (X.Y),.. A
po-group G with an r-system r is r-closed if (X, : X,) C GT for any X,. As we
have mentioned in the introduction, for any r-closed po-group G we may construct
another r-system in G, denoted by r,., such that r, is regularly closed, i.e. in the
semigroup (Zf(G), x) of all finitely generated r-ideals the cancellation law holds.
The quotient group A,(G) of Z/(G) is called the Lorenzen r-group of G and a map
h: G = A, (G) defined by h(g) = (g) is an o-isomorphism into.



An o-homomorphism ¢ from a po-group G; with an r-system ry into a po-group
G, with an r-system r, is an (1, r2)-morphism if ©(.\,,) C (p(X)),, for any lower
bounded subset X. If G, is totally ordered (i.e. an o-group) and ¢ is surjective, then
@ is called an 7y -valuation if it is an (ry, t)-morphism. Moreover, an o-homomorphism
@: G1 = Gy is called essential if it is an o-epimorphism and ker ¢ is a directed convex
subgroup of G; (i.e. an o-ideal of Gy). Finally, we say that a po-group G admits a
theory of quasi-divisors if there exists an I-group I' and an o-isomorphism h of G into
I" such that for any a € I" there exist gy, ..., gn € G such that a = h(g1)A...Ah(g,).
In [6]; Th. 3.8, it is proved that the existence of a theory of quasi-divisors of a finite
character is equivalent to the existence of a family 11" of essential t-valuations such
that

(1) Vge G, g21e (Ywe Ww(g) 21

(2) Vge G, g# 1, {we W:w(g) #1} is finite.
In this case W is called a defining family of a finite character.

In this section we want first to modify some constructions used originally for t-
valuations. We need the following simple lemma.

Lemma 2.1. Let G be a directed po-group and let H\, Hy be o-ideals of G.
Then in the set of all convex subgroups of G there exists the smallest one containing
H,, H,, denoted by [H,, H,]. Moreover, [Hy, H] is also an o-ideal.

Proof. Let S={ge€G:3h € Hf such that 1 < g < hyha}. Then S is a
convex subgroup in G*, H* C S. It follows that the quotient group [Hj, Ha] of S
in G is an o-ideal which possesses the required properties. a

Lemma 2.2. Let ¢: G — [' be an essential o-homomorphism of a po-group G
into I'. Then ¢ is a (t,t)-morphisni.

Proof. Let X be a lower bounded subset in ¢ and let ¢ € X;. Then there
exists a finite subset A° C X such that g € I\';. Let o be a lower bound of ¢(.X) in
['. Then, since ¢ is an o-epimorphism, for any k& € I\ there exists by € ker such
that a < by.k, where p(a) = «. Since ker ¢ is directed. there exists b € kery such
that b < b;l for all K € K. Hence, a.b < & for all & € i and it follows that ¢ > a.b.
Therefore, o(X¢) C (¢(X)):. O

v

Let w, v be essential o-homomorphisms of G with value groups G., G., re-
spectively. Then the canonical o-homomorphism ¢ — G/[kerw,ker v] is essen-
tial and there are essential o-homomorphisms d,.. d.. such that dy,.0 = dye.t0.
This common essential o-homomorphism wili :o denoted by ¢ A w. Now, elements
(g1,92) € G x G, are called compatible, if d. i ) = d.w(g2). Moreover, if 1} is a
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set of essential o-homomorphisius, an element (gy)w € [] Gw (where W/ C W) is
weW’
called compatible if any pair (¢., g,) from this element is compatible. It is clear that

all these notions are generalizations of analogous notions for t-valuations as intro-
duced e.g. in [16]. Finally, we say that an element (g,)w € H G is W'-complete

for W/ CW,if | W(gw) C W', where W(g,) = {v € W: du,v(gw) # 1}. We set

wEW'
Ww(1) = 0.
Now, let W be a defining family of essential o-homomorphisms of G. For W' C W
we set

KW') = {(gu)w € Z Gu: (gw)w is compatible},
weWw!’
KE WY =KW)n > G
weW!’
K =KW),Kt =KH(W).

Lemma 2.3. Let W be a defining family of essential o-homomorphisms of G
and let W' C W. Then K(W') is a subgroup in [[ G.. If for a,b € K(W') there

weW’
existsaAbin [] Gy, then a Ab e K(W') and dually for supremum.
weWw’
Proof. For a = (aw)w,0 = (bw)w € K(W') let there exist ¢ = (Cy)w = a A D
in H = [] G.. Since H is ordered componentwise, ¢,, = @, A by in G,,. Now

weWw!’
let ¢: G = G’ be an essential o-homomorphism and let 2,y € G be such that t Ay

exists in G. Then p(x Ay) = p(x) A p(y). In fact, if a < p(x),¢(y), then for z € G
such that ¢(z) = « there exists h € kery such that zh < x,y and it follows that
< @(x Ay). Therefore, for w,v € W’ we have

o (aw A bw) = dwv(a"w) A d‘ll'l’(bW) =
= dvﬂ'(al’) A de(bv) = (luw(”"u A bv)

SINCe dyu, dyy are also essential. The rest of the proof may be done analogously. O

The investigation of approximation theorems for a po-group G with a defining
family W of t-valuations is especially complicated in the case K(W) C [] G, or

weW
K(W) C > Gy if W is of finite character. On the other hand, there are very
weW
special cases when K(W) = 3 G,. Geroldinger and Halter-KKoch [11] investigated

we bl
conditions under which the following approximation theorem holds for a po-group

G with a defining family W of o-homomorphisms w: G - G, (here G, is only a
directed po-group) of a finite character:
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(AT). For any W' C W finite and any g, € G., w € W', there exists g € G
such that

w(g) = gu, weW',
w(g) =21, weW\W'.

We show that this approximation theorem represents really a very special case,
since K(W) = > G, in this case.
weWw
Proposition 2.4. If (AT) holds for a po-group G with a defining family W of
o-homomorphisms of a finite character, then any w € W is essential and K(W) =

T Ga.

weW

Proof. We show first that any w € W is essential. Let a € H,, = kerw and let
W' ={w € W: w(a) # 1}. Since G, is a directed po-group, there exists a,, € G,
such that a,, > w(a), 1. Then according to (AT) there exists ¢ € G such that

=1, forv=w,
v(g) { =a,, forve W’
=21, forveW\W"

Then g > 1, a and g € H,,. Applying (AT) in an analogous way we may prove that
w is an o-epimorphism. Hence, w is essential and for any w,v € W we can construct
wAv according to 2.1. Let us assume that there are w,v € W such that w < v. Then
for any g € G with v(g) = 1 it follows that w(g) = 1, but according to (AT) there
should exist g € G such that w(g) > 1, v(g) = 1, a contradiction. Hence, elements
of W are incomparable. Finally, let v;,vo € W. We show that [kerv;, kervy] = G.
In fact, let g € G, g > 1 and let W} = {w € W: w(g) # 1}. We may assume that
v; € Wi, otherwise g € kerv;. According to (AT) there exist a,b € G such that

=w(g), w#v,weWl

w(a){ =1, w = vy,

>1, otherwise,

=1, w e Wi w # v,
wb)§ =vilg), w=w,

>1, otherwise.

Then it is clear that for any w € W we have 1 < w(g) < w(a.b) and a € kerv,,

b € kervy. Therefore, g € [kerv;.kervy]. Hence, v; A v is trivial and it follows that

K(W)= Y Gu. O
weW
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Let G be a po-group with an r-system r of a finite character. We say that this
r-system is defined by a family W of r-valuations, if for any finite set A of G,

g€ A, & (Ywe Ww(g) € (w(A)),.

An example of such an r-system is a t-system which is defined by any defining family
of t-valuations. P. Jaffard [12] proved (Th. 5, Chap. II, par. 2) that in this case the
r-system r is regularly closed and there exists a Lorenzen r-group A, (G). Moreover,
the r,-system coincides with + in this case.

If h: G = A{(G) is a theory of quasi-divisors, then A;(G) may be identified with
the group (I[(G), x) of finitely generated t-ideals of G with t-multiplication. But
even in the general case, any r-valuation w: G — G, (where r is of finite character)
may be extended onto an o-homomorphism 0: (Z,_f (G), x,<) = G, such that

Ww(A,) = infw(A).

Using this extension we can obtain another characterization of an r-system defined
by a family of r-valuations.

Proposition 2.5. Let r be an r-system of a finite character on G and let 1V
be a defining family of r-valuations of G. Let ¢: I/ (G) — [] Ga be a product of
w,w € 1W. Then ¢ is injective if and only if r is defined byull’%/}.‘

Proof. Let r be defined by W and let ¢(A,) = ¢(B,). Let ¢ € A,. Then
for any w € W there exists @ € A such that w(g) > w(a) > w(4,) = w(B,). If
g € B, then there exists w € 11" such that for all b € B we have w(b) > w(g). Hence,
w(g) < w(B,) =w(A,), a contradiction.

Conversely, let ¢ be injective and let @ be an r-system defined by W. Then x > r.
In fact, let g € A, and w € . Then w(g) € w(A,) C (w(A)), and it follows that
g € A,. But in this case A, € T/ (G) and clearly ¢(A,) = ©(A,). Hence, 2 = r.

a

Even in the case that ¢ is not injective, the map from the previous proposition
may be useful. For a finite set A C G we put

A, = U B,

P(B,)=p(A,)
BC finite

where we use a defining family W of r-valuations of G. It is clear that a is an -

system of a finite character, & > r. Morcover, since any r-valuation is an a-valuation,
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it may be proved simply that . is defined by W, i.e. .« is regularly closed. Hence,
N

In the next theorem we investigate relationships between A,(G) and an [-group
K(W) of compatible elements, where W is a defining family of r-valuations of G of
a finite character. By @ we denote a canonical extension of an r-valuation w € 1V
onto a t-valuation of A,.(G); let @ be a w-projection from X = K(W) onto G,,.

Theorem 2.6. Let G be a po-group with an r-system r of a finite character and
let r be defined by a family W of r-valuations of a finite character. Then there is an
o-isomorphism ¢ such that the following diagram commutes for all w € W :

A(G) —L>K(W)

Gw_—_Gw

Proof. Let ¢: G = K be an embedding defined by ¢(g) = (w(g))w. Then o is
an (r,t)-morphism. In fact, if « € X, then since r is of finite character, there exists
a finite subset X' C X such that a € I\, Then w(a) € (w(K)), = (Aw(L)) and
it follows that ¢(a) € (¢(L));. The universality of A,(G) (see [2]; Th. 1) implies
that ¢ may be extended onto an l-homomorphism p: A,.(G) — K such that for
A;/B, € A.(G) (here r, = ) we have o(A,/B,) = (Ap(A)).(Ap(B))™!, where A,
B are finite. Then Ap(A) = (w(A)), € K according to 2.3. It is clear that @ is a
t-valuation of K and that the set W = {w: w € W} is a defining family of a finite
character of . We further show that a (¢,t)-morphism p is an embedding. In fact.
if o(A,/B;) = o(C:/D,), then for any w € W we have

(w(A.D))e = (w(A)); x (w(D))e = (w(B)): x (w(C))r = (w(B.C)):

and since the r-system r is defined by W, we have 4, x D, = B, x C,. Hence. o
is injective. It is clear that p is an o-isomorphism into. Morcover, we show that o:
A.(G) = K is a strong theory of quasi-divisors. Let a,b0 € Ky, a = (aw), b = (b.).
and let W) = {w € W: a,.b, > 1}. Then W, is a finite set and since any [-group
admits a strong theory of quasi-divisors (namely an identical map), any of its defining
families of t-valuations of a finite character satisfies the positive weak approximation
theorem ([16], Th. 3.5). Since a is clearly Wi-complete and compatible, there exists
v € A.(G) such that

w(y) = aw, we W,
wiy) =1, weW\W.
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Hence, o(y) 2 a in K and there exists ¢ € K4 such that o(7) = a.c € (A (G)).
Moreover, if b,, > 1 then w € Wy and ¢, = 1. Hence, b, A ¢, = 1 and it follows
that b A ¢ =1 in K. Therefore, g is a strong theory of quasi-divisors and according
to [16], ¢ is a theory of quasi-divisors as well. Hence, according to [2]; Th. 4, there
exists an [-isomorphism K = A, (A-(G)) = A (G). a

From this theorem we can obtain the following very general form of an approxi-
mation theorem which holds in any po-group defined by a family of ¢-valuations of a
finite character.

Corollary. Let G be a po-group and let W be a defining family of t-valuations
of G of a finite character. Let g = (g9,) € K(W). Then there exist ay,...,a,,
by,...,b, € G such that

(w(a) A ... Aw(ay)).(wb) Ao Aw(bn)) = Guw, If guw # 1,
(w(ar) A ... ANw(a,)).(w() A ... Aw(b,y,)) 21, if gy = 1.

It is clear that the classical approximation theorem is a special case of this general
approximation theorem for n = m = 1.

3. STRUCTURAL PROPERTIES OF A4(G)

In this part of the paper we will investigate some structural properties of the
Lorenzen t-group. We recall first a method which enables us to define another r-
system on a factor group G/H if an r-system is defined on G. If z is an r-system
on G of a finite character and H is an o-ideal of G, for any lower bounded subset
A C G/H there exists a lower bounded subset A C G such that ¢(A4) = A, where
¢: G = G/H is a canonical homomorphism. Then we set A,, = A,/H = p(A,).
In [16] it was proved that zy is an r-system of a finite character.

Lemma 3.1. Let G be an wx-closed po-group, where x is an r-system of a finite
character. If H is an o-ideal of G, then G/H is xy-closed.

Proof. Let AC G/H be a finite set and let a € G/H be such that . A,,, C
Ay, Let A be a finite set such that A, = A,/H, A, = (a1,...,an)z, a = @.H.
Since aa;H € A, /H, for any i there exist g; € A, and h; € H such that aa; = ¢;h;.
Since H is directed, there exists i € H such that h < I; for all 2. Then we have

((1,(1,1 ----- aa‘n).r g ((/l h‘lv s ~gnhu)1' g (.(/lh'a LR g'n.h):u
=(g1,-- s 9n)e © hlar, ... an),
and it follows that ah~! > 1. Hence, « > 1. O
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Lemma 3.2. Let @ be an r-system on G of a finite character and let & be
regularly closed. If H is an o-ideal of G, then xy is regularly closed in G/H .

Proof. According to [12]: Lemma, par. 2, Chapt. 2, we have only to prove that
for any finitely generated ay-ideals A, , By, in G/H from A, C B, x A, it
follows that 1¢,5 € B.,,. Let A, = A, /H,B,.,, = B, /H. It A,, C (A.B),,. then
for any @ € A we have «H € (4.B),/H and for any a; € 4 = {ay,...,a,} there
exist ¢; € (A.B), and h; € H such that a; = ¢;h;. Since H is directed there exists
I € H such that h < /i; for all i. Then

Ay =(crhy, . ocoenhn)e Clery.ooyen) h C(AB)h
= A, x (B.h),.

Since z is regularly closed, we have 1 € (Bh), aud it follows that 15,y € B, /H.
O

Now, let G be a po-group which is t-closed and let. /i : ¢ — A;(G) be the embedding.
Then an [-ideal H in A(G) is called G-dense if for any a € ‘H there exists g € G
such that o < h(g) and h(g) € H.

Theorem 3.3. Let G be a po-group which is t-closed. Then there exists a
bijection between the sct of o-ideals of G and the set of G-dense l-ideals of \;(G)
such that if H from G corresponds to A from A(G). then

Ay (G/H) = A(G)/A.

Proof. Since G is t-closed, G/H is ty-closed according to 3.1, and hence there
exists the Lorenzen t ;7-group of G/H. Since the canonical morphism ¢: G — G/H is
a (t,ty)-morphism (sce [16]), there exists a (f, t)-morphism > such that the following
diagram commutes:

G Y _~G/H

Izl L/L 7

A\ (G) —5 A, (G/H)

According to 3.2, the r-system ty is regularly closed in G/H and it follows from
[2]; Th. 3, that ty coincides with the r-system (#4),. i.c. the Lorenzen ty-group
A+, (G/H) consists of quotients Ay, /By,,, where A. B ave finite sets in G/H. Then
@ is surjective. Indeed, let X = A, /B, € Ay, (G/H). Ay, = A /H, By, = B, /H.
Then A;/B; € A(G) and @(A,/B;) = X. Hence. 2 is an [-epimorphism and N =
ker ¢ is an [-ideal, A((G)/N = A, (G/H). We show that A is G-dense. Indeed. let
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Ai/By € A, where A, B are finite. Since 4,/H = B;/H, for any b € B there cxist
e, € Ay and hy, € H such that b = ¢.hy. Since H is directed, there exists g € H such
that ¢g=' < hy, for all b € B. Thus,

By ={cp.hy: be B}y C{cp: b€ B}i.g~' C Apg™?

and we have 4, /B, < (9): = h(g) in A(G). Clearly h(g) € A.

Therefore, we have obtained a map
J: O(G) = La(A(G))

where O(G) is the set of o-ideals of G and L4(A(G)) is the set of G-dense [-ideals
of the Lorenzen t-group.

Conversely, let A € L4(A(G)). Let H = h='(A). Tt is clear that H is a convex
subgroup of G. We have to show that it is directed. Let g € H. Since A is directed,
there exists o € A such that o > h(g), 1. Since A is G-dense, we can find an element
g' € G such that h(g") € A and h(g') =2 « = h(g),1. Hence. H is an o-ideal in G.
Then Ay, (G/H) =2 A(G)/A. Indeed, let us consider the same diagram as in the
previous part of the proof. It suffices to prove that kerp = A. Let A;/B; € ker .
Then 4,/H = By/H and for any a € A(b € B) there exists ¢, € Bi(d, € A;) and
he € H(g, € B, respectively) such that @ = ¢,.l,,0 = dy.gs. Since H is an o-ideal,
there exist w,v € H such that « < h, for all « € A and v < ¢, for all b € B. Hence,

Ar={cahy:ae A} C{c,:a € A}ou C By,
By ={dp.gr: be B}y C{dy: be B}.v C Ajv

and it follows that h(v™') > A,/B; = h(u). Hence, 4;/B; € A. Conversely, if
A1/By € A then since A is (-dense, there exist g;.¢g2 € H such that h(g;) <
/By € h(g2). Since ¢ is an o-homomorphisni, we have A,/B; € ker $. O

Proposition 3.4. If a po-group G admits a theory of quasi-divisors then any

prime l-ideal of A4(G) is G-dense.

Proof. Let h: G — A/(G) be a theory of quasi-divisors and let A be a prime
l-ideal of A;(G). Then the canonical map w: A/(G) = A(G)/A is a t-valuation. Let
a € A. There exist gy,..., ¢, € G such that o = h(g;) A ... AN(g,) < h(g)) and we
have 1 = w(a) = wh(g)) A ... Awh(y,) = @h(g;) for some i. Then h(g;) € A and
a < Ni(g:). Hence, A is G-dense. 0O
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Proposition 3.5. If a po-group G admits a strong theory of quasi-divisors of a
finite character then any finite intersection of prime l-ideals of A;(G) is G-dense.

Proof. Let h: G — A/((G) be a strong theory of quasi-divisors of a finite
character, let W) be a defining family of t-valuations of a finite character of G and
let W) be canonical extensions of elements from I onto t-valuations of A;(G). Let

A= A;, where A; are prime l-ideals of A(G) and let 0;: A(G) = A(G)/A;
i=1,...,n
be a canonical t-valuation. Then W = W, U {o,..... 0, } 1s a defining family of

a finite character of A,(G) and the set W of restrictions of elements from W onto
G is a defining family of a finite character of G (sce [16]). Let « € A. Then
a = (w(a))y € K(W) and if we set W' = {w € Wi w(a) #1}U{vy,...,v,}, then
W' is finite and a is W'-complete. Since W satisfics the approximation theorem
([16]; Th. 3.5), there exists g € G such that

w(g) =w(a), we”’,
w(g) 21, weW\H"

Hence, h(g) > a and h(g) € A. g

If h: G = A((G) is a theory of quasi-divisors, then the Lorenzen t-group reflects
many of the algebraic propertics of G. In the following proposition we show that it
reflects even property which is not of a finite character.

Proposition 3.6. Let h: G = T be a theory of quasi-divisors. If a complete
v-system coincides with a complete t-system in G. the same is true in I

Proof. Let A C T be alower bounded set. Then for any o € A there exists

a finite subset A, C G such that & = Asea, (@), We put 4 = (J Ay Then A
acA
is lower bounded. Indeed. if 3 < A in I', then there exist ryp....,r, € G such that

B~ =h(r)) A... AD(r,) and we have 3 > h(ri_l ). Then for any g € G such that
h(g) < B < A we have h(g) < a < h(a), a € A4 and it follows that g < A.

Then (h(A)), = A,. Indeed. let w € A, and let 3 < h(A4). Then 3 < h(4,) and
it follows that 3 < « for all a € A. Hence, w >  and w € (h(A4)),.. Conversely. let

€ (h(A))y and let 3 < A. Then < a < h(a) for all @ € Aa € A, and we have
w2 Bandwe A,. Now.let a € A, = (h(A))v, o = h(g1) A ... Ah(gm). Then
(g:) € (h(A)), and g; € A, for all i. Since A, = 4, in G, for any i there exists
a finite subset B' C A such that g; € Bj. Let B = JB' C A and let b € B. We

set A, = {f € A: b e Ay}, where Ag C G is a finite subset such that 3 = AL(Ay).
Then A, # 0. Indeed, since b € A, then b € A, for some a« € A and a € Ap,. In any

548



A, we choose one element 3, and set B = {f,: b € B}. Then B C A is a finite set.
We show that a € B;. Let o < Bin I'. Then ¢ < h(B). Indeed, if b € B then 3, € B
and o < B, = Ah(Ap,) < h(b), since b € Ap,. Hence, o < h(B?) for any i and since
gi € B} and h is a (t,t)-morphism, we have h(g;) > o for any i. Therefore, o < «
and o € B;. Hence, A, = A; in T. O

P. Lorenzen introduced the notion of a group A,(G) in order to clarify a con-
struction of the IXronecker function ring and to emphasize the multiplicative basis of
this construction. Although both these constructions are widely used it seems to us
that the explicit relationships between the IKronecker function ring and the Lorenzen
group has not been published yet. Let R be an integral domain with the quotient
field I and let R be defined by a family W of valuations. Then any valuation w € W
may be extended onto an o-homomorphism (denoted again by w) from the group of
divisibility G(R) of R onto the o-group G, of w. Let r be an r-system in G(R)
defined by these extended o-homomorphisms. Then any w € W is an r-valuation
and r is regularly closed. Hence, the Lorenzen r-group A,(G(R)) exists and any
element of this group is of the form A,/B,, where A, B are finite subsets in G(R).
Let I'(R) be the Kronecker function ring of R.

Proposition 3.7. The group of divisibility of ' (R) is o-isomorphic to A,.(G(R)).

Proof. A full description of G(I(R)) was done by J. Ohm [20] who proved

(in our notation) that if d: G(R) - [] Gu is a canonical embedding (and hence
weW
a (t.t)-morphism) then G(I(R)) is an l-ideal in [[ G, generated by d(G(R)).
weW
Let h: G(R) = A, (G(R)) be an (r,t)-embedding, then d may be extended onto

a (t,t)-morphism d: A (G(R)) — I[1 Guw. We show that d is injective. Indeed,
weW

if for a finite subsets A, B, (', D in G(R) we have (z(AT/B,.) = d(CT/DT), then
we have (d(A))¢.(d(D)) = (d(C))¢.(d(B)): and it follows that (w(A)),.(w(D)); =
(w(C))r(w(B)), for all w € W. Since r is defined by W, we have A,.D, = C,.B,
and d is injective. Then d(A,(G(R))) is an l-group containing d(G(R)) and it
follows that G(K(R)) C d(A,(G(R))). Let o € A(G(R)), a = A,/B, where
A={ay,...,a,},B={by,....0,}. Then

(b]) VANIWAN (b'm)

o =

and
- dlap) A ... Nd(ay)

(o) =

A = T A A (o)
is an element of an [l-ideal generated by d(G(R)). Therefore, J(A,(G(R))) =
G(I'(R)) and A(G(R)) = G(IN(R)). O
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A Lorenzen r-group plays an important role even for r-Priifer po-groups which
were introduced by Aubert [2] and under a different name by P. Jaffard [12]. Recall
that G with an r-system r of a finite character is called r-Priifer if (Z/(G), x) is a
group. In [16] and [2] some characterizations of these po-groups were proved. In the
next proposition we extend these results.

Proposition 3.8. Let G he a po-group with an r-svstem of a finite character.
Then the following conditions are equivalent.

(1) G is an r-Priifer po-group.

(2) G/H is an o-group for any r-local o-ideal H of G.

(3) G/H is an o-group for any minimal r-local o-ideal H of G.

Proof. (1)==(2). Let H be an r-local o-ideal of G. Then according to [17]:
2.9, there exists a prime [-ideal A of A, (G) such that G/H = A.(G)/A. Hence.
G/H is an o-group.

(2)=(3). Trivial.

(3)=(1). Let a,b € G and let H be a minimal r-local o-ideal of G and let. for
example, aH < bH. Then according to [17]; 2.5, the rj-system is a t-system and we
have

(VH) = (aH)N(LH) = ()N (1))/H = ((a) N (), /] H,
(a,0),/H = (aH,bH),,, = («H.DH), = («H)

concluding

(a.b),/H = (a.bH) = (aH) x (0bH) = (aH.0VH),,, x ((a) N (b))/H
(1) = (a,b),/H x ((«)N(0))/H = [(a.b), x ((«) N (b))]/H.

Now, let H' be an arbitrary r-local o-ideal of G. According to [17]; 2.4, G \ H' is
a prime r-ideal in G4 and there exists a maximal r-ideal A containing this r-ideal.
Let H be the quotient group of G4\ M in G. Then H is the minimal r-local o-ideal
of G, H C H'. Tt follows that (1) holds even for any r-local o-ideal of G. According
to [17]; 2.8, we obtain that (a.h), = (a,b), x ((a) N (D)) and it follows that (a.b), is
r-invertible. Hence, GG is an »r-Prifer po-group. O

M. Griffin [9]; Th. 5. proved that an integral domain R is a PVMD (Priifer -
multiplication domain) iff R,; is a valuation domain for cach maximal t-ideal of R.
In [6] it was proved that a notion of a PVMD is a purcly multiplicative one. i.c. it
may be defined by using the group of divisibility G(?) of R only. Using the previous

proposition we can give another proof of this Griftin result.
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Proposition 3.9. (M.Griffin). An integral domain R is a PVMD if and only if
Ry Is a valuation domain for cach maximal t-ideal M of R.

Proof. If Ris a PVMD, according to [6]; 5.2, G = G(R) admits a theory of
quasi-divisors and is a t-Priifer po-group. Let M be a maximal t-ideal of R. Then
according to [6]; 4.7, M = wp(M \ {0}) is a maximal t-ideal of G, where wp is
a semi-valuation associated with R. Then according to 3.8, G(Ry) = G/H is an
o-group, where H is a t-local o-ideal generated by G4 \ M. The converse implication
may be proved analogously. O
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