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Czechoslovak Mathematical Journal , 46 (121) 1996, P r a h a 

NEWS AND NOTICES 

MIROSLAV KATĚTOV 1918-1995 

BOHUSLAV BALCAR, P E T R SIMON, Praha 

Shortly before the end of the last year, Czech ma thema t ical community lost one 

of its mos t prominent members, a distinguished mathema t ician, a worldwide known 

specialist in general topology, the founder of the interdisciplinary seminar now called 

the Ka tetov seminar. 

Miroslav Ka te tov was born on March 17, 1918 in Belinskij (originally Cembar) 

near Penza as a son of P O W Czech legionnaire and Russian mo ther. Since 1923 

he lived with his mo ther in Prague. After finishing his studies at secondary school 

1927-35, to which he was admi t ted at the early age of nine years, he studied at the 

Faculty of Science, Charles University in Prague (1935-39). Here he made friends 

with L. S. Rieger, later a prominen t Czech logician, this friendship lasted till Rieger's 

death in 1963. It was after he submi t ted his thesis bu t before he passed the final 

examinations tha t the Nazis closed the Czech universities, so that he gradua ted only 

after the World War II in June 1945. The official oponent of his thesis was Prof. 

V. Jarnik who unofficially asked Prof. E. Cecil, then in Brno, for his opinion since 

the regulations did no t allow oponents or examiners from ano ther university. 

During World War II M. Ka te tov worked in the Institute of Human Labour. His 

task was to help in ma thema tical-s tatistical part of work in s tandardization of psy

chological tests and in the analysis of the da ta obtained. Among other, he intensively 

used the factor analysis which was then a new method in psychology. Here Ka tetov 

got acquainted with applications of ma thema t ical me thods in psychology, and he be

gan to be interested in psychology proper. He returned to this field in the seventies 

when he founded the Seminar on mathematical methods in psychology. 

Since June 1945 Katetov was employed as Assistant at Faculty of Science of Charles 

University, later at the newly established Faculty of Ma thematics and Physics. In 

19G1 he joined the Mathematical Institute of Czechoslovak Academy of Sciences 

where he worked as a Principal Scientific Officer till his retirement. However, oven 

then he remained a fellow of the Institute, as well as Professor Emeritus of Charles 

Universitv. 



From the long list of offices and degrees of M. Katetov let us mention only the 

most important ones. He defended his habilitation thesis in 1947 and was appointed 

Associated Professor (Dozent) on February 4, 1948. On October 1, 1953 he was 

appointed Full Professor. In 1952-53 he was the first Dean of Faculty of Mathema t ics 

and Physics, while in 1953-57 lie was Rector of Charles University, he resigned from 

the office on his own request. In 1962 he was elected Ordinary Member of the 

Czechoslovak Academy of Sciences (having been its Corresponding Member since the 

foundation of the Academy in 1953). In 1960-70 he was Director of the Mathematical 

Insti tute of Charles University after its founder Prof. Eduard Cecil. Let us note that 

the generation gap between Cecil and Katetov never affected their friendship or 

Cecil's respect of Katetov as a mathematician. 

When the Scientific Board for Mathematics of the Academy was established, Kate

tov held its chair 1962-64. During 1965-69 he was member of Presidium of the Na

tional Committee for Scientific Degrees. He was awarded State Prize in Mathematics 

in 1953. 

An integral part of Katetov's personality was his active interest in political life. 

It is not very surprising that he joined the Czechoslovak Communist Par ty in 1945. 

In 1970 his membership was cancelled. In spring 1989 he was one of the founders of 

the Circle of Independent Intelectuals and after the revolution he took part in the 

transformation of the Czechoslovak Academy of Science. 

Beyond the field of Mathematics, Katetov was well known as a chess player. He 

actively cultivated chess since his young years, represented Czechoslovakia during 

1946-51 and gained the title of International Master. Later he quitted playing chess 

for lack of time, but always had a chess journal on his desk. 

Katetov's scientific activity falls within general topology functional analysis and 

general theory of entropy. A "common denominator" of almost all works of M. Kate

tov is the notion of the "covering property", even if this fact is not always immediately 

apparent from the formulation of the result. As an example let us mention the now 

famous Katetov-Morita theorem claiming that dim X — Ind X for any metric space 

X. Indeed, the crucial point of the proof is the construction of a special countable 

sequence of coverings, which allows to prove that dim A' ^ IndX . 

Papers belonging to general topology concern extremal properties of spaces, which 

are conceptually linked to papers on filters and ultrafilters, works on dimension 

theory and on properties similar to that of paracompactness, and are topped by a 

study of general structures of continuity. Many of Katetov's results got ahead of their 

time so much that only after their later re-discovery the mathematical community 

realized and acknowledged Katetov's priority. 

The first decade of Katetov's publication activities can be characterized by a slogan 

"each paper—a fundamental contribution to general topology". 
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In paper [1], which is the German translation of Katetov's RNDr. thesis, lie 

constructed the maximal H-closed extension of the Hausdorff space, now termed the 

Katetov extension xX. 

Let us recall: A Hausdorff space is said to be H-closed if it is a closed set after 

being embedded into any Hausdorff space Y. It is well known tha t every compact 

Hausdorff space is H-closed, which had been proved already by Alexandrov and 

Uryson in Memoire [AUj. Katetov knew both fundamental papers on the /J-envelope 

[C, S] and used maximal centered systems of open sets in a context beyond the 

framework of Boolean algebras. Katetov's extension consists of the original points 

of the space X and of the ideal points, which are the maximal centered families of 

open sets nonconvergent in the space X. The subspace of all ideal points in xX is 

discrete. This guarantees the most important property tha t makes the extension X 

similar to the Cech-Stone extension f3X: every continuous mapping from X onto a 

dense subset of the Hausdorff space Y can be continuously extended to a subspace 

Z C xX sufficiently large as to satisfy Y = f[Z]. 

Stone's assertion tha t a Hausdorff space X is compact if and only if each of its 

closed subspaces is H-closed is proved in [1], Katetov's proof in the context of the 

whole theory requires practically null effort and at present represents a s tandard 

proof in monographs. 

Other types of H-closed extensions (Katetov's, Fomin's and Wallman's, or the 

Cech-Stone compactification) arc dealt with in [5j. The main result is a full innner 

characterization of these hulls by the combinatorial properties of the embedding of 

the given space into the corresponding extension. Always we have a mutual relation 

between the intersection of closed sets in a subspace and the intersection of their 

closures in the extension. 

The existence and properties of Hausdorff spaces without isolated points in which 

there exist no two disjoint dense subsets, now called irresolvable spaces, represented 

a problem since the times of Cecil's seminar (1936-39). The answer was given by 

E. Hewitt in 1943 and independently by M. Katetov [4] in 1947. Not only such 

spaces do exist, but moreover they have further remarkable properties many of which 

characterize them: 

—- every bounded real function defined on an irresolvable space has a limit at 

every point, this property is characteristic for irresolvable spaces, 

— every bounded continuous real function defined on a dense subset can be con

tinuously extended to the whole space, 

— there exist H-closed irresolvable spaces, 

—- every regular irresolvable* space is totally disconnected and hence completely 

regular, 

- - for any infinite H, there exists a regular irresolvable space of cardinality H. 
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In his paper Katetov also formulated the famous problem whether any real function 

defined on an irresolvable space has at least one point of continuity. This problem 

was solved only in 198G by K. Kunen, F. D. Tall and A. Szymanski: it is undecidable 

in Z F C 

This problem was attached from the other side in a paper [27] from 1962 where 

sufficient conditions are given for at least K disjoint dense sets to exist in a given 

space. Similarly, also K.-resolvable spaces are an object of interest even nowadays. 

In [15] M. Katetov was the first to publish the solution of BirkhofTs problem 

whether there exists an infinite rigid Boolean algebra, i.e. a Boolean algebra whose 

only automorphism is the identity. Katetov solved the problem very elegantly using 

the Stone representation theorem. His rigid Boolean algebra is dual to the Cech-

Stone compactification of a certain rigid countable normal space whose each point 

is the limit of a nontrivial sequence. Rigid algebras proved important fifteen years 

later after the discovery of the forcing, especially in the1 context of complete algebras. 

During the World War II, after the Nazis closed the Czech universities, M. Kate

tov at tended meetings of mathematicians which took place in the house of Prof. 

V. Jarnik. He got interested in functional analysis and at these seminars gave a 

report on the book "Theorie dos operations lineaires**. These lectures gave rise to 

the papers [2, 3] published in Czech parallelly with a shorter German version. Their 

character is not that of a modern original research paper. It is rather a system

atical exposition of fundamental notions for topological vector spaces, intended for 

the wider nonspecialized public. Nevertheless, the exposition smoothly passes into 

original author s results. It is remarkable that Katetov in these papers developed all 

tools needed for the proof of Mackey-Arens theorem [A. M]. The topology of uniform 

convergence on uj-coinpact convex symmetric sets in the dual agrees with the duality, 

the convexity being essential. Katetov proved this assertion independently in [10] in 

1948. Papers [2, 3] formed the basis for the lecture notes [77]. 

A compact space A' is metrizable if and only if A~'* is hereditarily normal. This 

theorem is denoted as Corollary 2 in [9]. Although the properties of the space X as 

related to the properties of the space A"2 were studied by tens of authors, until now 

not a single further proposition has been found which would deduce some property 

of a space from an information of the properties of its cube. Many topologists are 

still amazed by the fact that it is at all possible to think of such a theorem. 

Since 1947 Katetov has systematically studied covering properties of topological 

spaces. This is easily understandable if we take into account the fact that para-

compactness was at the time a new and evidently perspective notion. His results 

led both to the dimension theory and to the normal, paracompact, uniform and 

proximity spaces. 
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A comprehensive survey of all facts connected with the covering was published in 

Czech in a supplement to the monograph of E. Cech "Topological Spaces" [23], ex

cept for the assertion concerning dimension. The supplement "Fully normal spaces" 

contains all which is essential in the papers [9, 16, 17, 21]. 

Let us present some of the results: 

A topological space X is normal if and only if for every pair of real functions / "^ g 

where / is upper- and g lower semicontinuous there exists a continuous function h, 

such that / ^ h ^ G, if we require for f < g the existence of a function Ji such 

that / < h < g then we obtain a characterization of normal countably paracompact 

spaces. 

The contents of the next result (Katetov theorem) reminds the Tietze theorem for 

normal topological spaces: every uniformly continuous bounded real function defined 

on an arbitrary subspace of a uniform space can be uniformly continuously extended 

to the whole space. 

A paracompact space is realconipact if and only if the same is true for each of its 

closed discrete subspace, that is, if the cardinality of any closed discrete subspace is 

less than the first measurable cardinal. 

Countably paracompact normal spaces were investigated by Katetov indepen

dently and simultaneously with C H. Dowker [D], he found their characterization 

and posed the problem whether each normal space is countably paracompact. (The 

problem was solved negatively by M. E. Ruclin in 1971.) The term "countable para-

compactness" itself belongs to Dowker as well as the assertion that a normal space 

X is countably paracompact if and only if X x [0,1] is normal. 

Theory of dimension was Katetov's lifelong affection. His result from the fifties 

deeply influenced the progress of this discipline. From various definitions of the 

notion of dimension, three are the most important , namely the small inductive di

mension incLV (Menger-Uryson), large inductive dimension I n d X (Brouwer-Cech), 

and the covering dimension (Cech-Lebesgue). 

The paper [12] contains a suprising characterization of the dimension of a compact 

topological space A" in terms of the ring C(X) of continuous real-valued functions on 

A". The key role in the proof of the Stone-Weierstrass theorem is played by a system of 

functions separating points. It was Katetov who posed himself the question what this 

system can tell about the properties of the space X, and answered it in the following 

way: For a compact metric space X we have dim A" ^ // if and only if there exist // 

functions f\, / 2 , . . . , fn E C(X) such that the least subalgebra containing all / u ' s , all 

constant functions, and closed with respect to square roots (i.e. f2 E A = > f E A) 

is dense in the algebra C( X). - -Chap t e r 16 in the monograph of Gillman and Jerison 

[GJ] is fully devoted to a detailed account of Katetov's result. 
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Already Uryson knew that a compact metric space1 A' satisfies dim A" = hid A' = 

I n d X . The same identity was known to hold for separable metric spaces since late 

twenties (L. A. Tumarkin, W. Hurewicz). In the paper [19] the definitive general 

theorem is established: dim A' = IndA" for all metric spaces X. This result was 

proved independently by K. Morita, and it is now usually referred to as the Katetov-

Morita theorem. It was for this research that Katetov received the State Prize in 

1953. The situation for general metric spaces was fully described only after P . Roy 

in 1962 constructed a complete metric space X with hid A < dim A . 

It is not generally known that the change in the original definition of the notion 

of dimension dim, namely the replacement of open coverings with coverings which 

are functionally open (cozero). which makes it possible to extend the whole theory 

from normal to fully regular spaces, is also Katetov's contribution [14]. The identity 

dim A = dim/LA is an easy consequence of Katetov's definition. 

The paper [22] studies a less known type of dimension of a metric space A', the 

metric dimension /xdiniA\ It is proved that /A dim A' ^ dim A ^ 2 / t d imA\ This 

paper marks further, much later papers devoted to metric spaces from the viewpoint 

of invariants similar to dimension (Bolzano dimension. Duslmik-Miller dimension, 

entropy). 

From the ideas contained in the lecture [30] delivered at the International Congress 

of Mathematicians 1962 in Stockholm let us mention two. Trying to define a notion of 

"continuous structure" as general as possible, Katetov explicitly gives the following 

method of forming a new structure from the given one by means of the covariant 

functor 3> from the category of sets into itself: The new structure is the set X 

ecpiipped with the old structure1 on $ A , a mapping of the new structured sets F: 

X —> y is continuous if and only if $ (F ) is a continuous mapping of <£A into <1>Y 

ecpiipped with the old structures. This idea was widely developed in the categorial 

theory of structures. Katetov himself studied as an example the free real module 

AX over the set X ecpiipped with a compatible locally convex topology [28, 32]. 

Another example will be mentioned in the next paragraph. The other idea was the 

stressing of the importance of the projective and inductive generation of continuous 

structures. In Prague this led to the introduction of the so called amnestic functor 

and the S-functor ([Hu]) which is now used under the name of the topological functor, 

see [AHS]. 

Merotopic spaces are structures of continuity more1 general than the current topo

logical, uniform and proximity spaces. Merotopy is determined by a filter E consisting 

of a covering of the set X, that is, IJ V = X for all V E E, if Vi, V2 E E, then also 

the cover {Vi n V2 : Vi E V\ , \ '•> E V2, Vi H V2 ^ 0} E E, if V E E, W is a covering 

of the set X and V refines W, then W E E. Unlike in the case of uniformity there 

is no requirement of openness of the elements of the covering here, and therefore 

564 



inerotopies can be equivalently described by families of "small" sets as well as by 

families consisting of mutually "near" sets. Let us note that these notions had been 

used by some authors before Katetov, but Katetov proved fundamental theorems on 

these spaces, two of which we will present here: 

Merotopic spaces are exactly the quotients of uniform spaces. 

A subcategory of the so-called filter merotopic spaces is Cartesian closed, i.e. the 

space of functions XY can be canonically equipped with a structure in such a way 

that XYxZ be isomorphic to (XY)Z. 

Katetov's term "merotopic spaces" later gave way to Herrlich's term "nearness 

spaces". The intensity of research of the successors can be documented by the survey 

paper [He]. 

It was already in 1960 that Katetov demonstrated the impoortance of the cardinal 

characteristic D, the dominating number, the least cardinality of a set F of sequences 

of positive integers such tha t each sequence is majorized by a sequence from F. In 

the papers [25, 26] he investigated the following cardinal numbers: the character of 

the set of integers in the space of reals, the least cardinality of the cofinal part of 

the family of compact subsets of rational numbers ordered by inclusion, the least 

cardinality of a covering of irrationals by compact sets, and proved that they are 

all equal to D. If rationals are replaced by irrationals in the above consideration, 

then the pseudocharacter will evidently be countable, but the character, as Katetov 

showed, is again equal to D. 

Not a single one of the above presented results was omitted by E. K. van Douwen 

in his Handbook of Set Theoretic Topology article [vD]. 

In the sixties the interest in filters and ultrafilters increased rapidly This trend 

did not skip Prague. It was then that Katetov became friends with the young 

Zdenek Frolik. and filters and ultrafilters were a frequent topic of their discussions. 

Frolik then proved nonhomogeneity of the space f3N \ N. Katetov was interested 

in the operations on filters and in convergence with respect to a filter. In the 

paper [37] Katetov investigated products of filters. Let us recall: If T is a fil

ter on a set A, Q a filter on a set H, then the filter T • Q on the set A x B 

consists of all X C A x B such that {a e A{b G B: (a,b) e X} e G} G T, 

i.e. the product in the current Fubini sense. If T is a filter on A and Q a fil

ter on H, then T, Q, have the same type (T ~ Q) if there is a bijection / : 

A —•> B such that F G T <=> f[F] G Q. For filters Katetov studied the two 

transitive relations which are now called Rudin-Keisler and Rudin-Frolik order-

ings in the case of ultrafilters ([CN]—Comfort and Negrepontis were apparently 

not aware of [37]) and proved that for ultrafilters they really represent orderings 

of types. To this end he used a lemma on three sets, proved and published in 

[35]. It is t rue tha t the lemma is a special case of de Bruijn-Erdos theorem which 
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Katetov did not know at the time, but he was the first who demonstrated the 

importance of this special case for the theory of ultrafilters. Katetov also proved 

tha t for an ultrafilter T and an arbitrary filter Q with an empty intersection nei

ther T ~ T • Q nor T ~ Q • T can hold, similarly as Ar ~ M • M does not 

hold for the Frechet filter J\f. Naturally a question arose whether there can at 

all exist a nontrivial filter T with the property T ~ T • T, in the paper [47] it 

is proved tha t such a filter does exist on any infinite set, and it is constructed 

there

in [39, 40] the convergence with respect to a filter is studied. The main theorem 

in both the papers asserts that —if we assume CH there exists a special filter T on 

a countable set such that for every topological space4 X all "F-limits of sequences of 

continuous functions are exactly all Baire functions on X. The theorem fails to hold, 

which is proved by the diagonalization method in [43]. The main result then is the 

description of the class of spaces for which the theorem is correct. 

In the course of the activities of the Seminar of mathematical methods in Psychol

ogy a number of psychological experiments turned Katetov's attention to the notion 

of information. His effort to grasp this notion mathematically resulted in a numerous 

series of papers [45, 49, 52, 53. 57, 58, 59, 60] which was inerrupted only by his death. 

Roughly speaking, if (K, O,//) is a set equipped with a semimetric O, i.e. Q{X,X) — 0 

and O(:r,u) = O(y,.x), and a finite measure /JL for which O is // x //-measurable, he 

posed the question of existence of functionals defined on the class of such spaces 

which in two important special cases, namely those of A' finite and the metric satis

fying Q{x,y) = 1 for all x ^ /y. and of X without measure but with a metric, result 

in the Shannon entropy or the Kolmogorov entropy, respectively. Functionals of this 

type with further reasonable properties Katetov called the extended Shannon en

tropy. The passage from the finite to the infinite situation Katetov solved by a tree 

sequence of binary decompositions first of the given space and then of the elements 

of the decomposition into sets of lesser and lesser diameter, the brandies of the tree 

end at the moment when the diameter is less than £. 

Now the connection with various types of dimensions, which were dealt with by 

Katetov in [54, 61], is no more4 a surprise. 

However, Katetov desired to achieve more than we have just described. Step by 

step he developed a unified theory covering as special cases various further kinds of 

known entropies (beyond already mentioned Kolmogorov entropy of totally bounded 

metric spaces, e.g., differential entropy, entropy in the sense of Posner, Rodeniich 

and Humphrey, topological entropy, entropy of a mapping, Bowen\s entropy). This 

research was extremely demanding from the technical point of view and differed 

essentially from procedures used in the information theory. The importance of this 

monumental activity can be justly evaluated only by the future. 
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In 1970, M. Katetov founded Seminar on mathematica l methods in Psychology in 

the Faculty of Mathematics at Physics. He opened it as a specialized seminar from 

Applied Mathematics, having had prepared for it many years before. 

At the beginning, the seminar was devoted to the mathematica l problems in psy

chology (theory of information, mathematical linguistics, neurolinguistics, artificial 

inteligence, problem solving, theory of perceptions, theory of complexity, probability, 

plans and the structure of behavior, genetic epistemology, theory of measuremen t , 

perception etc.) M. Katetov wrote then a series of huge texts devoted to various 

aspects of using ma thematical methods and structures in psychology, but mostly 

copied for the seminar use only. From tha t period (seventies), also Katetov's papers 

on modelling of multiple sclerosis by means of the ca tas trophe theory came [50, q, 

r]. A remarkable paper [48] models a seemingly alogical behavior of a subject in a 

certain s tandard psychological test; the model has a surprising predictive power. As 

already said, the study of theory of information in psychology inspired a series of 

Katetov's mathema t ical papers on entropy theory for metric spaces. 

Since the end of seventies, the contents of the seminar widened in further areas of 

applications of mathematics (biology, medicine) and, contrary to original Katetov\s 

intentions, it opened also to the philosophical questions in eighties, becoming thus 

transdisciplinary. 

It is possible that Katetov was not the best lecturer for introductory courses. 

On the other hand, by his lectures of advanced parts of Mathematics and by his 

seminars he aroused interest in scientific work in more than one generation of Czech 

mathematicians. He was a peerless paragon for all his students and studen ts of his 

students. His unfailing memory, comprehensive knowledge, the ability to see and to 

precisely and pregnantly formulate the essentials, those were gifts given only to few. 

Unlike most of his colleagues. Miroslav Katetov believed all his life that Mathemat

ics is communicable and everybody is able to grasp it. This is probably the reason 

why ho wrote so many articles and texts popularizing Mathematics or explaining 

some parts of it to laymen or specialists from remote professions. This concerns 

papers [64. 67, 72, 79, b - p , s v]. all written with anxious care for ma thema t ical pre

cision combined ideally with easy-to-grasp presentation. The last paper tha t Ka tetov 

finished immediately before his death was a contribution for the Handbook from the 

history of general topology devoted to his most favorite topic, dimension theory [76]. 

Uv verified with extraordinary care all historical facts, thus avoiding the frequently 

cited inaccuracies. This of course concerns all the other Katetov's papers devoted to 

the history and development of Mathematics [66, 66. 67, 68, 70, 71, 73, 74, 79, 80, 

,84]. 

Miroslav Ka tetov passed away on December 15. 1995. On his desk ho loft 

manuscripts of papers to be completed.. . 
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On the equivalence of certain types of extension of topological spaces, Casopis P st. 

Mat. Fys. 72 (1947), 101-106 

Remarque sur les espaces topo logiques denombrab les, Ann. Soc. Polon. Math. 21 
(1948), 120-122 

Comp l e te norma l i ty of cartesian products , Fund. Math. 35 (1948), 271-274 

On convex topological linеar spacеs, Acta Fac. Rer. Nat. Univ. Carolin. 181 (1948), 
20 pp. 
On mapp ings of countablе spaces, Colloq. Math. 2 (1949), 30-33 

O кoльцax нeпpepывныx фyнкций и p a з м e p н o c т и биҝoмпaктoв (On rings of 

continuous functions and t h e dimеnsion of compact spacеs), Casopis Pěst. Mat. 
Fys. 75 (1950), 1-16 
O n nеarly discrеtе spacеs, Casopis Pěst. Mat. Fys. 75 (1950), 69-78 
A theorem on the Lebesgue dimеnsion, Casopis Pěst. Mat. Fys. 75 (1950), 79-87 
R е m a r k s on Boo lеan a lgеbras, Colloq. Math. 2 (1951), 229-235 
Mеasurеs in fully norma l spacеs, Fund. Math. 38 (1951), 73-84 
On rеal-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91; Cor-
rection, ibid. 40 (1953), 203-205 
O p a з м e p н o c т и м e т p и ч е c ҝ и x п p o c т p a н c т в (On the dimеnsion of mеtr ic spacеs), 
Dokl. Akad. Nauk SSSR 79 (1951), 189-191 
O p a з м e p н o c т и н e c e п a p a б е л ь н ы x п p o c т p a н c т в I (On t h е dimеnsion of non-sеpar-
ablе spaces I), Czechoslovak Math. J. 2 (77) (1952), 333-368 

O p a з м e p н o c т и н e c e п a p a б е л ь н ы x п p o c т p a н c т в II (On thе dimеnsion of non-sеpar-
ablе spacеs II) , Czechoslovak Math. J. 6 (81) (1956), 485-516 
O п p o д o л ж е н и и л o ҝ a л ы i o кoнeчныx пoкpытий (Extеnsions of locally finitе covеr-
ings), Colloq. Math. 6 (1958), 145-151 
O cooтнoшeнии междy м е т p и ч е c к o й и т o п o л o г и ч е c к o й p a з м е p н o c т ь ю (Oll tllЄ 

rеlation bеtwееn thе mеtr ic and topological dimеnsion), Czechoslovak Math. J. 8 

(83) (1958), 163-166 

P ln normální prostory (Fully normal spacеs), in: E. Ćеch: Topologické prostory, 

D o d a t е k II, 407-495, ŃČSAV, P r a h a 1959 
Ubеr diе Bеrührungsräuшe , Wiss. Z. Humboldt-Univ. Berlin Math.-Natur. Reifie 9 

(1959/1960), 685-691 

R е m a r k s on characters and pseudocharacters , Comment. Math. Univ. Carolin. 1 

(1960), fasc. 1, 20-25 
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Fand. Math. 50 (1962), 369-380 

On a catеgory of spacеs, in: General Topology and its Relation to Modern Analysis 
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O n certain projectively generated continuity s t ructures, in: Simposio di topologia 
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Carolin. 6 (1965), 251-255 
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(1976), 797-806 
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[56] On univеrsal mеtr ic spaces, in: General Topology and its Relations to Modern Analy-
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149-169 
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Rendiconti Sem. Mat. Univ. Politec. Torino 19 (1959/1960), 58-88; rеvisеcl En-
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functional ana lysis), Dějiny věd a techniky 1 (1968), 17-23 

[68] Akadеmik Waclaw Siеrpiśki (Acadеniician Waclaw Siеrpiśki), Věstník CSAV 79 
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[69] Matеmat ickе m е t o d y v psychologii (Mathеmatica l m е t h o d s in psycho logy), Pokroky 

Mat. Fyz. Astronom. 19 ( l974), І87-199 

[70] P. S. Uryson a počátky obеcné topologiе (P. S. Uryson and thе origins of gеnеral 

topo logy), Pokroky Mat. Fyz. Astronom. 19 (1974), 251-261 

[71] N. N. Luzin a tеoriе rеálných funkcí (N. N. Luzin ancl thе thеory of rеal-valuеd 

functions), Pokroky Mat. Fyz. Astronom. 20 (1975), 137-145 

[72] (with P. Jеd lička) Tеoriе katastrof: souvislosti a aplikacе I, II (Catas t rophе thеory: 

Coliеrеncеs ancl app l ications I, II) , Pokroky Mat. Fyz. Astronom. 2Ą (1979), 1-20, 
З l3-326 
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[73] Topologie, teoгie kategorií a kombinatorika v CSR v období 1945-1985 (Topology, 
category thеory and combinatorics in C S R in thе period 1945-1985), Vývoj matem-

atiky v CSR v obdobѓ 1945-1985 a jejíperspektivy, 95-127, Un iversi ta Karlova, P r a h a 
1986; an almost identical text: Cеská m a t е m a t i k a v lеtеch 1945-1985: topologiе, 

tеoriе katеgori í a kombinatorika, Pokroky Mat. Fyz. Astronom. 32 (1987), 191-206 

[74] Dimеnsion thеory . E. Cеcłťs work and t h е dеve lopment of dimension theory, The 

Mathematical Legacy of Eduard Cech, 109-129, Academia, P r a h a 1993 

[75] (with J. Adámek) Vera Trnková's unbelievable 60, Math. Bohem. 119 (1994), 216-
224 

[76] (with P. Simon) Origins of dimension theorу, to appear 

C Lеcturе notеs and intеrnal publications 

[77] (with J. Je l ínek) Fгtnkcionální analýza (Functional Analуsis), S P N , P г a h a 1967 

[78] Úvod do moderni analýzy ( In t roduct ion to Modern Analysis), S P N , P r a h a 1968 
[79] Některé vývojové tendence současné matematiky (Some deve lоpment tendencies оf 

c о n t e m p о r a r y m a t h e m a t i c s ) , MÜ CSAV, P r a h a s.d. 
[80] Význam E. Čecha prо rоzvоj českоslоvenske a svetоve m a t e m a t i k у (The rеlеvancе 

оf E. Čecli tо t h е dеvеlоpmеnt оf Czеchоslоvak and wоrld m a t h е m a t i c s ) , Informace 

MVS JCSMF 18, 1980, 8-35 
[81] (with V. Břicháčеk) S t r u c t u r е оf mathеmat ica l mоdеls and thеir rоlе in psуchоlоgy 

in: Causal and Soft Modeling, Ergеbn i sband dеr 2. Bremer Me thоdenkоnfеrеnz 1984, 
167-204, Brеmеr Bеiträgе zur Psуchоlоgiе Nr. 43, Brеmеn 1985 

[82] Ze vzpоm ínek na dоbu оkupace (Memоries оn the t imes оf оccupat iоn), Informace 

MVS JCSMF 29, 1987, 10-13 

[83] Za Zdenkem Frоlíkem (Fоllоwing Zdenek Frоlík), Informace MVS JCSMF 32, 1989, 

5-8; an English versiоn: Excerpts frоm a mеmоrial spееch givеn in Maу 1989, 

Topological, Algebraical and Combinatorial Structгires. Frolíк's memorial voiume, 

J. Nеšеtřil, Ed., xi-xii, Nоrth-Hоlland, A m s t е r d a m 1992 

[84] E d u a r d Cеch: dоba, dílo, osоbnоst ( E d u a r d Cech: The t ime, t h e achievement, the 

persоnal i ty), Informace MVS JCSMF Ąl, 1993, 32 11 

D. Mimеоgraphеd matеrials, which havе nоt appеarеd еlsеwhеrе 

[a] Vybrané кapitoly z algebry a topologie (Selected chaptеrs from a lgebra and tоpоlоgy), 

lecture cоurse 1962/1963 (written by M. Hušek), pp. 55 
[b] Úvod do studia vztahů m.єzi matematikou a zkoumánim psychických procesů (An 

in t rоduct iоn t о t h e rе latiоnship bеtwееn m a t h е m a t i c s and еxp lоraitоn оf psуchic 

prоcеssеs), Prеl iminarу versiоn, P a r t 1, 1970, pp. 81 

[c] Elementární výкlad n кterých základnich matematických pojmů (Elementarу еxpоsi-

tiоn оf sоmе basic mathеmat ica l nоtiоns). Provisiоnal vеrsion, p a r t s 1-3, 1971-1972, 

p p . 4 9 + 2 6 + 3 4 
[d] Poznámky k některým matcmatickým pojmгìm souvisicim s aplikacemi v psychologii 

(Rеmarks оn sоmе m a t h e m a t i c a l cоncepts cоnnected to applicat ions in psychоlogy), 
Studijn í mater iá lу k o tázkám vztahů mezi matemat ikou a zkоumáním psychickych 
prоcesů č. 1, 1970, pp. 9 

[e] Üvodní přehled literatury o pojmu informace a jcho гîloze v psychologii (An intrо-
ductоry survey оf t h e l i terature cоncerning the not ion of information a n d its rоle in 
psychоlоgy), Studijní mater iá ly k о tázkám vztahů mеzi m a t e m a t i k о u a zkоumán ím 
psychickych prоcеsů č. 2, 1971, pp . 5 
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[f] O preferenčních relacích (On preferential relations), Studijní mater iály k o tázkám 
vztalш mezi m a t е m a t i k o u a zkoumáním psychických procеsů č. 4, 1971, pp. 8 

[g] O pojmu selektivniho procesu I (On thе notion of sеlеctive process I), Studijní шa-
tеriály k o tázkám vztahů mеzi m a t е m a t i k o u a zkoumáním psychických procеsů č. 
G, 1971, pp . 28 

[li] O pojmu stochastické automatové transformace (On t h e no t ion of s tochastic au-
t o m a t o n t ransformat ion), Studijní mater iály k otázkám vztahů mezi m a t e m a t i k o u 
a zkoumáním psychických procesů č.7, 1971, pp. 24 

[i] Elementárni pojmy teorie inform.ace (Elementary concepts of t h e theоry of infor-
mat ion), Studijní mater iály k otázkám vztahй mezi m a t e m a t i k o u a zkoumáním psy-
chických prоcesu č. 8, 1972, pp. 24 

[j] O pojmu selektivniho procesu II (On the nоtiоn of selеctivе procеss II) , Studijní 
mater iály k otázkám vztaliů mеzi m a t е m a t i k o u a zkoumáním psychických procеsů 
č. 9, 1972, pp . 18 

[k] Nčkolik poznámek k předndškám o matematických metodácìi. v psychologii (Sеvеral 

rеmarks to thе lеctures on ш a t h e m a t i c a l m е t h o d s in psychology), Studijní matеr iály 
k otázkám vztahů mezi m a t e m a t i k o u a zkoumáním psychických prоcesů č. 10, 1972, 
PP- 8 

[l] Elementárnѓ výklad připravných pojmů matematické teorie procesů (Elementary еx-
position of p rеpara to ry no t iоns in m a t h е m a t i c a l prоcеss thеоry) , Studijní matеriá ly 
k о tázkám vztahů mеzi m a t е m a t i k о u a zkоumáním psychických prоcеsů č. 11, 1972, 
pp. 51 

[m] Polydromní procesy I (Pоlydгоm prоcеssеs I), Studijní matеr iály k о tázkám vztahů 
mеzi m a t е m a t i k о u a zkоumáním psycliických prоcеsů č. 12, 1972, pp . 85 

[n] O pojmu automatové transformace (On thе not iоn оf a u t о m a t о n t ransformat ion), 
Studijní mater iá ly k otázkám vztahů mezi m a t e m a t i k o u a zkoumáním psychickýcli 
procesů č. 13, 1973, pp . 51 

[o] K problematice plánů a strukťury chováni I: O základech m.atematického vyjadřováni 
plánu (To t h e problems of plans and the s t ructure of behaviоr I: O n the principlеs оf 
tliе m a t h е m a t i c a l еxprеssing оf a plan), Studijní matеr iály k о tázkám vztahů mеzi 
m a t е m a t i k о u a zkоumáním psychických prоcеsů č. 15, 1974, pp. 141 

[p] Лbstraktní struktury a modelováni psychickўch procesů (Abstract s t ructurеs and 
nюdеlling оf psychic prоcеssеs), P a r t 1, 1973, pp. 203 

[q] (with P. Jеd lička) Modelováni nëkterých aspektů roztrousené sklerózy (Mоdelling оf 

sоme aspects оf mu ltip le sclеrоsis), 1977, pp. 88 
[r] (with P. Jеdlička, I. Vrkоč) Л model of the course of m.ultiple sclerosis based on th.e 

concepts of the catastrofe tlieory, 1979, pp. 45 
[s] Matcmatické modelováni v psychologii — základni pojmy (Mathеinat ica l mоdе l ling 

in psychоlоgy—еlеmеntarv nоtiоns), Matеmatickć m е t о d y v psychоlоgii — Vybranć 
kapitоly l, 1979, 2. еd. 19S2, pp. 25 

[(] Některé základní pojmy tcorie pravděpodobnosti (Sоmе basic nоtiоns оf thе prоba-
bility thеоry) , Nоtеs t о thе cоursе 1978/1979, pp. 12 

[u] Základy modelováni rozvrìwvë regulovaného chováni (Basics оf thе mоdеll ing оf dis-
])оsedly regulated behaviоr), 1982, pp. 16 

[v] Nèkteré matematické pojmy použivané v populačni genetice (Sоme m a t h e m a t i c a l 
nоtiоns used in pоpulat iоn gеnеtics), Nоtеs tо thе cоursе 1984/1985, pp. 17 
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