Czechoslovak Mathematical Journal

Mirko Novara

Quantum logins representable as kernels of measures

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 587-597

Persistent URL: http://dml.cz/dmlcz/127321

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

QUANTUM LOGICS REPRESENTABLE AS IiERNELS OF MEASURES

Mirio Navara, ${ }^{\text {M }}$ Praha
(Received February 2, 1994)

1. Motivation

The classical Folmogorores model of probability assumes that every pair of events is simultaneonsly observable. This principle is violated in several applications including quantum mechanics, artificial intelligence, psychology, sociology etc. In these ar(as noncompatible events are encountered. These are events which can be observed separately. but not simultaneously, so they are not contained in a Boolean subalge1, a ($=$ (lassical subsystem) of the event structure describing the system in question. Sarions attempts have been made to generalize the probability theory to a more general structure admitting noncompatibility. Among them, classes of subsets (more generally, concrete logics) were studied for many years (see e.g. [15, 18]). Although some results were successfully generalized (see e.g. [t.10, 19]). the theory proceeded slowly and with serious difficulties. Here we introduce a more special-but still reasonably general-structure, a kemel logic. As it is clescribed in terms of Boolean algetras using measure-theoretic notions, we believe that there is a greater chance to generalize classical results for Boolean algebras to kemel logics.

Kernel logics seem to be interesting also from the algebraic point of view as a new construction technique for concrete logics. Its usefulness was proved by solutions of sereral quite nontrivial problems. Besides this. it serms desirable to describe kernels of measures on Boolean algehmas.

[^0]
2. BASIC DEFINITIONS AND EXAMPLES

Let us recall the basic definitions (for more details, we refer to $[6,15]$). By a logic we mean an orthomodular poset. A subset of a logic is called a sublogic if it is closed under orthocomplements and under orthogonal suprema. Let \mathscr{K}, \mathscr{L} be logics. We call a mapping $h: \mathscr{K} \rightarrow \mathscr{L}$

- a homomorphism if it preserves the orthocomplements and orthogonal suprema,
- an isomorphism if it is one-to-one and both $h . h^{-1}$ are homomorphisms.
- a monomorphism if $h: \mathscr{K} \rightarrow h(\mathscr{K})$ is an isomorphism.

In this paper, we shall mostly deal with the logics which are representable as collections of subsets of a set. Let X be a nonempty set. A collection $\mathscr{L} \subset 2^{N}$ is called a class of subsets if $X \in \mathscr{L}$ and if $A, B \in \mathscr{L}$. $A \subset B$, implies $B \backslash A \in \mathscr{L}$. A class of subsets becomes a logic if we take the inclusion for the ordering and the complementation (in X) for the orthocomplementation (we use the notation $A^{\perp}=X \backslash A$). Notice that a class of subsets is closed under disjoint unions, but not under all unions. A logic \mathscr{L} is called a concrete logic if it is isomorphic to a class \mathscr{K} of subsets of a set. We call \mathscr{K} a representation of \mathscr{L}. Of course, all Boolean algebras are concrete logics. A typical example a a non-Boolean concrete logic is the following

Example 2.1. Let $n, p \in N$ and let X be a set of cardinality $n \cdot p$. Then the collection \mathscr{K} of all subsets of X whose cardinality is divisible by p is a class of subsets of X.

Let G be a commutative group. A G-valued measure on a logic \mathscr{L} is a mapping $m: \mathscr{L} \rightarrow G$ such that $m(A \vee B)=m(A)+m(B)$ whenever $A \leqslant B^{\perp}$. A two-valued measure is a Z-valued measure with values 0,1 .

Proposition 2.2. Let m be a G-valued measure on a Boolean algebra \mathscr{B}. Then the kernel of m, $\operatorname{Ker} m=m^{-1}(0)$, is a weak generalized orthomodular poset (see [7]). If, moreover, $m(1)=0$, then $\operatorname{Ker} m$ is a concrete logic.

Definition 2.3. A kernel logic is a logic which is isomorphic to Ker m for some group-valued measure m on a Boolean algebra.

Remark 2.4. Throughout this paper we treat only the case $m(1)=0$, leaving the investigation of weak generalized orthomodular posets (obtained for $m(1) \neq 0$) to another paper.

Example 2.5. The concrete logics from Ex. 2.1 are kernel logics. It suffices to take a measure $m: 2^{X} \rightarrow Z_{p}\left(Z_{p}\right.$ is the p-element cyclic group) such that $m(\{x\})=1$ for all $x \in X$.

C'oncrete logics may be alternatively defined as orthomodular posets possessing order-determining sets of two-valued measures (i. e. for each $a, b, a \notin b$, there is a t wo-valued measure m such that $m(a i=1 \neq m(b)$, see $[20])$. A concrete logic \mathscr{L} mat have various representations (see Ex. 4.1). It is reasonable to consider only such :epresentations by a class of of subsets of a set X that, for each $x, y \in X$, there is an $A E \mathscr{A}$ satisfying $x \in A . y \notin A$. The elements of X may be identified with two-valued ineasures on \mathscr{L}. (These measures correspond to concentrated measures on \mathscr{K}, i. e. : 0 : wo-valued measures m such that $\exists x_{m} \in \mathbb{K} \forall A \in K^{\prime}:\left(m(A)=1 \Leftrightarrow x_{m} \in A\right)$.) If \therefore is the set of all two-valued measures on \mathscr{Z}. we speak of a maximal reprcsentation.

A: chement a of a logic \mathscr{L} i: called an atom if $\{b \in \mathscr{L}: 0<b<a\}=\emptyset$.
1 Amte subser . /l of a logic \mathscr{L}^{\prime} is called compatible if it is contained in a Boolean

 wi the center are called centrul.

It the definition of a kernel logic. ome may think of expressing it in the form
 :neasure. The following proposition shows that such a generalization does not bring anything new.

Lemma 2.6. Let :B be a Boolean algehra and let $\mathscr{L} \subset: \not \subset$ be such that for each $A E \mathscr{A} \backslash \mathscr{L}$ there is a commutative aroup G_{A} and a G_{A-1}-valued measure m_{A} on $\mathscr{B}^{\mathcal{B}}$ satisfying $\mathscr{L}^{\prime} \subset$ Ker m_{A}. A $\notin \operatorname{Kr} m_{A}$. Thrn \mathscr{L} is a kernel logic.

Proof. We construct the product $G=\prod_{A \in \mathscr{B} \backslash \mathscr{L}} G_{i .1}$ and define a measure m : $: \mathscr{A} \rightarrow G$ by $m(C)=\left(m_{A}(C)\right)_{A \in: \mathscr{A} \backslash \mathscr{L}}$. Then Fier $m=\bigcap_{A \in \mathscr{B} \backslash \mathscr{L}}$ Kier $m_{A}=\mathscr{L}$.

3. Constructions witi kernel logies

In order to find new examples of kernel logics, we discuss their relations to the basic constructions for orthomodular lattices-products, Boolean powers and horizontal sums. We prove that every logic is a homomorphic image of a kernel logic. For the description of products and horizontal sums of logics we refer to [6, 15], for Boolean powers in general to [3], in the context of logics to [2, 13].

Proposition 3.1. Every product of a family of kernel logics is a kernel logic.

Proof. For $i \in I$, let $\mathscr{L}_{i}=\operatorname{Ker} m_{i}$, where m_{i} is a group-valued measure on a Boolean algebra \mathscr{B}_{i}. We define $\mathscr{B}=\prod_{i \in I} \mathscr{B}_{i}$ and $\mathscr{L}=\prod_{i \in I} \mathscr{L}_{i} \subset \mathscr{B}$, and we denote
by $\pi_{i}: \mathscr{B} \rightarrow \mathscr{B}_{i}$ the canonical projection. We shall apply Lemma 2.6 to prove that \mathscr{L} is a kernel logic. If $A \in \mathscr{B} \backslash \mathscr{L}$ then there is an index $i \in I$ such that $\pi_{i}(A) \in \mathscr{B}_{i} \backslash \mathscr{L}_{i}=\mathscr{B}_{i} \backslash \operatorname{Ker} m_{i}$. The measure $m_{i} \circ \pi_{i}$ satisfies the assumption of Lemma 2.6.

Proposition 3.2. Let \mathscr{L} be a kernel logic, \mathscr{A} a Boolean algebra. Then the bounded Boolean power $\mathscr{L}[\mathscr{A}]^{*}$ (as well as the Boolean power $\mathscr{L}[\mathscr{A}]$ provided \mathscr{O} is complete) is a kernel logic.

Proof. We may assume that \mathscr{A} is an algebra of subsets of a set Y. Let \mathscr{L} be the kernel of a measure on a Boolean algebra \mathscr{B}. The bounded Boolean power $\mathscr{B}[\mathscr{A}]^{*}$ is a subset of $\prod_{y \in Y} \mathscr{B}_{y}$, where $\mathscr{B}_{y} \cong \mathscr{B}(y \in Y)$. As $\mathscr{L}[\mathscr{C}]^{*}=\mathscr{B}[\mathscr{A}]^{*} \cap \prod_{y \in Y} \mathscr{L}_{y}$, where $\mathscr{L}_{y} \cong \mathscr{L}, \mathscr{L}_{y} \subset \mathscr{B}_{y}(y \in Y)$, by the same technique as in the proof of Prop. 3.1 we may prove that $\mathscr{L}[\mathscr{A}]^{*}$ is a kernel of a measure on $\mathscr{B}[\mathscr{V}]^{*}$.

Before treating horizontal sums, let us recall the construction of a free product (see [3] or [17], where it is called a "Boolean product"). Let $\left\{\mathscr{B}_{i}\right\}_{i \in I}$ be a collection of Boolean algebras. A free product of $\left\{\mathscr{B}_{i}\right\}_{i \in I}$ is a Boolean algebra \mathscr{B} with monomorphisms $h_{i}: \mathscr{B}_{i} \rightarrow \mathscr{B}$ such that

1. if F is a finite subset of I and $A_{i} \in \mathscr{B}_{i}, A_{i} \neq 0(i \in F)$, then $\bigwedge_{i \in F} h_{i}\left(A_{i}\right) \neq 0$;
2. $\bigcup_{i \in I} h_{i}\left(\mathscr{B}_{i}\right)$ generates \mathscr{B}.

The free product of a family of Boolean algebras always exists and is unique up to an isomorphism; we denote it by $\mathbb{F}_{i \in I} \mathscr{B}_{i}$. It can be constructed from the set representations as follows. For each $i \in I$, let \mathscr{B}_{i} be an algebra of subsets of a set X_{i}. Let X be the Cartesian product $\prod_{i \in I} X_{i}$ and let $p_{i}: X \rightarrow X_{i}$ be the canonical projection. We define monomorphisms $h_{i}: \mathscr{B}_{i} \rightarrow 2^{X}$ by $h_{i}\left(A_{i}\right)=p_{i}^{-1}\left(A_{i}\right)$. (Thus, $h_{i}\left(A_{i}\right)=\prod_{j \in I} Y_{j}$, where $Y_{i}=A_{i}$ and $Y_{j}=X_{j}$ for $j \neq i$.) The algebra \mathscr{B} of subsets of X, generated by $\bigcup_{i \in I} h_{i}\left(B_{i}\right)$, is the free product $\mathbb{F}_{i \in I} \mathscr{B}_{i}$. Notice that the free product is associative, i. e., if $J \subset I$, then $\mathbb{F}_{i \in I} \mathscr{B}_{i}$ is isomorphic to the free product of $\mathbb{F}_{i \in J} \mathscr{B}_{i}$ and $\mathbb{F}_{i \in I \backslash J} \mathscr{B}_{i}$.

For each $i \in I$, let m_{i} be a real-valued measure on \mathscr{B}_{i} with $m_{i}\left(1_{\mathscr{B}_{i}}\right)=1$. By a product of measures we mean the (unique) measure m (denoted also by $\prod_{i \in I} m_{i}$) on $\mathbb{F}_{i \in I} \mathscr{B}_{i}$ defined by the following rule: If F is a finite sul)set of I and $A_{i} \in \mathscr{B}_{i}(i \in F)$. then $m\left(\bigwedge_{i \in F} h_{i}\left(A_{i}\right)\right)=\prod_{i \in F} m_{i}\left(A_{i}\right)$.

We first prove a special case.

Lemma 3.3. The horizontal sum of two kernel logics is a kernel logic.

Proof. Let \mathscr{L} be the horizontal sum of kernel logics $\mathscr{L}_{i}, i=1,2$. Let $\mathscr{L}_{i}=$ Ker m_{i}. where m_{i} is a G_{i}-valued measure on \mathscr{B}_{i} and \mathscr{B}_{i} is an algebra of subsets of a set X_{i}. We define $X=\prod_{i \in 1.2} X_{i}, \mathcal{B}=\mathbb{F}_{i=1.2} \mathscr{B}_{i} \subset 2^{X}$, and we denote b_{y} h_{i} the respective homomorphisms. We identify \mathscr{L} with $\bigcup_{i=1,2} h_{i}\left(\mathscr{L}_{i}\right)$. According to Lemma 2.6. for each $A \in \mathscr{B} \backslash \mathscr{L}$ we have to find a group-valued measure m on \mathscr{B} such that $\mathscr{L} \subset$ Fer m and $m(A) \neq 0$. We shall distinguish two cases.

1. Let us suppose that $A \in \mathscr{B} \backslash \bigcup_{i=1.2} h_{i}\left(\mathscr{B}_{i}\right)$. As $A \notin h_{1}\left(\mathscr{B}_{1}\right)$, we may find $u_{1} \in X_{1}$, $y_{2} . \dot{v}_{2} \in X_{2}$ such that $\left(u_{1}, y_{2}\right) \in A,\left(u_{1}, z_{2}\right) \notin A$. Analogously, as $A \notin h_{2}\left(\mathscr{B}_{2}\right)$, there are $u_{2} \in X_{2}, y_{1}, z_{1} \in X_{1}$ such that $\left(y_{1}, u_{2}\right) \in A,\left(z_{1}, u_{2}\right) \notin A$. For each point $\left(r_{1}, r_{2}\right) \in X$. we denote by $s_{\left(r_{1}, r_{2}\right)}$ the two-valued measure on \mathscr{B} concentrated in $\left(r_{1}, r_{2}\right)$. We define measures

$$
\begin{aligned}
& \mu=s_{\left(u_{1}, u_{2}\right)}+s_{\left(y_{1}, y_{2}\right)}-s_{\left(u_{1}, y_{2}\right)}-s_{\left(y_{1}, u_{2}\right)}, \\
& \nu=s_{\left(u_{1}, u_{2}\right)}+s_{\left(z_{1}, z_{2}\right)}-s_{\left(u_{1}, z_{2}\right)}-s_{\left(z_{1}, u_{2}\right)} .
\end{aligned}
$$

These measures vanish at $\bigcup_{i=1,2} h_{i}\left(\mathscr{B}_{i}\right)$, but at least one of them is nonzero on A. Indeed, the case $\mu(A)=\nu(A)=0$ leads to a contradiction:

$$
s_{\left(u_{1}, u_{2}\right)}(A)+s_{\left(y_{1}, y_{2}\right)}(A)-2=\mu(A)=\nu(A)=s_{\left(u_{1}, u_{2}\right)}(A)+s_{\left(z_{1}, z_{2}\right)}(A) .
$$

2. Suppose now that $A \in \bigcup_{i=1,2} h_{i}\left(\mathscr{B}_{i}\right) \backslash \mathscr{L}$. Without any loss of generality we may restrict our attention to the case $A \in h_{1}\left(\mathscr{B}_{1} \backslash \mathscr{L}_{1}\right)$. Thus, $A=A_{1} \times X_{2}$, where $A_{1} \in \mathscr{B}_{1} \backslash \mathscr{L}_{1}$. We fix a $y_{2} \in X_{2}$ and define a "line" $P=\left\{\left(x_{1}, x_{2}\right) \in X: x_{2}=y_{2}\right\}$. The G_{1}-valued measure m on \mathscr{B} defined by $m(C)=m_{1}\left(p_{1}(C \cap P)\right)$, where p_{1} : $\bar{X} \rightarrow X_{1}$ is the canonical projection, vanishes on \mathscr{L}, and $m(A)=m_{1}\left(A_{1}\right) \neq 0$.

Theorem 3.4. Every horizontal sum of kernel logics is a kernel logic.
Proof. Let \mathscr{L} be the horizontal sum of kernel logics $\mathscr{L}_{i}, i \in I$. For carh $i \in I$, there is an algebra \mathscr{B}_{i} of subsets of a set X_{i} and a group-valued measure m_{i} on
 respective monomorphisms. We identify \mathscr{L} with $\bigcup_{i \in I} h_{i}\left(\mathscr{L}_{i}\right) \subset \mathscr{B}$. We shall prove that \mathscr{L} is a kernel logic.

Let $j, k \in I, j \neq k$, and denote by $p_{j, k}: X \rightarrow X_{j} \times X_{k}$ the canomcal projection. The class $\mathscr{L}_{j, k}=p_{j, k}\left(h_{j}\left(\mathscr{L}_{j}\right) \cup h_{k}\left(\mathscr{L}_{k}\right)\right)$ of subsets of $X_{j} \times X_{k}$ is isomorphic to the horizontal sum of \mathscr{L}_{j} and \mathscr{L}_{k}. For each $i \in I \backslash\{j, k\}$, we fix a $y_{i} \in X_{i}$. Consider a "plane"

$$
\begin{equation*}
P=\left\{\left(x_{i}\right)_{i \in I} \in X: x_{i}=y_{i} \text { for all } i \in I \backslash\{j, k\}\right\} \tag{P}
\end{equation*}
$$

If $A \in \mathscr{L}$, then $p_{j, k}(A \cap P) \in \mathscr{L}_{j, k}$ for all planes P of the form (P). The reverse implication is also true: If $A \notin \mathscr{L}$, there is a plane P of the form (P) (for suitably chosen $\left.j, k, y_{i}\right)$ such that $p_{j, k}(A \cap P) \notin \mathscr{L}_{j, k}$. According to Lemma 3.3, $\mathscr{L}_{j, k}=$ $\operatorname{Ker} \mu$ for some group-valued measure μ. The measure m on \mathscr{B} defined by $m(C)=$ $\mu\left(p_{j, k}(C \cap P)\right)$ vanishes at $\bigcup_{i \in I} h_{i}\left(\mathscr{L}_{i}\right)$ and $m(A) \neq 0$. According to Lemma 2.6, \mathscr{L} is a kernel logic.

Janowitz [5] introduced the class of constructible lattices-it is the smallest class of logics containing all Boolean algebras and closed under products and horizontal sums. Prop. 3.1 and Th. 3.4 have the following consequence.

Corollary 3.5. Every constructible logic is a kernel logic.
The following theorem states that every orthomodular poset is a homomorphic image of a kernel logic. Moreover, we can require the homomorphism to "preserve compatibility".

Theorem 3.6. Let \mathscr{L} be an orthomodular poset. There is a kernel logic \mathscr{K} and a homomorphism $h: \mathscr{K} \xrightarrow{\text { onto }} \mathscr{L}$ such that

1. the center of \mathscr{L} is the image of the center of \mathscr{K},
2. each finite compatible subset of \mathscr{L} is an image of a compatible subset of \mathscr{K}.

Proof. A concrete logic \mathbb{K} with the above properties is constructed in $[1,15$, Th. 2.2.5]. It is obtained as the Boolean power of a horizontal sum of Boolean algebras, so it is a kernel logic (Prop. 3.2 and Th. 3.4).

We must admit that, until now, we have failed to find a concrete logic which is not a kernel logic. It seems that the answer to the question: "Is every concrete logic a kernel logic?" is either negative or rather nontrivial.

4. Kernels of measures with values in special groups

We may require to express a kernel logic as $\operatorname{Ker} m$, where m attains values in a certain special group G. Despite some positive results, we shall show that this is not possible in general-for every group G there is a kernel logic which is not the kernel of a G-valued measure. Moreover, the choice of the set representation is also important, as we demonstrate by the following example.

Example 4.1. 1. Consider the OML MO_{3} ($=$ the horizontal sum of 3 Boolean algebras 2^{2}, see [6]). It can be represented as the class \mathscr{K}_{1} of subsets of a four-element set X_{1} such that $\mathscr{K}_{1}=\left\{A \subset X_{1}:\right.$ card A is even $\}$. This is the special case of Ex. 2.1
for $n=p=2$. According to Ex. $2.5, \mathscr{K}_{1}=$ Ker m_{1} for a measure $m_{1}: 2^{X_{1}} \rightarrow Z_{2}$. However, as a measure vanishing on \mathscr{K}_{1} has to be constant on all singletons. K_{1} camot be obtaine l as a kernel of a measure on $2^{X_{1}}$ with values in a group different from Z_{2}.
2. As $M O_{3}$ adınits 8 two-valued measures, its maximal representation K_{2} has a domain X_{2} with card $X_{2}=8$. One may identify the elements of X_{2} with the vertices of a cube so that K_{2} contains \emptyset, X_{2}, and each 4 -element set of vertices corresponding to a face of the cube. Then $\mathscr{K}_{2}=\operatorname{Ker} m_{2}$ for a Z-valued measure m_{2} on $2^{X=}$ described by Fig. 1 (it was obtained by a simplified technique of Th .3 .4 and Prop. 4.3). However, K_{2} is not a kernel of a Z_{2}-valued measure on $2^{X_{2}}$.

Fig. 1
3. Another set representation of $M O_{3}$ is the following: $X_{3}=\{1, \ldots, 6\}, \mathscr{K}_{3}$ contains $\emptyset,\{1,2,3\},\{2,3,4\},\{3,4,5\}$ and the complements of these sets. The algebra of subsets of X_{3} generated by \mathscr{K}_{3} is $2^{X_{3}}$. If m_{3} is a measure on $2^{X_{3}}$ such that $K_{3} \subset$ Ker m_{3}, then

$$
m_{3}(\{1,3,5\})=m_{3}(\{1,2,3\})+m_{3}(\{3,4,5\})-m_{3}(\{2,3,4\})=0
$$

so $\{1,3,5\} \in \operatorname{Ker} m_{3} \backslash \mathscr{K}_{3}$ and \mathscr{K}_{3} is not the kernel of any group-valued measure on $2^{X_{3}}$.
4. Checking all possible representations of MO_{3}, one may verify that there is no Z_{3}-valued measure whose kernel is isomorphic to MO_{3}.

The following theorem states that no group G is so "universal" as to admit the description of all kernel logics as kernels of G-valued measures.

Theorem 4.2. For each commutative group G, there is a kernel logic \mathscr{L} which is not isomorphic to the kernel of any G-valued measure.

Proof: Let $\mathscr{L}=\prod_{i \in I} \mathscr{L}_{i}$, where $\mathscr{L}_{i}=M O_{2}=\left\{0, a, b, a^{\perp}, b^{\perp}, 1\right\}(i \in I)$ and $\operatorname{card} I>\operatorname{card} G$. According to Prop. 3.1 and Th. 3.4, \mathscr{L} is a kernel logic. Let X be
a set of two-valued measures on $\mathscr{L}, \mathscr{K}^{\prime}$ a class of ulnots of \bar{X} representing \mathscr{L} and $r: \mathscr{L} \rightarrow \mathscr{K}$ the canonical isonnorphism.

For each $e \in M O_{2}$, denote he e^{i} the element of \mathscr{L} whose i-th coordinate is e aml all other coordinates are zeros. For each $i \in I, a^{i}$. b^{i} are nonorthogonal atoms of $\not \subset$ and there is only one tworahed measure, s_{i}, on iz sur that $s_{i}\left(a^{i}\right)=s_{i}\left(b^{i}\right)=1$: this measure necessarily belongs to X. Analogously. I contains the measures t, wh that $t_{i}\left(a^{i}\right)=t_{i}\left(\left(b^{\perp}\right)^{i}\right)=1(i \in I)$. Notice that each atom of \mathscr{L} is represented by a two-element subset of X. e.g. $\cdot\left(a^{i}\right)=\left\{s_{i}, t_{i}\right\}$.

Suppose that there is an algenra \mathscr{B} of subsets of X and a measure $m: \mathscr{B} \rightarrow G$ such that $\mathscr{K}^{\prime} \subset$ Ker m. Then $: \not \subset$ contains the Boolean subalgebra generated by \mathbb{K}^{K} and. in particular, all finite subsets of $\left\{s_{i}, t_{i}: i \in I\right\}$. Due to cardinality reasons, we have $m\left(\left\{s_{i}\right\}\right)=m\left(\left\{s_{j}\right\}\right)$ for some $i, j \in I, i \neq j$. This implies $m\left(\left\{s_{i}, t_{j}\right\}\right)=m\left(\left\{s_{j}, t_{j}\right\}\right)=$ $m\left(r\left(a^{j}\right)\right)=0$, so $\left\{s_{i}, t_{j}\right\} \in \operatorname{Ker} m$. If $\left\{s_{i}, t_{j}\right\} \in K^{\prime}$ then. as 1^{i} is a central element of $\mathscr{L},\left\{s_{i}\right\}=\left\{s_{i}, t_{j}\right\} \cap r\left(1^{i}\right) \in \mathscr{K}$. and $\left\{s_{i}\right\}$ becomes an atom in \mathscr{K}^{\prime} which is central a contradiction. So $\nVdash^{\prime} \varsubsetneqq$ Ker m.

There are still some important cases in which measures with values in certain groups are sufficient for the description of a class of kernel logics. For instance. for finite logics we can strengthen Cor. 3.5:

Proposition 4.3. Every finite constructible logic is the kernel of an integer-ralued measure.

Proof. The technique of the proofs of Prop. 3.1 and Th. 3.4 results in a set of Z-valued measures $m_{1} \ldots \ldots m_{n}$ such that $\mathscr{L}=\bigcap_{i}$ Ner m_{i}. There is an $M \in N$ such that the values of $m_{i} . i \leqslant n$, do not exceed the interval $(-M, M)$. Then $m=\sum_{i \leqslant n} M^{i} m_{i}$ is a Z-valued measure with $\mathscr{L}=\operatorname{Lier} m$.

5. An application logics with the Juili-Piron property

In the study of classes of subsets, we often have to investigate a class . \mathscr{K}^{\prime} of subsets of a set X such that \mathscr{K} contains a given collection $/ / / \subset 2^{X}$. It is usually difficult t_{0} determine the class of subsets generated by .// (or. at least, t o find a "small" class of subsets containing . //). Sometimes it took many years before the structure of a specific class of subsets was clarified, and nontrivial combinatorial reasoning has been utilized (see e.g. [10, 12, 19]). A collection of such problems appeared in the study of concrete logics which have some properties similar to those of Boolean algebras (see $[9,11])$. We show here that the answers can be efficiently obtained and described by means of kernel logics. In this approach, one finds an appropriate measure (or a
collection of measures, see Prop. 2.6) the kernel of which contains. It. It becomes (quite easy to check which sets belong to the corresponding class of subsets. As an (xample of this technique, we present here a construction of a non-Boolean kernel logic with the Jauch-Piron property.

A logic \mathscr{L} has the Jauch-Piron property [16] if, for each non-negative finite real-valued measure s, each $A . B \in$ Ker s have an upper bound $C \in \operatorname{Ker} s$ (i. c... if Kier, with C is a directed set). Obviously, all Boolean algebras satisfy the JauchPiron property. The question has arisen whether there are non-Boolean concrete logics with the Jauch-Piron property. This problem was formulated e.g. in [11. 14] and remained open for several years. An affirmative answer was given in [8]. Here we find a family of such examples among kernel logics. We shall make use of the following lemma which is mentioned, without proof. in [8].

Lemma 5.1. Let \mathbb{K} be a class of subsets satisfying the following property:
(A) For each $A, B \in, K^{\prime}$ there are uncountable families $\left(C_{t}\right)_{t \in T},\left(D_{t}\right)_{t \in T}$ of elements of \mathscr{L} such that $\left(C_{t}^{\prime}\right)_{t \in T}$ is disjoint and $C_{t} \cup D_{t}=A \cap B(t \in T)$.
Then \mathscr{K}^{K} has the Jauch-Piron property.
Proof. Let m be a measure on K^{K} such that $m\left(A^{\perp}\right)=m\left(B^{\perp}\right)=0$. As T is mucomitable. $m\left(C_{u}\right)=0$ for some $u \in T$. As $D_{u}^{\perp} \backslash B^{\perp} \subset A^{\perp} \cup C_{u} \in$ Ker m. we oltain $m\left(D_{u}^{\perp}\right)=0$ for $D_{u}^{\perp} \supset A^{\perp} \cup B^{\perp}$.

Example 5.2. There are kernel logics which are not Boolean algebras and satisfy the Jauch-Piron property.

Let II $^{\text {b }}$ be the union of two disjoint uncountable sets U, V. We denote by \mathscr{C} the Boolean algebra of all finite and cofinite subsets of W. Measure $\mu: \mathscr{C} \rightarrow Z$ is unicucly determined by the following rules:

$$
\begin{aligned}
& \mu(\{u\})=1 \text { for all } u \in U, \\
& \mu(\{u\})=-1 \text { for all } v \in T, \\
& \mu(I I)=1 .
\end{aligned}
$$

Take an infinite set I and one other element. say $1 \notin I$. We construct the free product: $\mathscr{A}=\mathbb{F}_{i \in I_{1}} \mathscr{B}_{i}$, where $I_{1}=\{1\} \cup I$ and $\mathscr{B}_{i}=\mathscr{C}\left(i \in I_{1}\right)$. We denote $\boldsymbol{b}_{\mathrm{y}} h_{i}$: $\mathscr{R}_{i} \rightarrow$ 为 the corresponding monomorphisms. We define measures $m_{i}: \mathscr{B}_{i} \rightarrow Z$ so that $m_{i}=\mu$ for all $i \in I_{1}$. Let $\varrho_{1}: \mathscr{B}_{1} \rightarrow Z$ be the two-valued measure attaining 1 exactly on all cofinite sets. We define a measure $m: / B \rightarrow Z$ by the formula

$$
m=\prod_{i \in I_{1}} m_{i}-\varrho_{1} \cdot \prod_{i \in I} m_{i}
$$

We claim that $\mathscr{L}=$ Ker m has the required properties. (The subtraction of ${ }^{\prime}$ ensured that $m\left(1_{B B}\right)=0$. In fact. m can be constructed as a product $\nu_{1} \cdot \prod_{i \in I} m_{i}$. where $\nu_{1}=m_{1}-\varrho_{1}$. However. we could not apply immediately he standard construction because $\nu_{1}\left(1 \mathscr{B}_{1}\right)=0 \neq 1$.)

Fo see that \mathscr{L} is not Boolean, take $u \in U, u^{\prime}, u^{\prime \prime} \in \mathcal{I}, u^{\prime} \neq v^{\prime \prime}$. Then $\left.h_{1}(\{u\}):\right\}$ $h_{1}\left\{\left\{u^{\prime}\right\}\right), h_{1}(\{u\}) \cup h_{1}\left(\left\{r^{\prime \prime}\right\}\right) \in \mathscr{L}$, while their intersection $h_{1}(\{u\}) \notin \mathscr{L}$.

It remains to prove that the condition (M) of Lemman $\bar{i} 1$ is satisfied. Let $A, B \in \notin$ and let T be a set of the first uncountable cardinalit: If $A \cap B \in \mathscr{L}$, we ma: choose $C_{t}=0, D_{t}=A \cap B$. If $A \cap B \notin \mathscr{L}, A \cap B$ contains a subset of the form $E=\bigcap_{i \in F} h_{i}\left(\left\{e_{i}\right\}\right)$, where F is a finite subset of I_{1} and $c_{i} \in W$. Notice that $m(E)= \pm 1$. Put $n=m(A \cap B) \in Z \backslash\{0\}$. We fix a $j \in I \backslash F$ and choose mutually disjoint sets $U_{t} \subset U, V_{t} \subset V$ with card $U_{t}=$ card $V_{i}=|\mu|(t \in T)$. It suffices to take $C_{t}=E \cap h_{j}\left(U_{t} \cup V_{t}\right), D_{t}=(A \cap B) \backslash\left(E \cap h_{j}\left(Y_{t}\right)\right)$, whene $Y_{i}=L_{t}^{Y_{t}}$ if $m(A \cap B) \cdot m(E)>0$ and $Y_{t}=V_{t}$ otherwise. Lemma 5.1 completes the proof.

Remark 5.3. We have constructed a collection of new examples. The original example of Miiller [8] is a proper sublogic of each of these.

References

[1] Binder, J.: A Loomis-Sikorski theorem for logics. Math. Slovaca 38 (1988), 367-371.
[2] Drossos, C.A.: Boolean methods and Pták's sum. To appear in Compositio Math.
[3] Grätzer. G.: Universal Algebra. Springer-Verlag, New York/Heidelberg/Berlin, 1979.
[4] Gudder, S.P., Zerbe, J.: Generalized monotone convergence and Radon-Nikodym theorems. J. Math. Physics 22 (1981), 2553-2561.
[5] Janowitz, M.F.: Constructible lattices. J. Austr. Math. Lioc. 14 (1972), 311-316.
[6] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983.
[7] Mayet-Ippolito, A.: (ieneralized orthomodular posets. Demonstratio Math. 24 (1991). 263-274.
[8] Müller, V.: Jauch-Piron states on concrete quantum logics. Int. J. Theor. Phys. 32 (1993), 433-442.
[9] Müller, V., Pták, P., Tkadlec, J.: Concrete quantum logics with covering properties. Int. J. Theor. Phys. 31 (1992), 843-854.
[10] Navara, M.: When is the integral on quantum probability spaces additive? Real Analysis Exchange 14 (1989), 228-234.
[11] Navara, M., Pták, P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111.
[12] Olejček, V :: Generation of a $q-\sigma$-algebra in the plane. Proc. Conf. Topology and Measure V, Greifswald. 1988, pp. 121-125.
[13] Pták, P.: Summing of Boolean algebras and logics. Demonstratio Math. 19 (1986), 349-358.
[14] Pták, P.: FAT \leftrightarrow CAT (in the state space of quantum logics). Proc. 1st Winter School on Measure Theory, Liptovský Ján. 1988, pp. 113-118.
[15] Pták. P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.
[16] Rüttimann. G.T.: Jauch-Piron states. J. Math. Phys. 18 (1977), 189-193.
[17] Sikorski, R.: Boolean Algebras. Springer-Verlag, Berlin, 1969.
[18] Suppes, P.: The probabilistic argument for a nonclassical logic of quantum mechanics. Philos. Sci. 33 (1966), 14-21.
[19] Zerbe. J.E. Gudder, S.P.: Additivity of integrals on generalized measure spaces. J. Comb. Theory (A) 30 (1985), 42-51.
[20] Zierler, N., Schlessinger, M.: Boolean embeddings of orthomodular sets and quantum ingic. Duke Math. J. 32 (1965), 251-262.

Author's address: Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, 16627 Praha 6 , Czech Republic, email navara@math.feld.cvut.cz.

[^0]: ${ }^{1}$ The author gratefully acknowledges the support oif the EC grant PECO 3510 PL 9221.17 and of the grant no. 201/93/0953 of (irant Agency of ('zech Republic

