Czechoslovak Mathematical Journal

Cihan Orhan; Ö. Çakar
Some inclusion theorems for absolute summability

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 599-605
Persistent URL: http://dml.cz/dmlcz/127322

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SoME INCLUSION THEOREMS FOR ABSOLUTE SUMMABILITY
 C. Orlinn and Ö. ('AKAR, Ankara ${ }^{\text {ºn }}$

(Received March 1.1. 1994)

1. Introduction

Let $\sum x_{n}$ be an infinite series with partial sums s_{n}, and let $A=\left(a_{n v}\right)$ be a lower semi-matrix with nonzero diagonal entries. By $\left(T_{n}\right)$ we denote the A-transform of the sequence $s=\left(s_{n}\right)$, i.e.

$$
\begin{equation*}
T_{n}=\sum_{v=0}^{n} a_{n v} s_{v} \quad(n=0,1,2 \ldots) . \tag{1}
\end{equation*}
$$

The series $\sum x_{n}$ is said to summable $|A|_{k}(k \geqslant 1)$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

(see e.g. [4]).
In the special case of $A=\left(a_{n \prime}\right)$ being a Riesz matrix. i.e., weighted mean matrix, we shall write $\left|R, p_{n}\right|_{k}$ for summability $|A|_{k}$. The case in which $k=1$ reduces to the usual absolute weighted mean summability $\left|R, P_{n}\right|$. Recall that a wedelted mean matrix is defined by

$$
a_{n k}=p_{n} / P_{n} \text { for } 0 \leqslant 1 \leqslant n
$$

and

$$
a_{n v}=0 \text { for } r>n
$$

where $\left(p_{n}\right)$ is a sequence of positive real mumbers and

$$
P_{n}=p_{0}+p_{1}+\ldots+p_{n}, \quad P_{-1}=0
$$

[^0]Throughout the paper, we suppose that $I_{n}^{\prime} \rightarrow \infty$ as $n \rightarrow \infty$.
In this paper, using functional analytic techniques. we give necessary and sufficient conditions for the series $\sum r_{n}$ to be summable $|A|_{k}\left(l_{i} \geqslant 1\right)$. whenever it is summable $\left|R, p_{n}\right|$, from which we deduce some knonw results.

2. The main restia

Given a lower semi-matrix $A=\left(a_{n v}\right)$, we introduce two lower semi-matrices $\bar{A}=$ $\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{aligned}
\bar{a}_{n v} & =\sum_{i=v}^{n} a_{n i} ; n, v=0,1,2 \ldots \\
\hat{a}_{n v} & =\bar{a}_{n v}-\bar{a}_{n-1, v} ; n=1,2 \ldots, \\
\hat{a}_{00} & =\bar{a}_{00}=a_{00}, \\
\hat{a}_{n v} & =\bar{a}_{n v}=0 \text { if } v \geqslant n .
\end{aligned}
$$

Since A is a lower semi-matrix, so is \hat{A}.
We also note that

$$
T_{n}=(A s)_{n}=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \sum_{i=v}^{n}=a_{i n} \cdot r_{v}=\sum_{v=0}^{n} \bar{a}_{n v} x_{v}
$$

and

$$
\begin{equation*}
T_{n}-T_{n-1}=\sum_{v=0}^{n}\left(\bar{a}_{n v}-\bar{a}_{n-1, v}\right) x_{v}=\sum_{v=0}^{n} \Delta \hat{a}_{n v} x_{v} \tag{3}
\end{equation*}
$$

where $s_{v}=x_{0}+x_{1}+\ldots+x_{v}$ and $\bar{a}_{n-1, n}=0$.
Using this notation, we have

Theorem. $\left|R, p_{n}\right|$ summability implies $|A|_{k}(k \geqslant 1)$ summability if and only if

> (i) $\left|\hat{a}_{v v}\right| \frac{P_{v}}{p_{v}}=O\left(v^{\frac{1}{k}-1}\right)$,
> (ii) $\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta \hat{a}_{n v}\right|^{k}\right)^{1 / k}=O\left(\frac{p_{v}}{P_{v}}\right)$
> (iii) $\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\hat{a}_{n, v+1}\right|^{k}\right)^{1 / k}=O(1)$
where $\Delta \hat{a}_{n v}=\hat{a}_{n v}-\hat{a}_{n, v+1}$.

Proof. Necessity. Let t_{n} be the Riesz means of $\sum x_{v}$, i.e.

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v^{\prime}-1}\right) x_{v} .
$$

Now we have

$$
\begin{align*}
c_{n} & :=t_{n}-t_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} p_{v-1} x_{v}, \quad n \geqslant 1, \tag{4}\\
c_{0} & :=x_{0}
\end{align*}
$$

and

$$
\begin{align*}
C_{n} & :=T_{n}-T_{n-1}=\sum_{v=0}^{n} \hat{a}_{n v} x_{v}, \quad n \geqslant 1, \tag{5}\\
C_{0} & :=x_{0} .
\end{align*}
$$

We are given that $\left|R, p_{n}\right| \Longrightarrow|A|_{k}, k \geqslant 1$. Hence

$$
\begin{equation*}
\sum_{n-1}^{\infty} n^{k-1}\left|C_{n}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\sum\left|c_{n}\right|<\infty \tag{7}
\end{equation*}
$$

The spaces of sequences $\left(x_{v}\right)$ satisfying (6) and (7) are $B K$-spaces (i.e., Banach spaces with continuous coordinates) if normed by

$$
\begin{equation*}
\|C\|=\left(\left|C_{0}\right|^{k}+\sum_{n=1}^{\infty} n^{k-1}\left|C_{n}\right|_{i}^{k}\right)^{1 / k} \quad \text { and } \quad\|c\|=\sum_{n=1}^{\infty}\left|c_{n}\right| \tag{8}
\end{equation*}
$$

respectively.
Observe that (5) transforms the space of sequences satisfying (7) into the space of sequences satisfying (6). Applying the Banach-Steinhaus theorem, we find that there is a constant $M>0$ such that

$$
\begin{equation*}
\|C\| \leqslant M\|c\| \tag{9}
\end{equation*}
$$

for all sequences satisfying (7). Applying (4) and (5) to the sequence $x=e_{v}-e_{v+1}$, where e_{v} is the $v^{\text {th }}$ coordinate vector, we see that

$$
c_{n}=\left\{\begin{array}{ll}
0 ; & n<v \\
\frac{p_{v}}{P_{v}} ; & n=v \\
\frac{-p_{v} p_{n}}{P_{n} P_{n-1} ;} & n>v
\end{array} \quad \text { and } \quad C_{n}= \begin{cases}0 ; & n<v \\
\hat{a}_{v v} ; & n=v \\
\hat{a}_{n v}-\hat{a}_{n, v+1} ; & n>v\end{cases}\right.
$$

By (8), it follows that

$$
\|c\|=\frac{2 p_{v}}{P_{v}} \text { and }\|C\|=\left(v^{k-1}\left|\hat{a}_{v v}\right|^{k}+\sum_{n=k+1}^{x} n^{k-1}\left|\Delta \hat{a}_{n v}\right|^{k}\right)^{1 / k}
$$

By (9), we have

$$
v^{k-1}\left|\hat{a}_{v v}\right|^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta \hat{a}_{n \cdot v}\right|^{k} \leqslant(\cdot 2 M)^{k}\left(\frac{p_{v}}{P_{v}}\right)^{k} .
$$

Since this holds for any $v \geqslant 1$, we get the necessity of (i) and (ii). To prove the necessity of (iii), we again apply (4) and (5) to the serpuence $x=e_{v+1}$. Hence we get that

$$
c_{n}=0 \quad \text { if } \quad n<v+1
$$

and

$$
c_{n}=\frac{P_{v} p_{n}}{P_{n} P_{n-1}} \text { if } n \geqslant v+1
$$

and also

$$
C_{n}=0 \quad \text { if } n<v+1
$$

and

$$
C_{n}=\hat{a}_{n, v+1} \quad \text { if } \quad n \geqslant \imath+1 .
$$

By (8) we have

$$
\|c\|=1 \text { and }\|C\|=\left(\sum_{n=v+1}^{\infty} n^{k-1}\left|\hat{a}_{n, \cdot+1}\right|^{k}\right)^{1 / k}
$$

It follows from (9) that

$$
\left(\sum_{n=r+1}^{\infty} n^{k-1}\left|\hat{a}_{n, v+1}\right|^{k}\right)^{1, k}=()(1)
$$

which implies the necessity of (iii).
Sufficiency. By (4), we have

$$
\begin{equation*}
x_{v}=\frac{P_{v}}{p_{v}} c_{v}-\frac{P_{v-2}}{p_{v-1}} c_{v-1} ; \quad \Gamma_{-1}=p_{-1}=0 . \tag{10}
\end{equation*}
$$

Inserting (10) in to (5), we may write

$$
\begin{aligned}
C_{n} & =\sum_{v=0}^{n} \hat{a}_{n v, x_{v}}=\hat{a}_{n 0} c_{0}+\sum_{v=1}^{n} \hat{a}_{n, v}\left(\frac{P_{v}}{p_{v}} c_{v^{\prime}}-\frac{P_{v-2}}{p_{v-1}} c_{v-1}\right) \\
& =\hat{a}_{n 0} c_{0}+\hat{a}_{n n} \frac{P_{n}}{p_{n}} c_{n}+\sum_{v=1}^{n-1}\left(\hat{a}_{n v} P_{v}-\hat{a}_{n, v+1} P_{v-1}\right) \frac{c_{v}}{p_{v}} \\
& =\sum_{v=0}^{n-1}\left(\hat{a}_{n v} P_{v}-\hat{a}_{n, v+1} P_{v-1}\right) \frac{c_{v}}{p_{v}}+\hat{a}_{n n} \frac{P_{n}}{p_{n}} c_{n} .
\end{aligned}
$$

Since

$$
\hat{a}_{n v} P_{v}-\hat{a}_{n, v+1} P_{v-1}=P_{v} \Delta \hat{a}_{n v}+p_{v} \hat{a}_{n, v+1},
$$

we have

$$
C_{n}=\sum_{v=0}^{n-1}\left(\frac{P_{u}}{p_{v}} \Delta \hat{a}_{n v}+\hat{a}_{n, v+1}\right) c_{v}+\hat{a}_{n n} \frac{P_{n}}{p_{n}} c_{n} .
$$

Now set $H_{n}:=n^{1-\frac{1}{k}} C_{n}, n \geqslant 1$. Then we get

$$
H_{n}=\sum_{v=1}^{n} u_{n v} c_{v}
$$

where

$$
u_{n v}= \begin{cases}n^{\left(1-\frac{1}{k}\right)} \cdot\left(\frac{P_{v}}{p_{v}} \Delta \hat{a}_{n v}+\hat{a}_{n, v+1}\right) ; & 1 \leqslant v \leqslant n-1, \\ n^{\left(1-\frac{1}{k}\right)} \cdot \frac{P_{n}}{p_{n}} \hat{a}_{n n} ; & v=n, \\ 0 ; & v>n .\end{cases}
$$

Hence, $\sum x_{v}$ is summable $|A|_{k}, k \geqslant 1$, whenever $\sum x_{v}$ is summable $\left|R, p_{n}\right|$ if and only if

$$
\sum\left|H_{n}\right|^{k}<\infty \quad \text { whenever } \sum\left|c_{n}\right|<\infty
$$

or equivalently, if and only if the matrix $U=\left(u_{n v}\right)$ maps l_{1} into $l_{k}, k \geqslant 1$, where

$$
l_{k}=\left\{x=\left(x_{v}\right): \sum_{v}\left|x_{v}\right|^{k}<\infty\right\} .
$$

Nonetheless. it is well-known that the matrix U maps l_{1} into $l_{k}, k \geqslant 1$, if and only if

$$
\sup _{v} \sum_{n=1}^{\infty}\left|u_{n v}\right|^{k}<\infty
$$

(see e.g. [3], Theorem 5, p. 167).

By the definition of $U=\left(u_{n},\right)$, we have

$$
\sum_{n=v}^{\infty}\left|u_{n v}\right|^{k}=v^{k-1}\left(\frac{P_{n}}{p_{n}}\left|\hat{a}_{n n}\right|\right)^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left|\frac{P_{v}}{p_{v}} \Delta \hat{a}_{n v}+\hat{a}_{n, n+1}\right|^{k} .
$$

Hence the conditions (i)-(iii) imply that $\sum_{n=v}^{\infty}\left|u_{n v}\right|^{k}=O(1)$ as $v \rightarrow \infty$, whence the result.

Taking the matrix $A=\left(a_{n v}\right)$ to be the weighted mean matrix $\left(R, q_{n}\right)$ where $q_{v}>0$ for each v and $Q_{n}=q_{0}+q_{1}+\ldots+q_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we deduce some known results and list them below:

Corollary 1 ([5]). $\left|R, p_{n}\right| \Rightarrow\left|R, q_{n}\right|_{k}, k \geqslant 1$ if and only if

$$
\begin{align*}
& \frac{q_{v} P_{v}}{Q_{v} p_{v}}=O\left(v^{\frac{1}{k}-1}\right) \tag{i}\\
& q_{v}\left(\sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\right)^{1, k}=O\left(\frac{p_{v}}{P_{v}}\right) \\
& Q_{v}\left(\sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\right)^{1 / k}=O(1)
\end{align*}
$$

Proof. Apply Theorem with $A=\left(a_{n v}\right)$ a weighted mean matrix $\left(R, q_{n}\right)$. ()b, serve that, in this case,

$$
\hat{a}_{n v}=\frac{q_{n} Q_{v-1}}{Q_{n} Q_{n-1}} \quad \text { and } \quad \Delta \hat{a}_{n v}=\hat{a}_{n v}-\hat{a}_{n, \cdots+1}=\frac{-q_{n} q_{v}}{Q_{n} Q_{n-1}} \text {. }
$$

Corollary 2 ([2]). $\left|R, p_{n}\right| \Rightarrow\left|R, q_{n}\right|$ if and only if

$$
\begin{equation*}
q_{v} P_{v}=O\left(Q_{v} p_{v}\right) \tag{11}
\end{equation*}
$$

Proof. Apply Corollary 1 with $k=1$.
Note that Corollary 2 has been obtained also by Sunouchi [6] in the sufficient form. When reviewing that paper Bosanquet has observed that condition (11) is not only sufficient but also necessary for $\left|R, p_{n}\right| \Rightarrow\left|R, q_{n}\right|$.

When $p_{n}=1$ for all n, the $\left|R, p_{n}\right|$ summability is the same as $|C, 1|$ summability. Hence, using Theorem, one can write the necessary and sufficient conditions for $|C, 1| \Rightarrow|A|_{k}, k \geqslant 1$, immediately. So we omit the details.

3. Concluding remarks

(a) Taking $A=\left(a_{n v}\right)$ to be the weighted mean matrix $\left(R, q_{n}\right)$ and defining

$$
p_{v}=a^{v} \quad \text { and } \quad q_{v}=(v+1)^{\alpha}
$$

where $a>1$ and $\alpha>-1$, one can see that

$$
\frac{P_{v}}{p_{v}} \sim \frac{a}{a-1} \quad \text { and } \quad Q_{v} \sim \frac{v q_{v}}{\alpha}
$$

Hence conditions (i)-(iii) of Theorem hold.
(h) If we take that matrix $A=\left(a_{n v}\right)$ to be the weighted mean matrix $\left(R, p_{n}\right)$, then by the condition (i) of Theorem, we must have

$$
v^{1-\frac{1}{k}}=O(1)
$$

which is impossible when $k>1$. This means that there is a series $\sum x_{n}$ which is $\left|R, p_{n}\right|$ summable but not $\left|R, p_{n}\right|_{k}, k>1$ summable. Actually, such a series is constructed in [5].

References

[1] L.S. Bosanquet:Mathematical Reviews 11 (1950), 654.
[2] G. Das: Tauberian Theorems for Absolute Nörlund Summability. Proc. London Math. Soc. 19 (1969), 357-384.
[3] I.J. Maddox: Elements of Functional Analysis. Cambridge University Press, 1970.
[4] C. Orhan: On Absolute Summability. Bull. Inst. Math. Acad. Sinica 15 (1987), 433-437.
[5] C. Orhan and M.A. Sarigöl: On Absolute Weighted Mean Summability. Rocky Mountain J. Math. 23 (1993), 1091-1097.
[6] G. Sunouchi: Notes on Fourier Analysis XVIII, Absolute Summability of a Series with Constant Terms. Tohoku Math. Journal 2 (1949), 57-65.

Author's address: Department of Mathematics, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey.

[^0]: ${ }^{1}$ This paper was supported by the Scientific and Technical Research Council of Turkey (TBAC(CCO2).

