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ON S T R O N G D I G R A P H S W I T H A P R E S C R I B E D U L T R A C E N T E R 
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STEVE J. W I N T E R S , Oshkosh 

(Received July 11, 1994) 

Surmnary. The (directed) distance from a vertex u to a vertex v in a strong digraph D 
is the length of a shortest u-v (directed) path in D. The eccentricity of a vertex v of D 
is the distance from v to a vertex furthest from v in D. The radius radD is the minimum 
eccentricity among the vertices of D and the diameter diamD is the maximum eccentricity. 
A central vertex is a vertex with eccentricity rad D and the subdigraph induced by the 
central vertices is the center C(D). For a central vertex v in a strong digraph D with 
rad D < diamD, the central distance c(v) of v is the greatest nonnegative integer n such 
that whenever d(v,x) ^ n, then x is in C(D). The maximum central distance among the 
central vertices of D is the ultraradius uradD and the subdigraph induced by the central 
vertices with central distance uraclD is the ultracenter UC(D). For a given digraph D, the 
problem of determining a strong digraph H with UC(H) = D and C(H) ?- D is studied. 
This problem is also considered for digraphs that are asymmetric. 

1. INTRODUCTION 

The distance d(u, v) between two vertices u and v in a connected graph G is 

the length of a shortest u v path. The eccentricity e(v) of a vertex v of G is the 

distance between v and a vertex furthest from v. The minimum eccentricity among 

tlie vertices of G is the radius radG of G, and tlie maximum eccentricity is the 

diameter diamG. A vertex whose eccentricity is radG is called a central vertex. The 

subgraph of G induced by its central vertices is the center C(G) of G. The center of 

a connected graph has been the subject of much study In [4], Winters introduced a 

subgraph of C(G) which is, in a certain sense, more central than the center itself. 

For a central vertex v in a connected graph G with radG < diamG the central 

distance c(v) is the greatest nonnegative integer n such that whenever d(v, x) -$ n 
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for a vertex x of G, then x is a central vertex. The maximum central distance among 
the central vertices of G is the ultraradius uradG of G, and the subgraph of C(G) 

induced by those central vertices v with c(v) = uradG is the ultracenter UC(G) of 
G. Chartrand, Novotny and Winters studied the ultracenter further in [1]. Among 
the results presented is that for every graph G, there exists a connected graph H 

such that UC(H) = G and C(H) ^ G. Furthermore, the minimum order of such a 
graph H is 4 more than the order of G. It is the object of this paper to study the 
analogous concepts for digraphs. 

The (directed) distance d(u*v) from a vertex u to a vertex v in a strong digraph 
D is the length of a shortest u-v (directed) path in D. The eccentricity e(y) of 
a vertex v of D is the distance from v to a vertex furthest from v. The minimum 
eccentricity among the vertices of D is called the radius rad D of D and the maximum 
eccentricity is the diameter diamD. A vertex v in a strong digraph D is called a 
central vertex if e(v) = radD. The subdigraph induced by the central vertices of D 

is called the center C(D) of D. Two vertices u and v are adjacent in a digraph D if 
D contains at least one of the arcs (u,v) and (v,u). If (u,v) is an are of D, then u 

is adjacent to v, and v is adjacent from u. A digraph D is asymmetric if whenever u 

and v are adjacent in D, then exactly one of the arcs (u,v) and (U,H) is present in 
D. Chartrand, Johns, and Tian [2] showed for every asymmetric digraph D, there 
exists a strong asymmetric digraph H with C(H) — D. In [3], Shaikh showed for 
every (not necessarily asymmetric) digraph D, there exists a strong digraph H such 
that C(H) = D. 

Let v be a central vertex of a strong digraph D with radD < diam D. The central 

distance c(v) of D is the largest nonnegative integer n such that whenever d(v, x) ^ n 

the vertex x is in the center of D. Let ??i = max{c(i')}, where the maximum is taken 

over all central vertices v of D. The subdigraph of C(D) induced by those vertices 

v with c(v) = m is called the ultracenter of D, which we denote by UC(D). The 

number m is referred to as the ultraradius of D and is denoted by uradD. 

For example, each vertex of the digraph D of Figure 1 is labeled with its eccen

tricity. Thus, radD = 6 and diamD = 9. Furthermore, each central vertex of D is 

labeled with its central distance and so uradD = 3. 

Let D be a strong digraph with radD < diamD. If v is a vertex with central 

distance k then there is a path P: v — VQ, V\, V-2, v%* • • •, Vk+i of length k + 1 from 

v to a vertex v^+i not in the center of D. Thus, c(v,) = k - i for 0 ^ i ^ k. The 

following theorem is a consequence of this observation. 

Theorem 1. Let D be a strong digraph with radD < diamD and uradD = m. 
For each integer i (0 ^ i ^ m), there exists a central vertex ui with c(ui) = i. 
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D: 

6«h 
w 

-46 

C(D): 1 
w 

UC(D): o 
u 

Figure 1. The center and ultracenter of a strong digraph 

Let D be a strong digraph with radI) < diamI} and uradP) = m. If some 
vertex of UC(D) is adjacent to a noncentral vertex, then, by definition, m = 0. So, 
C(D) = UC(D). Thus, if m ^ 1, then there are no vertices in UC(D) adjacent to 
noncentral vertices. In a special case, we can provide information about the structure 
of the ultracenter of a strong digraph. 

Theorem 2, Let D be a strong digraph with rad D < diam D. If there is a unique 

central vertex of D that is not in the ultracenter of D, then UC(D) is connected. 

P r o o f . Let x be the central vertex of D that does not belong to the ultracenter. 
Suppose, to the contrary, that UC(D) is disconnected. Let v be a vertex of D such 
that d(x,v) = e(x). Suppose, first, that v does not belong to C(D). Let w be a 
vertex of UC(D) that is adjacent to x, that is, c(w) = 1. Consequently, uradI} = 1 
and every vertex of UC(D) is adjacent to x. Hence d(w,v) = 1 + d(x,v), and so 
e(w) > e(x), which is impossible. Therefore, v belongs to UC(D). 

Let u be a vertex in UC(D) such that u and v belong to distinct components of 
UC(D). Then each u-v path contains x. Thus, e(u) ^ d(u,v) ^ l+d(x,v) = l+e(.x), 
contradicting the fact that u and x have the same eccentricity. • 

2. T H E ULTRACENTRAL APPENDAGE NUMBER OF DIGRAPHS 

The minimum number of vertices needed to be added to a digraph D to produce 
a strong digraph H such that UC(H) = D and C(H) / D is called the ultracentral 
appendage number of D and is denoted by ua(D). Such a digraph H is called a 
minimum idtracentral superdigraph of D. Since H contains a central vertex that is 
not in D, and H contains a noncentral vertex, ua(D) ^ 2. The central appendage 
number A(D) of a digraph D is the minimum number of vertices that must be added 
to D to produce a digraph H such that C(H) = D. The central appendage number 
was studied by Shaikh [3], who showed that 0 ^ A(D) ^ 3 for every digraph D. 
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For example, consider D = 2A\, where V(D) = {u,v}. The strong digraph H of 
Figure 2 has the property that UC(H) = D but C(H) 7- D. In fact, C(H) contains 
the vertices x and y as well. Thus, ua(D) ^ 3. If ua(D) = 2, then there is a 
unique central vertex of a minimum ultracentral superdigraph H that is not in the 
ultracenter of H. So by Theorem 2 UC(H) is connected, producing a contradiction. 

Therefore, ua(D) ^ 3, which gives ua(D) = 3. 

H: 

D: 
IL 
O 

Figure 2. A digraph ultracentral appendage number 3 

We now show that every digraph has ultracentral appendage number 2 or 3. 

Theorem 3. The ultracentral appendage number of every digraph D is well-

defined and 2 ^ ua(D) ^ 3. 

P r o o f . Let D be a digraph and let H be the strong digraph obtained from D 
by adding the vertices x\, x2, and y and the arcs indicated in Figure 3. Thus, x± 
and x2 are adjacent to and from every vertex of D. Observe that all vertices of D 
and xi and x2 are central vertices, while y is not. Also UC(H) = D. Thus ua(D) 
is well-defined and ua(D) ^ 3. We have previously noted that ua(D) ^ 2 for every 
digraph D and thus 2 ^ ua(D) ^ 3. • 

# : 

Now we show that the bounds presented in Theorem 3 are sharp. 

Theorem 4. If D is a nontrivial digraph containing a vertex v such that 

do(u,v) ^ 2 for all vertices u in D, then ua(D) = 2. 
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P r o o f . By Theorem 3, ua(D) ^ 2. Let D' = D - v. The strong digraph 
H shown in Figure 4 is an ultracentral superdigraph for D. The vertex x is then 
adjacent to and from every vertex of D'. Thus, ua(D) ^ 2 . D 

H: 

Figure 4 

We have already seen that if D = 2K\, then ua(D) = 3. We next show the 
existence of an infinite class of digraphs with ultracentral appendage number 3. 

Theorem 5. If D is a digraph containing no vertex that is reachable from all 
other vertices of D, then ua(D) = 3. 

P r o o f . Assume, to the contrary, that ua(D) = 2. Let H be a minimum 
ultracentral superdigraph for D, where x is the central vertex of H that is not in D 

and y is the noncentral vertex of H. Let w be a venex of H such that d(x, w) = e(x). 

Since x must be adjacent to y and e(x) > I, we must have w G V(D). Let u 

be a vertex of D different from w. If some shortest u — w path contains x, then 
d(u,w) ^ 1 + e(x), which gives e(u) > e(x), producing a contradiction. Therefore, 
there exists a u — w path in D for every vertex u of D, giving the desired result. D 

Corollary 6. If D is a disconnected digraph, then ua(D) = 3. 

3. T H E ASYMMETRIC ULTRACENTRAL APPENDAGE NUMBER 

OF ASYMMETRIC DIGRAPHS 

In this section we consider only asymmetric digraphs. For an asymmetric di
graph I), we define the (asymmetric) ultracentral appendage number ua*(D) of D 
as the minimum number of vertices to be added to D to produce an asymmetric 
digraph H with UC(H) = D and C(H) ^ D. The (asymmetric) central appendage 
number A*(D) was studied by Chartrand, Johns, and Tian [2], who showed that 
0 ^ A*(D) <: 4 for all digraphs D. 

Theorem 7. For every asymmetric digraph D, ua*(D) exists and 3 ^ ua*(D) ^ 5. 
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# ' : 

Figure 5 

P r o o f . Let D be an asymmetric digraph. Tlie digraph H' of Figure 5 is 
obtained by adding the vertices v, w, x, y, z and all those arcs so that every vertex 
of D is adjacent to both v and w, and adjacent from x. Therefore, H' is strong and 
asymmetric with UC(H') = D and C(H') 7- D. Thus ua*(D) exists and ua*(D) ^ 5. 

Since every ultracentral superdigraph of D contains a central vertex that is not in 
D and a noncentral vertex, ua*(D) ^ 2. Suppose, to the contrary, that ua*(D) = 2. 
Then there is a minimum ultracentral superdigraph H of D containing two vertices 
that are not in D. Let x be the central vertex that is not in D and let y be the 
noncentral vertex of H. Necessarily x is adjacent to /;, and every vertex of D is 
adjacent to x. Let z G V(H) such that e(x) = d(x, z). 

Since e(x) > 1, we have that z G V(D). Consequently, d(x,z) = d(y,z) + 1 
Certainly, 

max d(y,w) = d(y,z). 
weV(D) v 

Since e(y) > e(x), it follows that e(y) = d(y,x). Since d(y,x) = 2, it follows that 

e(y) = 2, which implies that y belongs to UC(H), producing a contradiction. • 

Next, we show that the lower bound given in Theorem 7 for ua*(D) cannot be 
improved in general. For example, consider D = K\. and let V(D) = {u}. The 
asymmetric digraph H' in Figure 6 has the property that UC(H') = D but C(H') ^ 
D. Thus ua*(D) = 3. However, A*(D) = 0 in this case. 

# ' : 

Figure 6. ua*(Ki) = 3 

If D is an asymmetric disconnected digraph, then we can improve the upper bound 

presented in Theorem 7. 

Theorem 8. For every disconnected digraph D, 3 ^ ua*(D) ^ 4. 



P r o o f . Assume that D is an asymmetric disconnected digraph, where D\ is one 

component of D and D 2 is the union of the remaining components. By Theorem 7, 

ua*(D) ^ 3. The digraph H in Figure 7 is obtained by adding to D the four vertices 

u, U, x, y and the arcs (u,v), (̂ ^^y), (v,x), (v,y), as well as all those arcs such that 

x is adjacent to e\ery vertex of D\, y is adjacent to every vertex of D 2 , and u and 

v are adjacent from every vertex of D. Since UC(H) = D and C(H) ^ D, if follows 

that ua* (D) ^ 4. • 

Я : 

We have seen that there exists an asymmetric digraph D with ua*(D) = 3. We 

now show that an asymmetric digraph exists with ultracentral appendage number 4. 

T h e o r e m 9. There exists an asymmetric digraph D with ua*(D) = 4. 

P r o o f . Let D =" 2KX. By Theorem 8, either ua*(D) = 3 or ua*(D) = 4. 

Suppose, to the contrary, that ua*(D) = 3. Let H be a minimum ultracentral 

superdigraph (necessarily of order 5) such that UC(H) = D and C(H) ^ D. Let 

V(H) = {u,v,w,x,y} and suppose that UC(H) = {{u,v}). By Theorem 2, there 

must be two central vertices of H that are not in the ultracenter of H. Suppose that 

w and x are these vertices. We consider two cases. 

Case 1. Suppose that uradH = 2. Then c(u) = c(v) = 2. Also, exactly one of w 

and x must have central distance 1, say c(w) = 1 and so c(x) = 0. This situation is 

illustrated in Figure 8. 

w x V 
— > o • o 

Figure 8. A sub digraph of H 
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No further arcs from u or v can be present in H since c(u) = c(v) = 2. Thus, 
d(u,v) ^ 3 and so radH ^ 3. Since e(x) < e(y), at least one of the arcs (x,u) and 
(x,v) must be present in H, say (x,u). Since e(a:) ^ 3, neither (x,v) nor (H,D) is 
present in H. This, however, implies that H is not strong, producing a contradiction. 

Case 2. Suppose that uradH = 1. Thus, both w and x are adjacent to y. Also, 
since H is strong, y must be adjacent to at least one of u and v, say u. Furthermore, 
each of u and v is adjacent to at least one vertex of C(H). We consider two subcases 
according to the number of vertices of C(H) to which u and v are adjacent. 

Subcase 2.1. Suppose that each of u and v is adjacent to exactly one vertex of 
C(H). First, suppose that u and v are adjacent to the same vertex, say w. Since H 
is strong, every vertex of H is adjacent from at least one vertex. Consequently, x is 
adjacent from w. Thus far we have the digraph shown in Figure 9. 

Figure 9. A subdigraph of H 

The vertex v is adjacent from at least one vertex as well. Necessarily, at least one of 
x and y is adjacent to v. In either case, e(w) = 2, which implies that e(u) = e(v) = 2. 
However, then, h contains a u-v path of length 2, which is impossible. 

Therefore u and v are adjacent to distinct vertices, say u. is adjacent to w, and v is 

adjacent to x. Now either y or w is adjacent to v. If y is adjacent to v, then e(y) = 2, 

which is impossible. Thus, w is adjacent to v, so c(w) = 2. Thus, e(u) = e(U) = 2 

and x is adjacent to u (see Figure 10). 
Since d(x,v) = 2, the arc (x,w) belongs to H. At present, however, d(u,x) = 3, 

and no further arcs can be added. This contradicts that fact that e(u) = 2. 

Subcase 2.2. Suppose that at least one of u and v is adjacent to two vertices of 
(7(H). In this case, y is not adjacent to v, for otherwise e(y) = 2. This implies 
that not both u and v are adjacent to both w and T. Since v is adjacent from some 
vertex, it follows that u is adjacent to w and x; while v is adjacent to one of w and 
x, and adjacent from the other. Suppose that v is adjacent to w (see Figure 11). 
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Figure 10. A subdigraph of H Figure 11. A subdigraph of H 

Then e(x) = 2 and e(u) = e(v) = 2. This, however, implies that d(v,u) = 2, which 

is not the case. If v is adjacent to x, than e(w) = 2; so e(u) = e(v) = 2. However, 

than, d(v,u) = 2, and again this is not the case. D 

Thus, ua*(2Ki) = 4 while ua(2K\) = 3. We next describe a sufficient condition 

for a disconnected asymmetric digraph to have ultracentral appendage number 3. 

T h e o r e m 10. Let D = DiUD2, where D\ and D2 are strong asymmetric digraphs 

such that diamDi ^ 3, diamL>2 ^ 3, and L>, ̂  Kx. Then ua*(D) = 3. 

P r o o f . By Theorem 8, ua*(D) ^ 3. The digraph H of Figure 12 obtained by 

adding the vertices x, y, and z and all those arcs such that x is adjacent from and 

y is adjacent to every vertex of D\, y is adjacent from and x is adjacent to every 

vertex of D2, and z is adjacent to a single vertex of D\. Then each vertex of H has 

eccentricity 3, except z, in which case e(z) = 4. Thus, H has the desired properties 

and ua*(D) ^ 3. So ua*(D) = 3. D 

Я : 

Figure 12 

We now turn our attention to connected asymmetric digraphs. 

T h e o r e m 11. If D is a strong asymmetric digraph with diamD = 2, then 

ua*(D) = 3. 
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P r o o f . We construct the strong digraph H of Figure 13 by adding three vertices 
x, y and z and all those arcs such that y and z are adjacent to every vertex of D, and x 
is adjacent from every vertex of D. Since UC(H) = D and C(H) = (V(D) U {x,z}), 
it follows that ua*(D) =3. • 

H: 

Figure 13 

We now show that there is a connected asymmetric digraph having ultracentral 
appendage number 4. 

Theorem 12. There exists a connected asymmetric digraph D with ua*(D) = 4. 

P r o o f . Let D be the digraph shown in Figure 14. We show that ua*(D) = 4. 
We now construct the asymmetric digraph F of Figure 14 by adding the vertices t, 
x, y, and z to D together with the indicated arcs. Then the central vertices of F are 
u, v, w, x, and y, and the ultracentral vertices are u, v, and iv. Thus UC(F) = D; 
so ua*(D) ^ 4. Consequently, it remains only to show that ua*(D) ^ 3. 

D: 

w 

Figur e 14 

Assume, to the contrary, that ua*(D) = 3. Let H be a minimum ultracentral 
superdigraph for D with V(H) = {u,v,w,x,y,z}. We consider three cases. 

Case 1. Assume that there are exactly two vertices not in the center of H, say 
y and z. Thus, all vertices of D are adjacent to x and, without loss of generality, 
(x,y) G E(H) (see Figure 15). Since u is in UC(H) and y and z are not central 
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vertices, neither (u,y) nor (u,z) is present in H. Thus, dn(u,w) > 2 and radH > 2. 
Since v is adjacent to u, w, and x and e(v) > 2, it follows that (x, 2) $ E(H). Since 
H is strong, (y,z) G F?(H) and at least one of (y,v) and (z,v) is an arc of H. If 
(H,U) G E(H), then e(u) -= 2, producing a contradiction; while if (z,v) G E(H), then 
e(z) = 3 and z is a central vertex of H, also producing a contradiction. 

x y 

Figure 15 

0 

z 

Figure 16 

Case 2. Assume that there is exactly one vertex, say z, not in the center of H 
and uradH = 2. Then there is a vertex, say y, such that c(y) = 0 and a vertex, say 
x, with c(x) = 1. Therefore, all vertices of D are adjacent to x and (x,y) and (y,z) 
are present in H (see Figure 16), while (u,y), (u,z), and (x,z) cannot be present 
in H. Thus, radH > 2 because d(u,w) > 2. Since H is strong, at least one of 
(y,v) and (z,v) is in H. If (y,v) G E(H), then e(u) -= 2, producing a contradiction. 
If (z,v) G E(H), then e(z) = 3 and 2 is a central vertex of H, again producing a 
contradiction. 

Case 3. Assume that uradH = 1 and that there is exactly one vertex, say z, not 
in the center of H. Consequently, (x,z) and (y, z) are in H. Suppose that rad H = 2. 
Then d(u,w) = 2. Thus, without loss of generality, the arcs (u,x) and (x,w) are 
present in H. Similarly, (w,y) and (y,u) are present in H, giving d(w,u) = 2. Also, 
since d(u,v) = 2, it follows that (x.f) G E(H). Similarly, (y,v) G E(H) since 
J(Hj, U) = 2. This produces the subdigraph in Figure 17. Now there are no arcs that 
can be added to allow d(v,z) to be less than 3, producing a contradiction. Thus, 
radH ^ 3. Since each of u, v, and w must be adjacent to one of x and y, it follows 
that x or y, say x, must be adjacent from at least two of u, v, and w. We consider 
three subcases. 

Subcase 3.1. Assume that all three vertices u, v, and w are adjacent to x. Since 
radH ^ 3, it follows that e(v) ^ 3. Thus, d(v,y) = 3 (see Figure 18). However, this 
is impossible. 

Subcase 3.2. Assume that only u and v are adjacent to x. Since H is strong, w is 
adjacent to y. Thus, e(v) = 2, producing a contradiction. 
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Figure 17 Figure 18 

Subcase 3.3. Assume that only u and w are adjacent to x. Since H is strong 

(v,y) £ E(H). Thus, e(v) = 2, again producing a contradiction. • 

We close with one lingering question: Does there exist an asymmetric digraph D 

with ua*(D) = 5? If such a digraph D exists, it must surely be connected. Indeed, 

if D is strong, then diamD ^ 3. 
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