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Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

ENUMERATING LEFT DISTRIBUTIVE GROUPOIDS 

JAROSLAV JEZEK, P r a h a 

(Received October 27, 1995) 

0 . INTRODUCTION 

Suppose that we want to enumerate all groupoids (i.e., algebras with one mul-
tiplicatively denoted binary operation) on a given finite set A of n elements that 
satisfy a given finite collection E of equations. The groupoids can be identified with 
their multiplication tables, and we can suppose that A = {0, l , . . . , r a - l } . A simple 
algorithm can do the task: generate the tables of all groupoids on A according to 
their lexicographic order, and for each groupoid check if it satisfies the equations 
from E. Of course, this can work in a reasonable time for very small numbers n only, 
as the number of all tables is nn . With n = 5, we would have to check 525 tables, 
which is already too much. 

If the collection E is sufficiently strong, the number of groupoids satisfying E 
on a set of n elements can be essentially smaller than the number of all groupoids. 
So, one can ask for a faster algorithm, avoiding large intervals in the lexicographic 
ordering for which it is clear from a simple reason that they cannot contain a table 
satisfying E. One such algorithm is given in Section 3 of this paper. The algorithm 
is written in the language C, but does not use any hard to understand features of the 
language. It is formulated for the special case of E consisting of the left distributive 
law. 

This algorithm makes it possible to find the number of isomorphism types of n-
element left distributive groupoids for both n = 5 and n = 6. The numbers are given 
in Section 4. 

Let P be a partial groupoid. By an LD-extension of P we mean a left distributive 
groupoid G with the underlying set P , such that xy = z in P implies xy = z in G. 
If xy is defined in P for the pairs x,y with x = y and no other ones, then P can be 
identified with a monounary algebra. In Section 1 we investigate the collection of 
LD-extensions of a given monounary algebra. We determine under what conditions 
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there exists precisely one LD-extension, and for some monounary algebras we are 
able to give a simple description of all the LD-extensions. The conjectures to some 
of the results were obtained by running a version of the algorithm given in Section 3. 

In Section 2 we are concerned with finite zeropotent left distributive groupoids. 
We prove that all of them satisfy the equation x(yz) = 0, and find recursive formulas 
for their enumeration. 

In two related papers [6] and [7], finite left distributive groupoids with one gen­
erator are completely described. Related are also the papers [1], [2], [3], [4], [5], [8], 
[9], and [10]. 

1. FINITE LEFT DISTRIBUTIVE GROUPOIDS EXTENDING 

A GIVEN MONOUNARY ALGEBRA 

Let (A, x') be a monounary algebra (i.e., an algebra with one unary operation). By 
an LD-extension of (A,x') we shall mean an LD-groupoid (A,xy) such that xx = x' 

for all x G A. 

Let (A,x') be given. If a G A, then a^ is defined for any nonnegative integer i 

recursively in the following way: a^ = a and a^t+1) = a'̂  . The set {a^ : i ^ 0} is 
called the orbit of a. Two elements of A are called connected if their orbits are not 
disjoint. This relation on A is an equivalence; its blocks will be called components 
of (A,xf). 

Let C be a component of (A,x'). The intersection of all orbits of elements of C 
is called the cycle of C. The cycle is nonempty and coincides with the orbit of any 
of its elements. An element a G A is called irreducible if there is no element b with 
a = b'. 

Of course, every LD-groupoid is an LD-extension of precisely one monounary 
algebra. Given an LD-groupoid G, we put x' = xx for every x G G, introduce the 
notation x^ and speak about orbits and components with respect to this monounary 
algebra. 

1.1. Lemma. Let (A,xy) be an LD-extension of (A, x'). Then: 

(1) (ab)' = ab' for any a,b G A; 
(2) if b is in the orbit of a, then ab = b'. 

P r o o f . (1) (ab)' = ab-ab = abb = ab'. 

(2) Let us prove aa^ = a^i+1) by induction on i. For i = 0 it is clear. If i > 0, 
then aa^ = a • a ^ 1 ^ " 1 ) = aa^~1^ • aa^~^ = a^a^ = a<i+1). • 
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1.2. Theorem. Every monounary algebra (A, x') has at least one LD-extension 

(A,xy), e.g.,xy = y'. 

A monounary algebra (A, x') has a unique LD-extension if and only if it has only 

one component and, for any irreducible element a G A, a" = b' implies b = a'. 

P r o o f . If xy = y' for all x, y G A, then x • yz = z" = xy • xz and (.A, xy) is an 
LD-extension of (A, x'). 

Let (A,x') have more than one component. We are going to show that then 
(A,x') has at least two different LD-extensions. If every component consists of a 
single element (so that x' = x for all x), then xy = x and xy = y are two different 
LD multiplications on A, both satisfying xx = x. So, we can assume that there is a 
component D with at least two elements. Take another component C 7-= D. We can 
define multiplication on A by xy = y if x G C and y G D, and xy = y' in all other 
cases. Clearly, xx = x' for all x, and there are pairs x,y with xy ^ y'. It remains 
to prove x • yz = xy • xz for all x,y,z. If z £ D, then x • yz = z" = xy • xz. Let 
z G D. If x £ C and y £ C, then x • yz = z" = xy • xz. If x G C and y G C, then 
x • yz = z = xy • xz. If precisely one of the elements x and y belongs to C, then 
x • yz = z' = xy • xz. 

Let a G A be an irreducible element and suppose that there is an element b 7-= a! 
such that a" = b'. Define multiplication on A by a"a = b and xy = y' whenever 
(x,y) 7- (a",a), lib ^ a, then it is easy to see that x • yz = z" for all x,y,z; but 
then also xy • xz = z" and we get x • yz = xy • xz. If b cannot be taken different 
from a, then A has only two elements and it is easy to verify that the multiplication 
is also left distributive in this case. Clearly, xx = x' for all x and xy = y' fails for 
(x,y) = (a", a). Hence (A,x') has at least two different LD-extensions. 

Now let (A,x') have only one component and let a" = b' imply b = a' for any 
irreducible element a. Let (A, xy) be an LD-extension of (A, x'). It remains to prove 
that xy = y' for all x,y G A. By Lemma 1.1(2), if a belongs to the cycle, then 
xa = a' for any x G A. 

Let b be an irreducible element. Put bi = b^ for all i. By Lemma 1.1(2), bibj = b'j 
for i ^ j . Let us prove, by induction on i, that bibj = b'j for all j . For i = 0 this has 
been proved, so let i > 0. If j > 0, then 

bibj = bi-ibi-i • bi-ibj-i = bi-i • bi-ibj-i = b{-ibj = b'j, 

so it remains to prove bibo = b'Q. We have (bibo)7 = bibo = &-&i = &2 = b"\ since b is 
irreducible, this implies b;bo = b' = bo-

In particular, we get ay = y' for any element a of the cycle and any element y. 
By the depth of an element x G A we shall mean the least nonnegative integer i 
such that a:M belongs to the cycle. Let us prove xy = y' by induction on the depth 
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of a;. If a: is of depth 0, then x belongs to the cycle and we are through. Let x be 
of a positive depth. The depth of x' is less then the depth of x, so x'y = y' for all 
y by induction. Let b be an irreducible element. As before, it is sufficient to prove 
xbi = bi+i for all i, where bi = b^. Let us proceed by induction on i. Take any 
element a in the cycle. Since (xb)' = a • xb = ax • ab = x'b' = b" and b is irreducible, 
we have xb = b', i.e., xbo = 61. For i > 0, 

xbi = # • bi-ibi-i = xbi-i * xbi-i = bibi = 6t-+i. 

This proves xy = y' for all x, y G A. • 

1.3. Lemma. Let G be a finite LD-groupoid and let a, b be two elements of G 

such that b belongs to a cycle and ab = b^ for some k ^ 0. Then a^b^ = b(/c+-7) 
for all i and j . 

P r o o f . By Lemma 1.1, ab^ = b(fc+-7') for all j . Now it is sufficient to prove 
aa - b = 6^). We have aa • b^ = aa • ab = a • ab = ab^ = &(*+*), so that 
aa • 6^+^) = b(fc+/c+-7') for all j ^ 0. Since b belongs to a cycle, for a suitable j this 
means that aab = b^. • 

Let r i i , . . . , nd (where d ^ 1) be positive integers; for every pair i,j of elements of 

{ 1 , . . . , d} with i 7-= j let m-ij be a number from {0 , . . . , nj — 1}. We denote by Hnii7ni j 

the groupoid with the underlying set {(i, k): i G { 1 , . . . , d}, k G {0 , . . . , n; - 1}} and 

multiplication given by 

(hk)(jj) = (j,l+jmij) 

where ra^; = 1 and +j denotes addition modulo nj. 

1.4. Theorem. Hniyfnid is an LD-groupoid of cardinality n\ +.. . + nd and with 

cycles of cardinalities n\,..., nd. 

Let n\,... ,nd be positive integers such that ni is not a multiple of nj for any 

i ^ j . Then every LD-groupoid of cardinality n\ +... + nd with cycles of cardinalities 

n\,... ,nd is isomorphic to Hni>mii for some collection of numbers m-ij (i ^ j) as 

above. There are precisely (ni?i2 . •. nd)
d~l isomorphism types of such groupoids. 

P r o o f . The first assertion is straightforward. Let G be an LD-groupoid which 

is the disjoint union of cycles of mutually prime cardinalities n i , . . . , ^ . Define a 

bijection / of {(i, k): i G { 1 , . . . , d}, k G {0 , . . . , n{ - 1}} onto G in the following way. 

For every i G { 1 , . . . ,d} let f(i,0) be an arbitrarily chosen element of the cycle of 

cardinality m, and put f(i,k) = /(i,0) ( fc ) for all k. By Lemma 1.1, f(i,k)f(i,l) = 

f(i,l+il)-
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Let i ^ j . By Lemma 1.1, (/(t,0)/(j,0))<n-0 = /(t,0)/(j,0); since n5 is not 

a multiple of any other number from {ni,. . . ,nd), it follows that /(*,0)/(j,0) = 

(j,mij) for precisely one number mij G {0,... ,nj — 1}. By Lemma 1.3 we get 

f(i, k)f(j, 1) = (j, I +j ruij) for all k and I. The last assertion follows easily. • 

1.5. Example . The partition of an LD-groupoid into components is not neces­

sarily a congruence. The following five-element LD-groupoid is a counterexample: 

a b c d e 

a b a d d d 

b b a e d d 

c a b c d e 

d <x b c d e 

e a b c d e 

Let us take n + 2 elements a, 6, c i , . . . , c n for some positive integer n. For every pair 

M, N of subsets of {ci,..., cn} and every reflexive relation R on {ci,..., cn} denote 

by EM,N,R the groupoid with the underlying set {a, 6, c i , . . . , cn} and multiplication 

given by 

xa = a, 

xb = a, 

aci = l 

bci = < 

CiCj = 

b for CІ Є M, 

a for CІ £ M, 

b for CІ Є N, 

a for CІ Ą. ІV, 

í ò for (І,J)ЄR, 

\a {ov(iJ)£R. 

1.6. Theorem. Let (A,x') be the monounary algebra with the underlying set 

A = {a, b, c i , . . . ,cn} and the operation a' = b' = a, c\ = b. The collection of 

groupoids EM,N,R is just the collection of all LD-extensions of (A, x'). 

P r o o f . The groupoids EM,N,R are left distributive, since xyz = a for all x, y, z\ 

clearly, they are LD-extensions of (A,x'). Conversely, let G be an LD-extension of 

(A,x>). 

By Lemma 1.1 we have xa = a for all x, and Cib = a. 
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Suppose ab = b. If also be; = b for some i, then a = bb = b-bci = bb-bci = ab = b, 
a contradiction. Since b • aa = a, we cannot have bcz- = Cj. Hence bci = a for all i. 
Now a = Cia = Ci • bci = Cib • CiCi = ab = b, a contradiction. 

We have proved ab 7- b. If ab = a, then a- bb = aa, i.e., aa = b, a contradiction. 
Hence ab = a. In total, xb = a for all x. 

Since rrc; • xci = a; • c^c; = xb = a, we get xci G {a, b} for all x. Now it is clear that 

G = EM,N,R for some M, 1V, R. • 

1.7. Corollary. There are precisely 2n(n+1) LD-extensions of the monounary 
algebra (A,xf) from 1.6. The number of isomorphism types of the LD-extensions is 
the same as the number of isomorphism types of n-element relation systems with 
two unary relations and one binary reflexive relation. 

2. FINITE ZEROPOTENT LEFT DISTRIBUTIVE GROUPOIDS 

A groupoid is called zeropotent if it satisfies xx • y = y • xx = xx. Equivalently, a 
groupoid G is zeropotent if it contains a zero element 0 and xx = 0 for all x G G. 

2.1 . Theorem. A finite zeropotent groupoid (with zero 0) is left distributive if 

and only if it satisfies x • yz = 0. 

P r o o f . Let G be a finite zeropotent groupoid with zero 0. If G satisfies x-yz = 0, 
then x • yz = 0 = xy • xz and G is left distributive. Conversely, let G be left 
distributive. By a bad triple we shall mean a triple a, b, c of elements of G with 
a • be 7-= 0; we need to prove that there is no bad triple. 

Since ab • ac = a • be, we get: if a, b, c is a bad triple, then also ab, a, c is a bad 
triple. 

For any pair a, b of elements of G, define an infinite sequence Ff' (i = 0,1, • • •) 
of elements of G as follows: 

P£>b = a, P^b = ab, P%
a'b = P?l\P?lb

2 for i > 2. 

It is easy to see that 
r>a6,a rya.,b 

ri — ri+l 

for any a,b £ G and any i ^ 0. 
Let us prove by induction on i that oPf' = 0. We have OPQ ' = aa = 0 and 

aP?'b = aab = aaab = 0ab = 0. For i> 2, aP°'b = a • P°l\P°lb
2 = aP°l\ • aP**2 = 

00 = 0. 
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Let us prove by induction on i ^ 1 that P a ' • P^l^c — a - be for any elements 
a,b,c £ G. For i = 1 this is just the left distributive law. If i ^ 2, then we can use 
the induction hypothesis: 

pa,b pa,6 p a , 6 p a , 6 pa,b _ pa,6 pa,b _ v 
r i r i - \ c ~ M-l-i-2 ^ i - l 0 - "H-l M-2C — a 0 C ' 

Let us prove by induction on n ^ 0 that if a, b, c is a bad triple, then the 
elements P^'6 , • • • P^,b are pairwise different. For n = 0 there is nothing to prove. Let 
n ^ 1. By the induction hypothesis applied to a, b, c, the elements PQ' , • • • ,P^ l i 
are pairwise different. By the induction hypothesis applied to the triple a6, a, c 
(which is also bad), the elements PQ 'a , • • •, P^-'i are also pairwise different. Since 
P a 6 ' a = P ^ i , the elements P^b,-",P^b are pairwise different. So, it remains 
to prove PQ' 6 7-= P^'6. Suppose, on the contrary, that a = P^b- Then a - be = 

P a ' 6 • -Pn-ic = a ' K-\c = aK-i • ac -= 0 • ac = 0, a contradiction. 
So, we have proved that if there is a bad triple a, b, c, then all members of the 

infinite sequence P a ' (i = 0,1, • • •) are pairwise different, a contradiction with the 
finiteness of G. • 

2.2. Corollary. The number of zeropotent left distributive groupoids with a 

given underlying set ofn elements and a given zero element 0 is given by 

n-2 

t('-*> i=0 

where 
Cjfc,o = 1 , 

m — 1 r v 

Ckt- = (m + i)(»-*-D(»-2) - 2 ( m ) c , ) i for0<mO. 
t=0 ^ * ' 

P r o o f . It is easy. Let G be a set of n elements with a fixed element 0 € G. For 
a given k-element subset K of G — {0} and a given m-element subset M of K, Ck,m 
is the number of the groupoids such that K = {xy: x,y 6 G} — {0} and xa = 0 for 
all a; G C7, a G K. U 

2.3. Example. For n = 2,3,4,5,6 the numbers are, respectively, 1, 3, 52, 5681, 
and 6026496. 

Although it seems probable that the assumption of finiteness in Theorem 2.1 can­
not be eliminated, the author has not been able to find the corresponding example. 
The question remains open: 
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2.4. Conjecture . There are infinite zeropotent left distributive groupoids not 

satisfying x • yz = 0. 

This is equivalent to the following: 

2.5. Conjecture . The term x • yz is not equivalent to any term containing a 

subterm tt, for any term t, with respect to the equational theory of left distributive 

groupoids. 

It is easy to see that the two conjectures are equivalent. The negation of 2.4, 
together with Theorem 2.1, would be equivalent to saying that x • yz = uu is a 
consequence of the left distributive law together with xx • y = y • xx = xx. If 
x • yz = uu is a consequence, then there exists a formal proof of the equation, a finite 
sequence of terms wo, • • • ,wn such that WQ = x • yz, wn = uu and, for any i > 0, 
the equation wi-\ = W{ is an immediate consequence of either x • yz = xy • xz or 
xx • y = xx or y • xx = xx; if n is the last index such that W{-\ = Wi is an immediate 
consequence of the distributive law, then clearly wn contains a subterm tt for some 
term t, and x • yz = wn is a consequence of the left distributive law. The converse 
implication is clear. 

3. T H E ENUMERATION ALGORITHM 

The following fragment of a C program can be used to find the number of LD-
extensions of a given monounary algebra on n elements. We need two arrays A and B 
of the size n2 . A holds the multiplication table, which is generated in the lexicographic 
order. The array B holds information on the current state of A; if B[ i]= j < i, then 
the value of A [i] was forced by A [j] and should be kept unchanged until A [i] is 
changed; this makes it possible to skip over intervals in the lexicographic order. In 
particular, B[i] = - 1 means that A[i] should never be changed. 

The function Verify() deals with the table A which may also contain the number 
— 1, meaning that the corresponding place is undefined and A is the table of a partial 
groupoid. The function returns 

—1 if the partial groupoid was found contradictory, 
0 if no completion was done, 
1 if at least one completion was done. 

Here is the fragment (for n ^ 26): 

#include <stdio.h> 

in t n , n l , n n , n n l , P ; long in t N=0L,NI=0L; in t A[676]; i n t B[676]; 
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int Verify ( I ){ int i , j , k , a , b , c , d , e , p , q , Z = 0 ; 
for( i=0;i<n;i++)for(j=0;j<n;j++){ 

c=A[n*i+j];if(c>=0)for(k=0;k<n;k++){ 
d=A[n*i+k];a=A[n*j+k];if(a>=0&&d>=0){ 

p=n*i+a;q=n*c+d;b=A[p];e=A[q]; 
if(b>=0&&e<0){A[q]=b;B[q] =1;Z=l;} 
e l s e if(b<0&&e>=0){A[p]=e;B[p]=I;Z=l;} 
e l s e if(b>=0&&b!=e)return -1;}}} 

return Z;} 

int FindNext(I){ 

while(I>=0&&(A[I]==nl| |B[I]<I))I—; 

if(I>=0)A[I]++; return I;} 

void MakePartial(I){ int i; 

for(i=I+l;i<nn;i++)if(B[i]>=I){A[i]=-l;B[i]=nn;P++;}} 

void MakeComplete(I){ int i; 

P=0;for(i=I+l;i<nn;i++)if(A[i]==-l)A[i]=0;} 

void Process(){ N++;} 

void main(){ int i,I,V,a,b,c; char s[80];] 

printf ( '' \nlnput cardinality of groupoid: ' }) ; scanf (' "/,d'' , &n) ; 

nl=n-l;nn=n*n;nnl=nn-l; 

for( i=0;i<nn;i++){A[i]=0;B[i]=nn;} 
d o { s c a n f ( ' 7 . s , , , s ) ; 

if(strlen(s)==3){a=s[0]-,a,;b=s[l]-,a,;c=s[2]-,a,; 

A[n*a+b]=c;B[n*a+b]=-1;}} 

while(strlen(s)==3); 

I=nnl;P=0; 

while(I>=0){ 

do V=Verify(I); while(V==1&&P); 

if(!V&&P){MakeComplete(I);I=nnl;V=Verify(I);} 

if(!V)Process(); 

I=FindNext(I);MakePartial(I);} 
pr intf ( ' ' N='/.ld\n'', N) ;} 

Of course, one may ask for more than simply counting the number of multiplication 
tables. The changes should be done in the function Process() , which is called each 
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time when a new valid table was found. For example, one may be interested in finding 
the number of isomorphism types. It is not necessary to store all the preceding tables 
in order to check if the current table is isomorphic to one of them. Since the tables 
are found in the lexicographic order, it is sufficient to ask if the new table can be 
isomorphic to one which came in the lexicographic order earlier, and this can be done 
by checking all permutations of the underlying aset. There are no requirements on 
either space or memory in the program. To make the program more user friendly, 
changes in the function main() should be done. 

One is often interested in enumerating not all tables, but only those that are 
extensions of a given partial groupoid. For that purpose one can append 

A[n*i+j]=k; B[n*i+j]=-l ; 
to the fifth line of the function main(), for each item ij = k of the given partial 
groupoid. 

4. SIX-ELEMENT GROUPOIDS 

The numbers of all left distributive groupoids and of all isomorphism types of left 
distributive groupoids on a given set of two, three, four, five and six elements are 
given in the following table: 

Elements: 2 3 4 5 6 

Groupoids: 9 224 14067 3717524 

Iso types: 6 48 720 33425 35527485 

For six elements, we did not count the number of groupoids. Instead, the iso­
morphism types were divided into 130 groups according to the isomorphism types 
of their diagonals. There are 130 isomorphism types of monounary algebras on six 
elements. For each of them, the number of isomorphism types of LD-extensions was 
computed using the algorithm described in Section 3. 

Let us denote the six elements by a, b, c, d, e, / . For a 6-tuple a i , . . . , a6, denote 
by JV(ai, • • •, ae) the ordered pair (n,ra) where n is the number of LD-extensions of 
the monounary algebra on a, b, c, d, e, / with a' = a\, b' = a 2 , . . . , / ' = a6, and ra is 
the number of their isomorphism types. Among the 130 cases, there were nineteen 
with n ^ 105: 

N(baaabb) = (122263,15426), N(aaaaaa) = (160006292,1342744), 
N(acaaaa) = (47321604, 7902069), N(addaaa) = (30826684,7721940), 
N(acaeaa) = (15399116,7701169), jY(aeeeaa) = (15405702,2581806), 
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N{addafa) = (14348907,7184295), N{affffa) = (1048576,45960), 

N{abbbbb) = (1403331,61166), N{abdbbb) = (384558,193263), 

N{abeebb) = (226518,114520), N{abdbfb) = (138240,69489), 

N{aacccc) = (178839,31039), N{abcccc) = (250078,24965), 

N{abcddd) = (294766,31215), N{abccee) = (110569,29150), 

N{abcdfe) = (121736,5891), N{abcdee) = (1049690,51254), 

N{abcdef) = (17711155,32541). 
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