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BOUNDS ON THE SUBDOMINANT EIGENVALUE INVOLVING

GROUP INVERSES WITH APPLICATIONS TO GRAPHS

Stephen J. Kirkland1, Regina, Michael Neumann2, Storrs, Bryan

L. Shader3, Laramie

(Received October 10, 1994)

Abstract. Let A be an n × n symmetric, irreducible, and nonnegative matrix whose
eigenvalues are λ1 > λ2 � . . . � λn. In this paper we derive several lower and upper
bounds, in particular on λ2 and λn, but also, indirectly, on µ = max

2�i�n
|λi|. The bounds are

in terms of the diagonal entries of the group generalized inverse, Q#, of the singular and
irreducible M-matrix Q = λ1I −A. Our starting point is a spectral resolution for Q#. We
consider the case of equality in some of these inequalities and we apply our results to the
algebraic connectivity of undirected graphs, where now Q becomes L, the Laplacian of the
graph. In case the graph is a tree we find a graph-theoretic interpretation for the entries of
L# and we also sharpen an upper bound on the algebraic connectivity of a tree, which is
due to Fiedler and which involves only the diagonal entries of L, by exploiting the diagonal
entries of L#.

1. Introduction

Let A be an n×n nonnegative irreducible matrix whose eigenvalues are λ1, . . . , λn.

Assume that the Perron root of A is λ1, so that λ1 is also its spectral radius. Let

µ := max
i�=1

|λi|.

The importance of λ1 in all sorts of applications, e.g., the convergence of iterative
methods for solving nonsingular systems of equations in the presence of nonnegative

1Research supported in part by a University of Regina Grad Studies Special Project Grant
and NSERC Grant No. OG0138251.

2Research supported by NSF Grant No. DMS-9306357.
3Research partially supported by NSA Grant No. MDA904-94-H-2051.
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iteration matrices, is well known. But, for example, in iterative methods for solving

singular systems, in the presence of a nonnegative iteration matrix whose powers
converge, we have that λ1 = 1 and it is µ which governs the asymptotic rate of
convergence of the scheme, see, for example, Berman and Plemmons [2] and Neumann

and Plemmons [12] and references therein. In the special case when A is a transition
matrix for a regular Markov chain, µ serves as the coefficient of ergodicity. In this

context µ measures the asymptotic rate at which the stationary distribution vector
can be approached starting from an arbitrary initial distribution vector, see Seneta

[14].
Subdominant eigenvalues of nonnegative matrices also arise in a graph-theoretic

context. Specifically, suppose that A = A(G) is an adjacency matrix of a loopless
undirected graph G. Let D = D(G) be the diagonal matrix whose diagonal entries
are the corresponding vertex degrees, where by the degree of a vertex is meant the
number of edges incident to the vertex. The matrix L = L(G) := D−A is known as

the Laplacian of G. Let
d = max

1�i�n
di.

Then L can be written as

L = dI − [diag(d− d1, . . . , d− dn) +A] =: dI −M.

Letting the eigenvalues ofM be d = λ1 � λ2 � . . . � λn, we see that the eigenvalues
of L are 0 � d−λ2 � . . . � d−λn. Fiedler [5] has shown that G is a connected graph
if and only if the second smallest eigenvalue of L (i.e. d− λ2) is positive and he has
used that quantity, which is called the algebraic connectivity of G, as a measure of
the connectivity of G. We see then that once again the subdominant eigenvalue λ2
comes into play. In various papers, see for example Merris [10] or Powers [13], upper

and lower bounds for the degree of connectivity are developed. (We, in fact, refer
the reader to the three papers [5], [10], and [13] for more background material on

graph definitions and properties used in this paper.)
Recently Meyer [8] has obtained upper bounds on the reciprocals of certain ex-

tremal subdominant eigenvalues associated with ergodic Markov chains in terms of
the so called group inverse associated with the chain. Let A be an irreducible sto-

chastic matrix whose eigenvalues are λ1 = 1, λ2, . . . , λn. Put Q = I −A and let Q#

be its group generalized inverse. Meyer has shown that

(1.1)
1

nmin
i�=1

|1− λi|
� max
1�i,j�n

|Q#i,j| �
2(n− 1)

(1− λ2) . . . (1− λn)
.

From these inequalities we see that Q# furnishes information about the subdominant
eigenvalues of A and Meyer goes on to consider the implications that this has to the
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theory of Markov chains. In the case whenQ is symmetric, then min(|1−λi|) = 1−λ2

and, as Q# is positive semidefinite, the maximal element in absolute value of Q#

must occur on the main diagonal. A rearrangement of the inequality (1.1) yields the
following upper bounds on λ2:

1− (1− λ2) . . . (1− λn)
2n(n− 1) � 1− 1

n

1

max
1�i�n

Q#i,i
� λ2.

In this paper we develop lower and upper bounds for the second largest and the

smallest eigenvalues, respectively, of a nonnegative symmetric matrix in terms of the
group inverse of the associated singular M-matrix. We then apply these results to
derive bounds on the second smallest and largest eigenvalues of the Laplacian matrix

of a connected graph. We pay special attention to the case when the graph is a tree,
giving an explicit formula for the group inverse of the Laplacian together with an

interpretation of its entries. In so doing we improve a known bound for the algebraic
connectivity of a tree. Our lower bound on λ2 also allows us to sharpen the upper

bound on the middle expression in Meyer’s result given in (1.1).
Our starting point is simple. Let A be an n× n symmetric, irreducible, and non-

negative matrix whose eigenvalues are λ1 > λ2 � . . . � λn � −λ1. Let v(1), . . . , v(n),
with v(1) � 0, be an orthonormal set of eigenvectors ofA corresponding to λ1, . . . , λn,

respectively. Put Q = λ1I − A. Then Q# admits a representation in terms of rank
1 idempotents (see, for example, Ben-Israel and Greville [1] or Campbell and Meyer

[3]) as follows:

Q# =
n∑

m=2

v(m)(v(m))T

λ1 − λm
.

Thus for any 1 � i � n, we have that

(1.2) Q#i,i =
n∑

m=2

(v(m)i )2

λ1 − λm
.

Our bounds are now derived using the fact that, in these equalities, the smallest

and largest denominators occur in the summands involving λ1 − λ2 and λ1 − λn,
respectively.

The plan of this paper is as follows. In Section 2 we derive our principal bounds in
Theorems 2.1 and 2.5. In Theorems 2.7 and 2.8 we characterize the case of equality

in some of these bounds. In Section 3 we apply our inequalities to the eigenvalues of
Laplacians (see Theorem 3.1) and consider the special case when they arise from tree.

We also give an interpretation of the entries of L# (see Theorem 3.3). As example
of two results which we obtain in this section we mention that, first of all, from our
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results in Section 2 we deduce the following bound on the algebraic connectivity ν

of a connected graph G on n vertices with Laplacian L:

(1.3) ν � n− 1
n

λ1

max
1�i�n

L#i,i
.

Next, in the particular case when G is a tree, we show that this bound is sharper
than Fiedler’s bound:

ν � n

n− 1 min1�i�n
Li,i.

Moreover, we show that the maximal diagonal entry in L# always occurs in a position
corresponding to a pendant vertex.

2. Main results

As was laid out in Section 1, let A be an n× n symmetric, irreducible, and non-
negative matrix whose eigenvalues are λ1 > λ2 � . . . � λn � −λ1. Let v(1), . . . , v(n),

with v(1) � 0 be corresponding eigenvectors normalized to form an orthonormal
basis. Recall the equality

Q#i,i =
n∑

m=2

(v(m)i )2

λ1 − λm
,

for all 1 � i � n, which we derived from the spectral resolution for the group inverse

of the associated M-matrix Q = λ1I −A.
We begin by giving a lower bound on λ2.

Theorem 2.1. Suppose thatA is an n×n irreducible, nonnegative, and symmetric

matrix with Perron root λ1 and with eigenvalues

λ1 > λ2 � λ3 � . . . � λn � −λ1,

then

(2.1) µ � λ2 � max
{

λ1 −
1− max

1�i�n
(v(1)i )

2

min
1�i�n

Q#i,i
, λ1 −

1− min
1�i�n

(v(1)i )
2

max
1�i�n

Q#i,i

}
.

In particular, if A has constant row sum λ1, then

(2.2) µ � λ2 � λ1 −
n− 1

n

1

max
1�i�n

Q#i,i
.
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�����. Let v(1), . . . , v(n) be orthonormal eigenvectors corresponding to λ1, . . .,

λn, respectively. Then, as λ1 > λ2 � λm, m = 3, . . . , n, we have from (1.2) that:

(2.3) Q#i,i =
n∑

m=2

(v(m)i )2

λ1 − λm
�

n∑

m=2

(v(m)i )2

λ1 − λ2
= [1− (v(1)i )

2]
1

λ1 − λ2
,

where the last equality follows from the fact

n∑

m=1

(v(m)i )2 = 1.

Rearranging the inequality (2.3) we obtain after some simple extremal considerations

that the inequality (2.1) holds. In the special case when A has constant row sums,
v
(1)
i = 1/

√
n for all i = 1, . . . , n, easily yielding (2.2). �

Corollary 2.2. Suppose that A is an n× n irreducible, symmetric, nonnegative,

stochastic matrix with eigenvalues 1 = λ1 > λ2 � . . . � λn. Then

(2.4)
n− 1

n

1
1− λ2

� max
1�i�n

Q#i,i.

�����. This is immediate from (2.2) �

Remark 2.3. We see that in the symmetric case, (2.4) can lead to a much sharper
upper bound on the middle expression in Meyer’s inequality (1.1).

Remark 2.4. Essentially the same proofs shows that if A is an n × n normal
primitive matrix with row sums λ1 and eigenvalues λ1 > |λ2| � |λ3| � . . . � |λn|,
then

(2.5) µ � |λ2| � λ1 −
n− 1

n

1

max
1�i�n

Q#i,i
.

We now use similar techniques to derive an upper bound on λn:

Theorem 2.5. Suppose that A is an n × n irreducible nonnegative symmetric

matrix with Perron root λ1. If its eigenvalues are

λ1 > λ2 � λ3 � . . . � λn � −λ1,

then

(2.6) λn � min
{

λ1 −
1− max

1�i�n
(v(1)i )

2

min
1�i�n

Q#i,i
, λ1 −

1− min
1�i�n

(v(1)i )
2

max
1�i�n

Q#i,i

}
.

5



In particular, if A also has constant row sums equal to λ1, then

(2.7) λn � λ1 −
n− 1

n

1

min
1�i�n

Q#i,i
.

�����. As in the proof of Theorem 2.1,

Q#i,i =
n∑

m=2

(v(m)i )2

λ1 − λm
� 1

λ1 − λn

n∑

m=2

(v(m)i )2 = [1− (v(1)i )
2]

1
λ1 − λn

.

The inequality (2.6) now follows after some algebraic manipulations and simple ex-

tremal considerations. The inequality (2.7) for the case in which A has constant row
sums follows now because v

(1)
i = 1/

√
n for all i = 1, . . . , n. �

From Meyer [6] we know that the diagonal entries of Q#, Q = λ1I−A, are positive
for any irreducible nonnegative matrix A whose Perron root is λ1. Our next result

gives a lower bound on the diagonal entries in the symmetric case. Its proof follows
directly from Theorem 2.5 and the fact that λn � −λ1.

Corollary 2.6. If A is an n× n symmetric, irreducible, and nonnegative matrix

with Perron root λ1 and Perron vector v(1) normalized so that ‖v(1)‖2 = 1, then

(2.8) Q#i,i �
1− max

1�i�n
(v(1)i )

2

2λ1
, i = 1, . . . , n.

In particular, if A also has constant row sums, then

Q#i,i � n− 1
2λ1n

, i = 1, . . . , n.

Next we characterize the matrices yielding equality between λ2 and the second
expression in the braces of (2.1) in Theorem 2.1:

Theorem 2.7. Suppose that A is an n × n irreducible nonnegative symmetric

matrix whose Perron root λ1. If its eigenvalues are λ1 > λ2 � . . . � λn � −λ1, then

(2.9) λ2 = λ1 −
1− min

1�i�n
(v(1)i )

2

max
1�i�n

Q#i,i
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if and only if there is a permutation matrix P such that

(2.10) PT AP = λ1

[
1− xT x/α xT

x (1 − α)Y

]
,

where

Y x = x,(2.11)

x � αe,(2.12)

and

(2.13) 1− α− xT x

α
� (1− α)γ2,

where the eigenvalues of Y are 1 = γ1 � γ2 . . . � γn−1.

�����. Throughout the proof we will suppose, without loss of generality, that
λ1 = 1 since if this is not the case, we can work with the matrix A′ = (1/λ1)A. Note

that then (2.9) holds if and only if

(2.14)
λ2
λ1
= 1−

1− min
1�i�n

(v(1)i )
2

max
1�i�n

(Q′)#i,i
,

where Q′ = I − A′. Consequently, we shall suppose first that equality (2.14) holds

and that λ2 = λ3 = . . . = λj+1 > λj+2 � . . . � λn so that λ2 has multiplicity j.
Without loss of generality assume that the maximal diagonal entry in Q# occurs in

its first diagonal position. This is only possible if v(m)1 = 0, j + 2 � m � n. Write A

as

(2.15) A = λ1

[
a xT

x M

]
.

From now on, for an n-vector y, we shall denote by y the (n − 1)-vector obtained
by deleting the 1-st entry of y. We next observe that A has at least j − 1 linearly
independent eigenvectors w(1), . . . , w(j−1) corresponding to λ2 whose first entry is

0. To see this, consider any maximally linearly independent set of eigenvectors of A
corresponding to λ2 whose first entry is not 0. Normalize these eigenvectors so that

their first entry is 1. If there are k such vectors, then by forming differences we can
construct from these k − 1 linearly independent eigenvectors whose first entry is 0.
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Because of the above we find that, necessarily, each of w(1), . . . , w(j−1) is an eigen-

vector of M corresponding to λ2 and that each of v(j+2), . . . , v(n) is an eigenvector
of M corresponding to λj+2, . . . , λn, respectively. Moreover, since the first entry in

each of w(1), . . . , w(j−1); v(j+2), . . . , v(n) is zero and all are eigenvectors of A, it is
easy to ascertain from the eigenvalue-eigenvector relation that x is orthogonal to

each of their (n − 1)-dimensional truncations. Hence x is necessarily a nonnegative
eigenvector of M corresponding, say, to the eigenvalue (1− α). Notice that since A

is irreducible and M is a principal submatrix, 1 > �(M) � 1− α so that α > 0.

We next show that for some nonzero scalar β, yet to be determined, the n-vector
(β, xT )T must be a Perron eigenvector of A. From the partitioning of A and the

requirement of the eigenvalue-eigenvector relation, we see that (β, xT )T is an eigen-
value of A if and only if

β2 + (1− α− a)β − xT x = 0

and the corresponding eigenvalue is β + 1− α. Viewing this as a quadratic in β, we

find that the equation has 2 distinct real roots:

β1,2 =
a− (1 − α)±

√
(1− α− a)2 + 4xT x

2
.

Previously we have accounted for n− 2 linearly independent eigenvectors of A, none
of which corresponded to its Perron root. Thus, if β1 is the positive root of this
quadratic, then, necessarily, (β1, xT ) is, up to a positive multiple, the Perron vector

for A corresponding to the Perron root

a− (1− α) +
√
(1− α− a)2 + 4xT x

2
.

(We remark that this shows that the vector x is positive rather than just nonzero
nonnegative as we have established earlier, so that, as it is an eigenvector of M cor-
responding to a nonnegative eigenvalue, it must be a Perron vector ofM .) Recalling

that the Perron root of A is 1, we see that

a = 1− xT x

α
.

Further, since β2 is not zero, necessarily the eigenvalue corresponding to the eigen-

vector (β2, xT )T is

λ2 = 1− α− xT x

α
.
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Thus we have established the partitioned form (2.10) of the matrix A and the fact

that if Y has eigenvalues 1 � γ2 � . . . � γn−1, then necessarily

1− α− xT x

α
� (1− α)γ2,

which is (2.13).

Continuing, it can be checked that the matrix

[
αxT x/(α2 + xT x)2 − α2/(α2 + xT x)2xT

− α2/(α2 + xT x)2x [I − (1− α)Y ]−1 − (2α2 + xT x)xxT /[α(α2 + xT x)2]

]

is, precisely, Q#, and, by our hypothesis,

max
λ1�i�n

Q#i,i = Q#1,1 =
αxT x

(α2 + xT x)2
.

Also, it is readily verified that β1 = α, so that

v(1) =
1√

α2 + xT x

(
α

x

)

is the Perron vector of A normalized so that ‖v(1)‖2 = 1.
Since

λ2 = 1− α− xT x

α
= 1−

(1− min
1�i�n

(v(1)i )
2

max
1�i�n

Q#i,i

)
,

we see that, in fact,

min
1�i�n

(v(1)i )
2 =

α2

α2 + xT x
,

so that xi � α, for all 1 � i � n. Hence x � αe, and the remaining necessary
condition (2.12) has been established.

Now suppose that A is of the form stated in the theorem. As above, we see that

λ2 = 1− α− xT x

α
,

that

min
1�i�n

(v(1)i ) =
α2

α2 + xT x
,

and that

Q# =

[
αxT x/(α2 + xT x)2 −α2/(α2 + xT x)2xT

−α2/(α2 + xT x)2x [I − (1− α)Y ]−1 − (2α2 + xT x)xxT /[α(α2 + xT x)2]

]
.
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Thus our proof will be done provided we can show that

max
1�i�n

Q#i,i =
αxT x

(α2 + xT x)2
.

For this purpose let z(2), . . . , z(n) be an orthonormal set of eigenvectors of Y corre-
sponding to γ2, . . . , γn, respectively. Then we see that for each 1 � i � n− 1,

[I − (1− α)Y ]−1i,i =
1
α

x2i
xT x

+
n−1∑

m=2

1
1− (1− α)γm

(z(m)i )2

� 1
α

x2i
xT x

+
1

1− (1− α)γ2

(
1− x2i

xT x

)
.

Hence

[I − (1 − α)Y ]−1i,i − (2α2 + xT x)x2i /[α(α
2 + xT x)2]

� 1
α

x2i
xT x

+
α

α2 + xT x

(
1− x2i

xT x

)
− (2α2 + xT x)x2i /[α(α

2 + xT x)2]

=
α

α2 + xT x
− (2α2 + xT x)x2i /[α(α

2 + xT x)2]

� αxT x

(α2 + xT x)2
,

the last inequality following from (2.12), and so

max
1�i�n

Q#i,i =
αxtx

(α2 + xT x)2
,

as desired. �

In our next result we consider the case of equality in the inequality between λn

and the first expression in the braces of (2.6) in part of Theorem 2.5. The proof is

analogous to that of Theorem 2.7.

Theorem 2.8. Suppose A is an n × n symmetric, irreducible, and nonnegative

matrix whose Perron root is λ1. If the eigenvalues of A are λ1 > λ2 � . . . � λn �
−λ1, then

(2.16) λn = λ1 −
1− max

1�i�n
(v(1)i )

2

min
1�i�n

Q#i,i
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if and only if there exists a permutation matrix P such that

(2.17) PT AP = λ1

[
1− xT x/α xT

x (1 − α)Y

]
,

where x � 0, α � 0,

Y x = x,

x � αe,

and

(2.18) 1− α− xT x

α
� (1 − α)γn−1,

where the eigenvalues of Y are 1 = γ1 � γ2 � γn−1.

Corollary 2.9. From Corollary 2.6, we have that if A is an n × n symmetric,

irreducible, and nonnegative matrix with Perron root λ1, then

(2.19) min
1�i�n

Q#i,i �
1− max

1�i�n
(v(1)i )

2

2λ1
.

Equality holds if and only if there is a permutation matrix P such that

(2.20) PT AP = λ1

[
a xT

x M

]
,

where xT x = 1.

�����. As in the proof of Theorem 2.7 we can suppose that λ1 = 1. Assume

now that equality holds in (2.19). Then from (2.16) we easily deduce that λn = −1
and so λn also satisfies (2.6). Hence by Theorem 2.7, there exists a permutation

matrix P such that

PT AP =

[
1− xT x xT

x (1− α)Y

]
,

for some positive scalar α � 1 and a positive vector x such that Y x = x. Since A is

irreducible, but has an eigenvalue −1 as well as 1, the latter being its spectral radius,
Amust by 2-cyclic, and so, e.g. Varga [15] or Berman and Plemmons [2], A must have

zero diagonal entries showing that xT x/α = 1. As in the proof of Theorem 2.7 where
it was shown that (under the conditions of the Theorem 2.8) λ2 = 1−α−xT x/α, so
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too in the proof of Theorem 2.8 it is established that (under the conditions of that

theorem) λn = 1− α− xT x/α. Thus, as λn = −1, we can now conclude that α = 1.
Whence xT x = 1 and PT AP must have the desired form of (2.20).
Conversely, suppose without loss of generality that A is already in the form given

in (2.20) with xT x = 1. Then

Q# =

[
1/4 − (1/4)xT

−(1/4)x I − (3/4)xT x

]
.

Also, it is easily verified that

v(1) =
λ1√
2

(
λ1
x

)
.

Whence,

λ1
4
= min
1�i�n

Q#i,i =
1− 1/2
2

=
1− max

λ1�i�n
(v(1)i )

2

2
,

completing our proof. �

3. Applications

We now apply the results of the previous section to obtain bounds on the algebraic

connectivity and the largest eigenvalue of a connected graph.

Theorem 3.1. Suppose G is a connected graph on n vertices with Laplacian

matrix L. Then the algebraic connectivity, ν, of G satisfies

(3.1) ν � n− 1
n

1

max
1�i�n

L#i,i

and the largest eigenvalue, β, of L satisfies that

(3.2) β � n− 1
n

1

min
1�i�n

L#i,i
.

Equality in (3.1) holds if and only if G is the complete graph.

�����. Let d denote the largest degree of a vertex of G. Then L can be written

as

(3.3) L = d(I −M)

12



where M is an irreducible, nonnegative, symmetric and stochastic matrix. Clearly,

by (3.3),

L# =
1
d
(I −M)# =: Q#.

Letting the eigenvalues of M be 1 = λ1 > λ2 � . . . � λn, we see that ν = d(1 − λ2)
and β = d(1 − λn). The inequality in (3.1) now follows from (2.1) of Theorem 2.1,

and that in (3.2) follows from (2.7) of Theorem 2.5.
A straightforward computation shows that if G is the complete graph, the equality

holds in (3.1).
Now assume that equality holds in (3.1). Then λ2 equals the second expression

in the braces on the righthand side of (2.1). Thus, by Theorem 2.7, we may assume
without loss of generality that

M =

[
1− xT x/α xT

x (1 − α)Y

]
,

for some nonnegative α, x and Y satisfying (2.11), (2.12) and (2.13), where the
eigenvalues of Y are 1 = γ1 > γ2 � . . . � γn−1. Since the off-diagonal entries of

L agree with those of −dM , and each off-diagonal entry of L is either 0 or −1, it
follows from (2.12) that vertex 1 of G has degree n− 1, d = n− 1 and

x =
1

n− 1e.

Thus, since x � αe, 1
n−1 � α. The (1, 1)-entry of M is nonnegative and equals

1− xxT /α = 1− 1
(n− 1)α.

Thus α � 1
n−1 . We conclude that α = 1

n−1 . Substituting α = 1
n−1 into (2.13) and

simplifying yields that

γ2 � − 1
n− 2 .

Thus we can write that

0 � trace(Y ) = 1 +
n−1∑

j=2

γj � 1 + (n− 2)γ2 � 0,

which shows that trace(Y ) = 0. As Y is a nonnegative matrix, its entire diagonal is

0 implying that each diagonal entry of L equals n − 1. This shows that the degree
of each vertex in G is n− 1 and hence G is the complete graph (on n vertices). �
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The following example shows that while equality in (3.1) can hold only for a

complete graph, (3.1) can still yield a good bound for other graphs.

Example 3.2. The star on n � 2 vertices has an adjacency matrix

A =

[
0 eT

e O

]

and Laplacian

L =

[
(n− 1) − eT

− e I

]
.

The eigenvalues of L are easily computed to be 0, ν = 1, and β = n, and

L# =

[
(n− 1)/n2 − (1/n2)eT

− (1/n2)e I − [(n+ 1)/n2]J

]
.

Thus

max
1�i�n

L#i,i =
n2 − n− 1

n2
,

so that
n− 1

n

1

max
1�i�n

L#i,i
=

n2 − n

n2 − n− 1 = 1 +
1

n2 − n+ 1
.

Therefore, the bound in (3.1) differs from the true value of ν by 1/(n2−n−1). This
difference obviously tends to 0 as n tends to ∞.

We also note that for the star

min
1�i�n

L#i,i =
n− 1
n2

,

so that
n− 1

n

1

min
1�i�n

L#i,i
= n = β.

Thus the star provides an example of a graph for which equality in (3.2) holds.
Theorem 2.1 illustrates that the entries of the group inverse L# of the Laplacian

L of a graph are related to the algebraic connectivity of G. We now present a
combinatorial interpretation of the entries of L# in the case that G is a tree. Let T

be a tree with vertices 1, 2, . . . , n, and with Laplacian L. Since T is a tree there is
a unique path of T joining any two vertices of T . For vertices i and j we let [i, j)

denote the set of vertices k �= j which lie on the path from i to j. The number of
vertices k for which the path in T from k to j contains i is denoted by bj(i) and

14



is called the bottleneck number for i with terminal vertex j. The following theorem

describes the entries of L# in terms of the bottleneck numbers with a fixed terminal
vertex.

Theorem 3.3. Suppose T is a tree with vertices 1, 2, . . . , n and Laplacian L.

Then

L#i,j =





|[i, n) ∩ [j, n)| − ∑
k∈[i,n)

bn(k)
n

− ∑
k∈[j,n)

bn(k)
n +

n−1∑
k=1

bn(k)
2

n2 if i �= n and j �= n,

− ∑
k∈[i,n)

bn(k)
n +

n−1∑
k=1

bn(k)
2

n2 if i �= n and j = n,

− ∑
k∈[j,n)

bn(k)
n +

n−1∑
k=1

bn(k)
2

n2 if i = n and j �= n,

n−1∑
k=1

bn(k)
2

n2 if i = n and j = n.

�����. Since T is a tree, we may relabel the vertices 1, 2, . . . , n− 1, so that the
vertices along each path of T beginning with n are in decreasing order. Furthermore,

since T is a tree, after such a relabeling for each vertex j �= n, there exists a unique
edge ej of the form {j, i} such that i > j. Clearly ej �= ek if k �= j. Thus, since T

has n− 1 edges, the edges of T are precisely e1, e2, . . . , en−1. Let B = [bij ] be the n

by n− 1 oriented incidence matrix of T defined by

bij =





−1 if ej = {i, j},
1 if i = j,

0 otherwise.

Then L = BBT as in [4]. Since each column sum of B is 0, we may write that

B =

[
B̂

−eT B̂

]
,

where B̂ is an n − 1 by n − 1 matrix. Since L has rank n − 1, B̂ is invertible, and
L = BBT is a full rank factorization of L. Hence, L# = B(BBT )−2BT . Using the
partitioned form of B, a straightforward calculation yields that

(3.4) L# =

[
U V

V T W

]
,

15



where

U = (B̂)−T (B̂)−1 − 1
n
(B̂)−T (B̂)−1eeT

− 1
n

eeT (B̂)−T (B̂)−1 +
eT (B̂)−T (B̂)−1e

n2
eeT ,

V = − 1
n
(B̂)−T (B̂)−1e+

eT (B̂)−T (B̂)−1e
n2

e,

W =
eT (B̂)−T (B̂)−1e

n2
.

Note by the assumptions on the labeling of the edges of T and of the vertices
1, 2, . . . , n− 1 of T ,

B̂ = I −N,

where N = [nij ] is the strictly lower triangular (0, 1)-matrix of order n − 1 with
nij = 1 if and only if i > j and {i, j} is an edge of T . It follows that for any

nonnegative integer k and for i, j ∈ {1, 2, . . . , n − 1}, the (i, j)-entry of Nk equals
the number of paths in T of length k from j to i such that the vertices along the

path are in increasing order. Let j = v0, v1, . . . , v� = n be the path from j to n.
Since for each vertex k �= n of T there exists a unique edge in T of the form {k, �}
where k < �, every path whose initial vertex is j and whose vertices along the path
are in increasing order is necessarily a subpath of the path from j to n. Thus, the

(i, j)-entry of Nk equals 1 if and only if k � � − 1 and i = vk. Clearly, since N is
strictly lower triangular and B̂ = I −N ,

B̂−1 =
n−2∑

k=0

Nk.

Hence the (i, j)-entry of B̂−1 equals 1 if i ∈ [j, n) and equals 0 otherwise. The
entries of M := B̂−T B̂−1 are the inner products of the columns of B̂−1, and hence

the (i, j)-entry of M equals |[i, n) ∩ [j, n)|. The ith entry of Me equals

n−1∑

j=1

(|[i, n) ∩ [j, n)|).

For each k ∈ [i, n), there exist exactly bn(k) vertices j such that k ∈ [j, n). Therefore,
the ith entry of Me equals ∑

k∈[i,n)
bn(k).
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This implies that

(3.5) eT Me =
n−1∑

i=1

∑

k∈[i,n)
bn(k).

For each k ∈ {1, 2, . . . , n− 1}, the term bn(k) occurs as a summand in (3.5) exactly
bn(k) times. Thus,

eT Me =
n∑

i=1

bn(k)2.

The theorem now follows from (3.4). �

Remark 3.4. In Fiedler [4] it is shown that if L is the Laplacian of a graph G on
n vertices, then

(3.6) ν � n

n− 1 min1�i�n
Li,i.

It is reasonable to compare the tightness of the upper bound on ν given by our bound

(3.1) with the Fiedler’s bound (3.6). For any tree G with 3 or more vertices, (3.1)
is better than (3.6). This can be seen as follows. Let T be a tree on n � 3 vertices,
and assume that vertex n is a pendant vertex of T . Let j be the unique vertex of T
which is adjacent to n. Then bn(j) = n − 1, and bn(i) > 0 for each vertex i �= j, n.

Hence by Theorem 3.3, L#n,n > (n−1)2
n2 . This implies that

n− 1
n

1

max
1�i�n

L#i,i
� n

n− 1 .

Since for a tree min
1�i�n

Lii = 1, the result follows.

We now show that the maximum diagonal entry of the group inverse of the Lapla-

cian of a tree occurs at a position corresponding to a pendant vertex.

Theorem 3.5. Let T be a tree with vertices 1, 2, . . . , n and with Laplacian L.

Let j be vertex of T such that L#j,j = max1�i�n
L#i,i. Then j is a pendant vertex of T .

�����. Consider a vertex i which is adjacent to j. Then [j, i) contains only

vertex j. Hence the formula for L#j,j in Theorem 3.3, with n taken to be i, simplifies
to

L#j,j = 1−
2bi(j)

n
+

∑

k �=i

bi(k)2

n2
.
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Hence, by the formula for L#n,n in Theorem 3.3,

L#j,j − L#i,i = 1−
2bi(j)

n
.

By assumption L#j,j � L#i,i, and thus the previous equality implies that

n

2
� bi(j)

for all vertices i adjacent to j. Let i1, i2, . . . , i� be the vertices of T adjacent to j.

Then
�n

2
�

�∑

k=1

bik
(j).

For vertex j, each of the vertices ik has the property that the path from j to ik
contains j. For each vertex v of T other than j, exactly �− 1 of the vertices ik have

the property that the path from v to ik contains j. Thus vertex j contributes exactly
� and each other vertex of T contributes exactly � − 1 to the righthand side of the
above equation. Hence,

�n

2
� (�− 1)(n− 1) + �,

from which it easily follows that � � 1. Hence vertex j is a pendant vertex. �

Example 3.6. For a graph G with vertices 1, 2, . . . , n, the Wiener index is

w(G) :=
∑

i<j

d(i, j),

where d(i, j) is the distance between vertex i and j in G. Thus if G is a tree,
d(i, j) = |[i, j)|. The following is a standard theorem (see, for example, [11]).

Let T be a tree on n vertices whose Laplacian has eigenvalues

µ1 = 0 < µ2 � µ3 � . . . � µn,

then

w(T ) =
n∑

i=2

n

µi
.

This theorem can be proven using our combinatorial description of the entries of
the group inverse of the Laplacian of a tree as follows. First note that the nonzero

eigenvalues of L# are 1/µ2, . . . , 1/µn, and hence

n trace(L#) =
n∑

i=2

n

µi
.
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For each i and j, Theorem 3.3 implies that

(3.7) 2L#i,i = |[i, j)| − 2
∑

k∈[i,j)

bj(k)
n
+

∑

k:k �=j

bj(k)2

n2
+

n∑

k:k �=i

bi(k)2

n2
.

Summing equation (3.7) over all i and j yields that

2
n∑

i,j=1

L#i,i =
n∑

i,j=1

|[i, j)| − 2
n∑

i,j=1

∑

k∈[i,j)

bj(k)
n

(3.8)

+ n

n∑

j=1

∑

k �=j

bj(k)2

n2
+ n

n∑

i=1

∑

k �=i

bi(k)2

n2
.

The lefthand side of (3.8), simplifies to 2n trace(L#). The first summand on the
righthand side simplifies to 2

∑
i<j

d(i, j). Each bj(k) with j �= k occurs bj(k) times in

the second term in (3.8). Hence this second term simplifies to

− 2
n

∑

k,j:k �=j

bj(k)2,

which is precisely the sum of the last two sums in (3.8). Therefore,

2n trace(L#) = 2
∑

i<j

d(i, j).

This along with (3.5), imply that
n∑

i=2

n
µi
= w(T ).

Theorem 3.7. Let T be a tree on n � 2 vertices with Laplacian L. Let d be the

maximum degree of a vertex of T . Then L#i,i � (n−1)2
n2 for some i, and

L#i,i � (n− 1)
2

dn2

for all i.

�����. We have already see in Remark 3.4, that if i is a pendant vertex, then

L#i,i � (n−1)2
n2 . Let i be a vertex and let the vertices adjacent to i be j1, j2, . . . , j�.

Then by Theorem 3.3,

L#i,i � 1
n2

�∑

k=1

bi(jk)2.

It is easily seen that
�∑

k=1
bi(jk) = n − 1. Hence, by the Cauchy-Schwarz inequality,

�∑
k=1

bi(jk)2 � (n−1)2
� . It follows that L#i,i � (n−1)2

dn2 . �
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Note that Theorem 3.3 implies that L#i,i � n−1
n2 with equality only if i is the center

vertex of a star. It is easy to verify that if i is the center vertex of the star, then
equality does in fact hold.
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