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Abstract. We give several internal characterizations for the metrizable absolute Fσδ-spa-
ces. The characterizing conditions involve the existence of compatible bicomplete quasi-
metrics, of complete sequences of σ-discrete closed covers and of compact σ-discrete closed
networks.
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1. Introduction

It is a basic problem of classical descriptive set theory to find simple internal
conditions which are necessary and sufficient for a metrizable space to belong to one

of the absolute Borel classes Fα or Gα, for α ∈ ω1. This problem has been solved
only for a few small values of α. A.H. Stone remarks in [22] that there does not even

exist satisfactory internal characterizations for absolute F2-sets, that is, for absolute
Fσδ-sets (the characterization of separable absolute Fσδ-sets given by W. Sierpiński

in [21] is already quite complicated). It is the purpose of this note to provide simple
internal characterizations of metrizable absolute Fσδ-spaces. These characterizations

involve the existence of “complete” sequences of covers, of “compact” networks and
of “bicomplete” quasi-metrics.

The conditions used in this paper to characterize metrizable absolute Fσδ-spaces
are variations of conditions that have appeared before in characterizations of metriz-

1 This paper was written while the second author was supported by the Swiss National
Science Foundation under grant 21-30585.91 and by the Spanish Ministry of Education
and Sciences under the DGICYT grant SAB94-0120.
2During his visit to the University of Berne the first author was supported by the second
author’s grant 21-32382.91 from the Swiss National Science Foundation.
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able absolute Gδ-spaces. The best-known of such characterizations is E. Čech’s

theorem [5] according to which the metrizable absolute Gδ-spaces coincide with
the completely metrizable spaces. We provide a corresponding characterization for
metrizable absolute Fσδ-spaces by replacing “complete metrizability” with “bicom-

plete quasi-metrizability.” Other well-known characterizations of metrizable absolute
Gδ’s involve the existence of a “complete” sequence of open covers (Z. Frolík [12]

and A.V. Arhangel’skij [3]) and of a “compact” closed quasi-base (J.M. Aarts, J.
de Groot and R.H. McDowell [1]); we show that these characterizations turn into

characterizations of metrizable absolute Fσδ’s when the open covers in the complete
sequence are replaced by σ-discrete closed covers and the compact closed quasi-base

is replaced by a compact σ-discrete closed network.

In [20], S. Romaguera and S. Salbany pose the problem of characterizing those
quasi-metrizable spaces that admit a bicomplete quasi-metric. So far only a few

results have been obtained in this area. For instance it is known that a quasi-
metrizable space admits only bicomplete quasi-metrics if and only if it is hereditarily

compact and sober [19] and that every quasi-metrizable and every sober space admits
a bicomplete quasi-uniformity [10]. In this note we show that, for metrizable spaces,

the question proposed by Romaguera and Salbany has the simple and elegant solution
indicated above: a metrizable space has a compatible bicomplete quasi-metric if, and

only if, the space is an absolute Fσδ-set.

Let us first recall the necessary terminology and introduce the appropriate nota-
tion.

A metrizable space X is an absolute Fσδ-set (or an absolute Fσδ-space) provided

that X is an Fσδ-subset in every metrizable space in which X is embedded.

Let X be a nonempty set. A function d from X × X into the nonnegative real
numbers is called a quasi-metric of X if

(i) d(x, y) = 0⇐⇒ x = y for all x, y ∈ X , and

(ii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X .

For a quasi-metric d of X , let d−1(x, y) = d(y, x) for all x, y ∈ X . Then d−1 is
also a quasi-metric on X .

Let d be a quasi-metric of X . For all x ∈ X and n ∈ ω, set Ud
n(x) = {y ∈

X : d(x, y) < 2−n}. The family {Ud
n(x) : n ∈ ω, x ∈ X} is a base for a topology τd

on X . The quasi-metric d is called a strong quasi-metric if τd ⊆ τd−1 .

Let d be a quasi-metric of the topological space X . If the topology τd is coarser

than the topology of X , then we say that d is an admissible quasi-metric of X , and if
the topology τd coincides with the topology of X , then we say that d is a compatible

quasi-metric of X . Note that a metric d of X is admissible if, and only if, d is a
continuous function on X ×X .
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For a quasi-metric d of X , the function d∗ = max{d, d−1} is a metric of X . The
quasi-metric d is called bicomplete provided that the metric d∗ is complete.
A binary relation V on a topological space X is called a neighbornet [15] provided

that V (x) = {y ∈ X : (x, y) ∈ V } is a neighborhood at x whenever x ∈ X . A

neighbornet V on X is called unsymmetric [15, p. 88] if for all a, b ∈ X , a ∈ V (b)
and b ∈ V (a) imply that V (a) = V (b).

A sequence (Gn)n∈ω of covers of a topological space X is called complete provided
that any filter F on X such that F ∩ Gn �= ∅ whenever n ∈ ω has a cluster point in

X (compare [12] and [3]).
A family of sets will be called compact provided that every subfamily with the

finite intersection property has nonempty intersection.
Recall that a network of a topological space X is a family N of subsets of X

such that every open subset of X is the union of some subfamily of N . Note that a
network of X is a base for the topology of X if, and only if, the network consists of

open sets.
If H is a collection of subsets of a set X and x is a point of X , then (H)x will

denote the collection {H ∈ H : x ∈ H}.
Our topological terminology follows that of [9]. Basic facts concerning Borel sets

can also be found in [9]. For terminology and basic facts on quasi-uniformities we
refer the reader to [11].

2. The results

The following theorem contains the promised characterizations of metrizable ab-
solute Fσδ-sets.

Theorem 1. The following conditions are equivalent for a metrizable space:
(a) The space is an absolute Fσδ-set.

(b) The space has a compatible bicomplete quasi-metric.
(c) The space has a compact σ-discrete network consisting of closed sets.

(d) The space possesses a complete sequence of σ-discrete closed covers.

�����. (a)⇒ (b): Since every metrizable absolute Fσδ-space is an Fσδ-subset of

its completion, it suffices to show that every Fσδ-subspace of a completely metrizable
space has a compatible bicomplete quasi-metric. Let (Y, d) be a complete metric

space. We show first that every Fσ-subspace Z of Y has a compatible bicomplete
quasi-metric; by [20, Theorem 3.7], it suffices to show that the subspace Z has a

compatible quasi-metric � such that the metric topology τ�∗ is completely metrizable.

Let Z =
∞⋃

n=0
Fn, where the sets Fn are closed in Y . We may assume that F0 = ∅
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and Fn ⊂ Fn+1 for every n. For each x ∈ Z, let nx be the minimal (positive) integer

n such that x ∈ Fn. For all x, y ∈ Z, set �(x, y) = d(x, y) + 1 if ny < nx and
�(x, y) = d(x, y) otherwise. Clearly � is a compatible quasi-metric on Z. Note that,
for each n ∈ ω, the set Fn+1 \Fn is a Gδ-set in (Y, d) and a clopen set in (Z, �∗), and

the topologies τd and τ�∗ coincide on this set. Hence the metric space (Z, �∗) is the
discrete sum of the countably many completely metrizable spaces Fn+1 \Fn (n ∈ ω)

and thus the topology τ�∗ is completely metrizable [9, Theorem 3.9.6].

Suppose now that Z =
∞⋂

n=0
Zn and each subspace Zn of (Y, d) admits a bicomplete

quasi-metric �n. We can assume that each �n is bounded by 1. Then the topological

product
∞∏

n=0
Zn admits a bicomplete quasi-metric �, where

�((xn)n∈ω, (zn)n∈ω) =
∞∑

n=0

1
2n

�n(xn, zn) .

Since Z is homeomorphic to the τ�-closed subspace {(x, x, . . . , x, . . .) : x ∈ Z} of this
product, we see that Z admits a bicomplete quasi-metric.
It follows by the foregoing that every Fσδ-subset of Y admits a bicomplete quasi-

metric.
(b) ⇒ (c): Let X be a metrizable space. Suppose that � is a compatible quasi-

metric on X that is bicomplete. Let n ∈ ω. By [15, Theorem 4.4], there exists
an unsymmetric neighbornet Sn of X such that Sn ⊆ (U�

n+1)
2 ⊆ U�

n. The relation

Sn ∩ S−1n is an equivalence relation on X . By [15, Theorem 4.8], the partition
{(Sn ∩ S−1n )(x) : x ∈ X} has a refinement Gn =

⋃
k∈ω

Dnk such that each collection

Dnk is closed and discrete in X . Furthermore, by the proof of [15, Theorem 4.8],

we can assume that each class C belonging to the partition contains at most one
element Dk(C) of Dnk and that the sequence (Dk(C)) is increasing with k. Then

the σ-discrete closed network
⋃

n∈ω
Gn of X is compact:

ConsiderA ⊆ ⋃
n∈ω

Gn having the finite intersection property. Assume that
⋂A = ∅.

Because of the properties of the collections Dnk this can only happen if A ∩ Gn �= ∅
for infinitely many n ∈ ω. But then A is a subbase of a closed Cauchy filter on the
complete metric space (X, �∗) and thus

⋂A �= ∅.
(c) ⇒ (d): Suppose that the metrizable space X has a compact network F =⋃

n∈ω
Fn where each collection Fn is closed and discrete. For all x ∈ X and n ∈ ω,

let Fx,n ∈ F be such that x belongs to Fx,n, and either Fx,n belongs to Fn or Fx,n

is disjoint from the union of Fn. Then the covers {Fx,n : x ∈ X} are closed and
σ-discrete and they form a complete sequence: Let P be a filter on X that contains
sets Fxn,n for n ∈ ω. Then by compactness, there exists x belonging to all those
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sets. Now for every n ∈ ω, if x belongs to a member F of Fn, then we must have

Fxn,n = F . It follows that if x belongs to F ∈ F , then F is in {Fxn,n : n ∈ ω}.
Hence P contains a network at x, and x is thus a cluster point of P .
In order to establish the implication (d)⇒ (a) we shall need the following lemma:

Lemma 1. Let Y be a metrizable space and X a subspace of Y . Furthermore

let L be a locally finite closed family of X . Then there exists a Gδ-subspace A of Y

such that X ⊆ A, L is locally finite in A and

K
A ∩ L

A
= K ∩ L

A

for all K ∈ L and L ∈ L.

�����. For each x ∈ X , let Ox be an open neighborhood of x in Y such that Ox

meets only finitely many sets of L. Set O = ⋃
x∈X

Ox. Then O is open, X ⊆ O and L is

locally finite in O. It follows that also the family {LO
: L ∈ L}, and hence the family

{LO ∩K
O
: L, K ∈ L} is locally finite in O. Let d be a compatible metric for O. For

every n ∈ ω and for all L, K ∈ L, the set Sn(L, K) = {s ∈ L
O ∩K

O
: d(s, L ∩K) �

2−n} is a closed subset of L
O ∩ K

O
. (We have set d(x, ∅) = ∞ for all x ∈ O.)

As a consequence, for every n ∈ ω, the family Sn = {Sn(L, K) : L, K ∈ L} is
locally finite and closed in O and hence the set Sn =

⋃Sn is closed in O; note that
Sn ∩X = ∅, since L is a closed family in X . Set A = O \ ⋃

n∈ω
Sn. Then A is a Gδ-set

in Y containing X , the collection L is locally finite in A and K
A ∩ L

A
= K ∩ L

A

whenever K, L ∈ L. �

We are now ready to continue the proof of Theorem 1.

(d) ⇒ (a): Let Y be a metrizable space containing X as a subspace. Moreover
let (Gn)n∈ω be a complete sequence of covers of X such that Gn =

⋃
k∈ω

Gnk whenever

n ∈ ω and such that any collection Gnk is closed and discrete in X . Considering the
locally finite closed collections Hs of X obtained by taking all intersections of finitely

many elements in
s⋃

k,n=0
Gnk where s ∈ ω, we see in the light of Lemma 1 that there is

a Gδ-set A in Y containing X such that K
A∩L

A
= K ∩ L

A
whenever K, L ∈

∞⋃
s=0

Hs

and such that each collection Hs is locally finite in A. Clearly we can suppose that

A ⊆ clY X , since Y is perfect. Observe that A is an Fσδ-set in Y .

Set P =
⋂

n∈ω

( ⋃
k∈ω

clY (
⋃Gnk)

)
∩ A. Obviously P is an Fσδ-set in Y . Furthermore

X ⊆ P . Consider x ∈ P . Let F be the filter generated by the family H = {F ∈
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Gnk : x ∈ F
A
;n, k ∈ ω} on X . Note that F is well defined, because, by the definition

of A, the family H has the finite intersection property. Furthermore x is a cluster
point of the filterbase F on A. Let N be the trace of the neighborhood filter at x in

Y on X . Since F contains a member of each cover Gn, the filter sup{F ,N} on X has
a cluster point, say y, in X . Because Y is a Hausdorff space, it follows that y = x.

We conclude that P = X . Hence we have shown that X is an Fσδ-set in Y . �

Remarks. (i) Note that if � is a compatible bicomplete quasi-metric on X and
δ is a compatible metric on X , then max{�, δ} is a compatible bicomplete strong
quasi-metric on X . It follows that we can replace condition (b) in Theorem 1 by the
following condition:

(b′) The space has a compatible bicomplete strong quasi-metric.
(ii) The basic idea in the last step of the preceding proof is due to Z. Frolík

(compare [13, proof of Theorem 6]).
(iii) It is easy to see that the above theorem remains true if we replace “σ-discrete”

by “σ-locally finite” in conditions (c) and (d).
(iv) The above theorem makes it possible to point out relatively simple examples

of metrizable spaces which do not have compatible bicomplete quasi-metrics. For
example, every non-Borel subset of the reals (e. g. a “Bernstein set”) fails to have

such a quasi-metric. The next two examples are more concrete.

The infinite power �ω cannot be represented as the union of countably many

completely metrizable subspaces (see e. g. [8] or [17]). As a consequence, �ω is not
a Gδσ-subset in the completely metrizable space �ω ; therefore the complement of

�ω in �ω is not an Fσδ-set. It follows that the space �ω \ �ω has no compatible
bicomplete quasi-metric.

By results given in [7], the function spaces Cp(X), where X is a countable nondis-
crete metrizable space and the set C(X) of all continuous real-valued functions on

X is equipped with the topology of pointwise convergence, serve as examples of ab-
solute Fσδ-sets which are not absolute Gδσ-sets. It follows, for instance, that the set

c0 of all null-sequences is an Fσδ-set, but not a Gδσ-set, in the set �∞ of all bounded
sequences (of real numbers), when �∞ has been equipped with the topology of point-

wise convergence. As a consequence, no bicomplete quasi-metric is compatible with
the topology of pointwise convergence in the set �∞ \ c0.

The characterization of completely metrizable spaces as the absolute Gδ-subsets of
metrizable spaces suggests the existence of a direct proof of the implication (b)⇒ (a)
in Theorem 1 that is based on the idea of extending quasi-metrics. Since these
ideas seem to be of independent interest, we would like to include such an argument

here. To state some necessary auxiliary results, we need the concept of a quasi-
pseudometric. A quasi-pseudometric of a set X is an “unsymmetric pseudometric”
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of X , that is, a function from X × X to the nonnegative reals which satisfies the

triangle inequality and vanishes on the diagonal. The concept of “admissibility” for
quasi-pseudometrics is defined similarly as for quasi-metrics.

Lemma 2. Let Y be a metrizable space, let X ⊆ Y and let � � 2 be an admissible
quasi-pseudometric of X . Then there exist an Fσδ-set A in Y containing X and a

compatible quasi-metric d of A such that � � d on X ×X .

�����. Since the fine quasi-uniformity of the metrizable space X coincides
with its point-finite covering quasi-uniformity [15, p. 101], we can find, for every

n ∈ ω, a point-finite open family On in X such that for all x, z ∈ X , if z ∈ ⋂
(On)x,

then �(x, z) < 2−n. We may assume that n > k implies that Ok ⊆ On. For every
O ∈ ⋃

n∈ω
On, let O∗ be open in Y such that O∗ ∩ X = O. For every n ∈ ω let

O∗n = {O∗ : O ∈ On} ∪ {Y }. Set A = {y ∈ Y : (O∗n)y is finite for all n ∈ ω}.
Note that A is an Fσδ-set in Y and X ⊆ A. Define a function d′ on A × A by
setting d′(x, y) = inf{2−(n−1) : y ∈ ⋂

(O∗n)x}. Note that d′ is an admissible quasi-

pseudometric on A. Let x, y ∈ X . We show that d′(x, y) � �(x, y). The inequality
is obvious if �(x, y) = 0. If �(x, y) > 0, then choose n ∈ ω so that 2−n < �(x, y) �
2−(n−1); note that then y /∈ ⋂

(On)x and thus d′(x, y) > 2−(n−1) � �(x, y). To obtain
the required compatible quasi-metric d, let δ be a compatible metric on A and set

d = d′ + δ. �

The following auxiliary result, with “(continuous) pseudometric” in room of “(ad-

missible) quasi-pseudometric,” was proved (implicitly) by R.H. Bing in [4]; J. Deák
observed that Bing’s argument works also for “unsymmetric distance-functions.”

Lemma 3. [6] Let Y be a topological space, let X ⊆ Y and let � be a quasi-

pseudometric defined on X . If there exists an admissible quasi-pseudometric d of

Y such that � � d on X × X , then � can be extended to an admissible quasi-

pseudometric � of Y such that � � d.

It is a consequence of the “symmetric” version of the above lemma that any con-

tinuous pseudometric defined on a subset of a metrizable space can be extended to
a continuous pseudometric defined on a Gδ-subset of the space. This result does not

generalize from the case of continuous pseudometrics to the case of admissible quasi-
pseudometrics; a simple example is furnished by the compatible quasi-metric d of �

obtained from an enumeration � = {qn : n ∈ �} as follows: set d(qn, qk) = |qn − qk|
if n � k and set d(qn, qk) = 1 if n > k; a category argument together with [15, The-

orems 4.7 and 4.8] shows that the quasi-metric d does not extend to an admissible
quasi-pseudometric over any Gδ-subset of � containing �. If we are willing to relax
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the requirement that the extension should be made to a Gδ-set, then we have the

following analogue of the result on extending continuous pseudometrics.

Proposition 1. Every bounded admissible quasi-pseudometric defined on a sub-
set of a metrizable space Y can be extended to an admissible quasi-pseudometric of

an Fσδ-subset of Y .

�����. The assertion is a direct consequence of Lemmas 2 and 3. �

We are now ready to sketch the direct argument (b) ⇒ (a): Suppose that X is

a subspace of the metric space (Y, d) and let � be a compatible bicomplete quasi-
metric on X ; by the first remark following Theorem 1, we may assume that � is a

strong quasi-metric and that � � d on X × X . Without loss of generality we can
suppose that d, � � 1. Extend � according to Proposition 1 to an admissible quasi-
pseudometric δ of an Fσδ-set A in Y that contains X . Since � � d on X ×X , we

can choose δ so that δ � d on A × A; note that this makes δ a strong compatible
quasi-metric of A. Because δ∗ and �∗ agree on X ×X and because the metric space

(X, �∗) is complete, X is a Gδ-set in the metric space (A, δ∗). Since the compatible
quasi-metric δ on A is strong, each τδ∗ -open set in A is clearly an Fσ-set in (A, δ).

Hence X is an Fσδ-set in (A, δ); since the topologies τδ and τd agree on A and since
A is an Fσδ-set in (Y, d), it follows that X is an Fσδ-set in (Y, d).

We close this paper with a result which gives several characterizations of separable
absolute Fσδ-sets. Two of the conditions in the following theorem are just modifi-

cations of the corresponding conditions which appeared in Theorem 1, but we also
have a new condition for separable absolute Fσδ-sets in terms of cotopologies.

The following notions are discussed in [2]: Let (X, τ) be a topological space. A
topology π on X is called a cotopology of τ—and the space (X, π) is called a cospace

of (X, τ)—if
(i) π is weaker than τ , and

(ii) for each point x and each closed neighborhood V of x in (X, τ) there exists
a neighborhood U of x in (X, τ) such that U is contained in V and U is closed in

(X, π).

Cotopologies are related to the concepts discussed earlier in this paper in several

ways. For example, if � is a strong quasi-metric on a set Z, then it is a consequence
of [18, Theorem 4] that (X, τ�) is a cospace of (X, τ�−1) and both spaces are of the

same weight. The following lemma indicates a connection between cotopologies and
σ-discrete networks.

Lemma 4. Let F be a σ-discrete network for a T1-space (Y, π) consisting of closed
sets. Denote by τ the topology of Y generated by the family F . Then the topology
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τ is metrizable, and the space (Y, π) is a cospace of the space (Y, τ). If the network

F is compact, then the topology τ is completely metrizable.

�����. It is easy to see that (Y, π) is a cospace of (Y, τ), and it follows from

[16, Lemma 2.1] that τ is a metrizable topology. Assume that F is a compact family.
Then F is a compact network of the space (Y, τ) consisting of clopen sets. Similarly

as in the proof of the implication (c) ⇒ (d) in Theorem 1, we construct from F a
complete sequence ({Fy,n : y ∈ Y }) of covers for the space (Y, τ); we note that, in

the case at hand, the covers in the complete sequence consist of clopen sets. Since
the metrizable space (Y, τ) has a complete sequence of open covers, the space is

completely metrizable (by the result of Frolík [12] and Arhangel’skij [3]). �

We are now ready to characterize the separable metrizable absolute Fσδ-sets.

Theorem 2. The following conditions are equivalent for a metrizable space:

(a) The space is a separable absolute Fσδ-set.

(b) The space is a cospace of a Polish space.

(c) The space has a compact countable network consisting of closed sets.

(d) The space possesses a complete sequence of countable closed covers.

�����. The equivalence of conditions (a) and (c) follows from Theorem 1. It
is a consequence of Lemma 4 that (c) ⇒ (b). To see that (b) ⇒ (d), let (X, τ) be

a topological space and let d be a complete separable metric on X such that the
space (X, τ) is a cospace of (X, τd). For all x ∈ X and n ∈ ω, let Fx,n be a τ -closed

τd-neighborhood of x of d-diameter at most 2−n. For every n ∈ ω, let Fn be a
countable subcover of the cover {Fx,n : x ∈ X} of X . Since the metric d is complete

and τ ⊂ τd, the sequence
(
Fn

)
of covers is complete in the space (X, τ).

(d)⇒ (a): Assume that (d) holds for a metrizable spaceX . Then X is an absolute
Fσδ-set by Theorem 1. Moreover, [13, Theorem 7] shows that X is an Fσδ-subset of

the compact space βX ; as a consequence, X is a Lindelöf space. �

Remark. We have not seen any parts of Theorem 2 stated explicitly in the
literature; however, one part of the theorem can be easily derived from older results:
it is quite easy to prove the equivalence of conditions (a) and (d) above with the help

of [13, Theorem 7] and [14, Corollary to Theorem 2].
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