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Czechoslovak Mathematical Journal, 48 (123) (1998), 65–76

ON A BOUND ON ALGEBRAIC CONNECTIVITY:

THE CASE OF EQUALITY

Stephen J. Kirkland, Regina1, Michael Neumann, Storrs2, Bryan

L. Shader, Laramie3

(Received May 10, 1995)

Abstract. In a recent paper the authors proposed a lower bound on 1 − λi, where λi,
λi �= 1, is an eigenvalue of a transition matrix T of an ergodic Markov chain. The bound,
which involved the group inverse of I − T , was derived from a more general bound, due to
Bauer, Deutsch, and Stoer, on the eigenvalues of a stochastic matrix other than its constant
row sum. Here we adapt the bound to give a lower bound on the algebraic connectivity of
an undirected graph, but principally consider the case of equality in the bound when the
graph is a weighted tree. It is shown that the bound is sharp only for certain Type I trees.
Our proof involves characterizing the case of equality in an upper estimate for certain inner
products due to A. Paz.

1. Introduction

Let G be a weighted undirected graph on n vertices and let L be its Laplacian

so that L is a positive semidefinite M-matrix. Let 0 = λ1 � λ2 � . . . � λn be the
eigenvalues of L. Fiedler [6] has shown that ν := λ2 > 0 if and only if G is connected
and, since increasing the number of edges in G cannot decrease the value ν, he has
termed ν the algebraic connectivity of G.
Now let L# be the group generalized inverse4 of L. For the case in which G is

an unweighted graph, that is, G is a weighted graph whose edges have the uniform
weight of 1, an upper bound on ν in terms of the dominant diagonal entry of L#

1Research supported in part by a University of Regina Grad Studies Special Project Grant
and NSERC Grant No. OGP138251.

2Research supported by NSF Grant No. DMS-9306357.
3Research partially supported by NSA Grant No. MDA904-94-H-2051.
4 For background material on generalized inverses of matrices see Ben-Israel and Greville
[2] and Campbell and Meyer [4].
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was given in Kirkland, Neumann, and Shader [8]. Moreover the case of equality

in the bound was characterized and, for the case in which G is a tree, a graph-
theoretic interpretation for the entries of L# was provided. This graph-theoretic
interpretation has since been extended to the case in which G is a weighted tree
in Kirkland, Neumann, and Shader [9]. In Kirkland, Neumann, and Shader [11] a
certain lower bound was given, in terms of the group inverse of a singular M-matrix
associated with the transition matrix of an ergodic Markov chain, for the nonzero
eigenvalues of that M-matrix. This lower bound, which is an immediate consequence

of a spectral bound due to Bauer, Deutsch, and Stoer [1] (see Theorem BDS below)
can be easily adapted to yield a lower bound for ν. The main purpose of this paper

is to consider the equality case of this lower bound for weighted graphs G that are
trees.

The spectral bound due to Bauer, Deutsch, and Stoer is as follows:

Theorem BDS (Bauer, Eckart Deutsch, and Stoer [1], see also Seneta [14, p. 63,
Theorem 2.10]). Suppose that B = (bi,j) is an n×n matrix with constant row sums

b and assume that µ is an eigenvalue of B other than b. Then

(1.1) |µ| � 1
2
max
1�i,j�n

n∑

s=1

|bi,s − bj,s|.

Let e(n) be the n-dimensional vector of all 1’s. As L#e(n) = 0 because L and L#

have identical nullspaces and as the nonzero eigenvalues of L# are the reciprocals

of the nonzero eigenvalues of L (see, for example, [2] and [4]), the following is an
immediate consequence of Theorem BDS:

Observation 1.1. Let G be a weighted connected graph on n vertices with Lapla-

cian matrix L and algebraic connectivity ν. Set

(1.2) Z(G) := 1
2
max
1�i,j�n

n∑

s=1

|L#i,s − L#j,s|.

Then

(1.3)
1

Z(G) � ν.

Let us now describe the paper in more detail. In Theorem 2.3 we shall show that

for weighted trees, equality in (1.3) holds if and only if G is a Type I tree of a certain
kind. (Recall that a Type I tree is one in which an eigenvector of L corresponding to
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ν has a zero entry, see, e.g., Fiedler [7].) Viewing an unweighted graph as a weighted

graph with all weights on the edges equal to 1, we shall show as a corollary to this
theorem that for an unweighted graph G equality in (1.3) holds if and only if G is
a star. In another corollary we shall show precisely which weighted trees admit a

re-weighting for which equality now holds in (1.3). In the course of the proof of
Theorem BDS use is made of the following estimate which follows from Lemma 2.4

in Seneta [14], but which Seneta attributes to Paz in a somewhat different form:

Lemma PS (Paz [13, Chp. IIa], Seneta [14, p. 63]). Let z = (z1, . . . , zn) be
an arbitrary row vector of complex numbers. Then for any real vector δ �= 0 with
δT e(n) = 0,

(1.4) |zT δ| � 1
2
max
1�i,j�n

|zi − zj| ‖δ‖1.

Our proof of the main theorem requires knowledge of the case of equality in Lemma

PS. We therefore open Section 2 by characterizing equality in this lemma.

2. Main results

We begin by characterizing the case of equality in the inequality (1.4).

Theorem 2.1. Let δ ∈ �
n be a vector such that δT e(n) = 0 and let z ∈ �

n . Then

equality holds in (1.4), viz.

|zT δ| = 1
2
max
1�i,j�n

|zi − zj | ‖δ‖1

if and only if z and δ can be reordered simultaneously such that

δ =




δ1
...

δm

−δm+1
...

−δm+k

0
...

0




and z =




a
...

a

b
...

b

c1
...

cn−k−m




,(2.1)
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and where

(2.2) max
1�i,j�n

|zi − zj| = |a− b| and δi > 0, i = 1, . . . , k +m.

�����. The sufficiency of the conditions (2.1) and (2.2) is straightforward upon
using the condition that δT e(n) = 0. For the necessity, suppose that equality holds in

(1.4). We shall induct on the number of nonzero entries in δ, upon noting first that
the result holds trivially if δ has just two nonzero entries. We begin by assuming,

without loss of generality, that δ1 � δm+1. Then

δ = δm+1




1

0
...
0

−1
0

0
0
...
...
0




+




δ1 − δm+1

δ2
...

δm

0

−δm+2
...

−δm+k

0
...
0




=: δm+1(e
(n)
1 − e

(n)
m+1) + δ̂.

Note that ‖δ‖1 = 2δm+1 + ‖δ̂‖1, δ̂T e(n) = 0, and that ztδ = δm+1(z1 − zm+1) + zT δ̂.
Now,

1
2
(2δm+1 + ‖δ̂‖1) max

1�i,j�n
|zi − zj| = |zT δ|

� δm+1|z1 − zm+1|+ |zT δ̂|

� 1
2
max
1�i,j�n

|zi − zj|(2δm+1 + ‖δ̂‖1),

from which we can conclude the following:

(i) |zT δ̂| = 1
2 max1�i,j�n

|zi − zj | ‖δ̂‖1.
(ii) |z1 − zm+1| = max

1�i,j�n
|zi − zj|.

(iii) The argument of z1 − zm+1 is the same as that of zT δ̂.
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From the induction step on δ̂ we find that z must have the form

z =




u

a
...
a

v

b
...
b

c1
...

cn−k−m




,

where max
1�i,j�n

|zi − zj| = |a − b|. Moreover, if δ1 > δm+1, then u = a. We further

claim that the argument of zT δ̂ must now be the same as that of a− b. Note that

zT δ̂ = u(δ1 − δm+1) +
m∑

i=2

aδi −
m+k−1∑

i=m+2

bδi

+ b

(
δm+1 − δ1 −

m∑

i=2

δi +
m+k−1∑

i=m+2

δi

)

= (u− b)(δ1 − δm+1) +
m∑

i=2

(a− b)δi.

This shows that zT δ̂ is a positive multiple of a−b. Consequently, |z1−zm+1| = |a−b|
and arg(z1 − zm+1) = arg(zT δ̂), so that z1 − zm+1 = a− b.

If z1 > zm+1, then we can conclude that z1 = a and zm+1 = b. On the other hand,

if δ1 = δm+1, then we repeat the argument with either δ1 and δm+2 or δ2 and δm+1

to deduce that z1 = a and zm+1 = b. Our proof is done. �

To prove our main result we further need the following fact:

Theorem 2.2. Let G be a weighted tree on n vertices with Laplacian matrix L.

Then the maximum of the expression

(2.3)
∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1

can only be attained at a pair of pendant vertices.
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�����. Without loss of generality, we can assume (2.3) is maximized for some

1 � i � n− 1 and j = n. In [9] it is shown that L# is given by

L# =

[
(L#)1,1 (L#)1,2
(L#)2,1 (L#)2,2

]
,(2.4)

where

(L#)1,1 =M − 1
n

MJ − 1
n

JM +
e(n−1)

T

Me(n−1)

n2
J,(2.5)

(L#)1,2 = − 1
n

Me(n−1) +
e(n−1)T Me(n−1)

n2
e(n−1),(2.6)

(L#)2,1 = (L#)T1,2,(2.7)

and

(2.8) (L#)2,2 =
e(n−1)

T

Me(n−1)

n2
,

where M is the (n− 1)× (n− 1) matrix whose (i, j)-th entry is given by

(2.9)
∑

ε∈Pi,j

1
w(ε)

,

with Pi,j denoting the set of edges of G which are on both the path from vertex i

to vertex n and the path from vertex j to vertex n, and where w(ε) is the weight of

edge ε ∈ G.
Fix 1 � i � n− 1 and note that the last entry of the n-vector

e
(n)T
i L# − e(n)Tn L# =

[
e
(n−1)T
i M − 1

n

(
e
(n−1)T
i Me(n−1)

)
e(n−1)T

∣∣∣(2.10)

− 1
n

(
e
(n−1)T
i Me(n−1)

)]

is negative; a similar argument applied to e
(n)T
n L# − e

(n)T
i L# shows that the i-th

entry of e(n)Ti L# − e
(n)T
n L# is positive.

Suppose now that i is not a pendant vertex of G. Then there is a vertex i0 which
is adjacent to i such that the path from i0 to n includes i. Let θ be the weight of the

edge between i and i0 and let S be the set of vertices in G whose path to n includes
the vertex i0. Let the cardinality of S be σ and let vT

S be the row vector with a 1/θ

in position k if and only if k ∈ S and 0 otherwise. It follows that

e
(n−1)T
i0

M = e
(n−1)T
i M + vT

S
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and, if k ∈ S, then

e
(n−1)T
i Me

(n−1)
k = e

(n−1)T
i Me

(n−1)
i .

Note that in position k, vT
S is positive only if k ∈ S, in which case the k-th entry of

eT
i M − 1

n (e
(n−1)T
i Me(n−1))e(n−1)T agrees with the i-th entry of the vector, which is

positive. Hence,

∥∥∥e
(n−1)T
i M − 1

n
(e(n−1)Ti Me(n−1))e(n−1)T + vT

S

∥∥∥
1

=
∥∥∥e
(n−1)T
i M − 1

n
(e(n−1)Ti Me(n−1))e(n−1)T

∥∥∥
1
+

σ

θ
,

Consequently,

∥∥e
(n)T
i0

L# − e(n)Tn L#
∥∥
1

� 1
n

(
e
(n−1)T
i Me(n−1) +

σ

θ

)

+
∥∥∥e
(n−1)T
i M − 1

n
(e(n−1)Ti Me(n−1))e(n−1)T

∥∥∥
1

+
σ

θ
− σ

nθ

∥∥e(n−1)
∥∥
1

=
∥∥e
(n)T
i L# − e(n)Tn L#

∥∥
1
+
2σ
nθ

>
∥∥e
(n)T
i L# − e(n)Tn L#

∥∥
1
.

As a result we see that if i is not a pendant vertex, then
∥∥e
(n)T
i L#− e

(n)T
n L#

∥∥
1
is

not maximal and, arguing similarly on n, this shows that n too must be pendant. �

In order to state our main result we require the following result due to Fiedler

[7].5 Let G be a weighted tree on n vertices with Laplacian matrix L. Let ν be the
algebraic connectivity and let y be any corresponding eigenvector. Then exactly one
of the following situations holds:

i) Some entry of y is zero. Then there is a unique vertex k such that yk = 0 and k

is adjacent to a vertex m with ym �= 0. Further, the entries of y are either increasing,
decreasing or identically 0 along any path in G which starts at k.

ii) No entry of y is zero. Then there is a unique pair of vertices i and j such that

i is adjacent to j and yi > 0 and yj < 0. Futher, the entries of y are increasing
along any path which starts at i and does not contain j, while the entries of y are

decreasing along any path which starts at j and does not contain i.

A weighted tree is of Type I if (i) holds and it is of Type II if (ii) holds. In

the former case, we call the unique vertex k the characteristic vertex and, in the
latter case, the unique pair of vertices i and j are called the characteristic vertices.

5We remark that strictly speaking that paper only deals with unweighted trees, but the
results extends to the weighted case.
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The identification of the characteristic vertices is independent of the choice of the

eigenvector y as shown by Merris [12].
At a vertex u of G, a branch at u is a connected component which is obtained

by deleting vertex u and all edges incident to u. Let u be a vertex of G and let B

denote a branch of the tree at u. Associated with B is a positive matrix formed
from the vertices of B as follows: if vi and vj are on B, then the entry in row i and

column j of the matrix is
∑

ε∈Pvi,vj

1
w(ε) , where Pvi,vj is the set of edges which are

on both the path from vi to u and on the path from vj to u. For each branch of

G at u we compute the Perron value of the associated positive matrix; if a branch
yields the maximal Perron value over all branches at u, then the branch is called a

Perron branch at u. In Kirkland, Neumann, and Shader [10] it is shown that G is a
Type I tree if and only if there are at least two Perron branches at the characteristic

vertex; in that case ν is equal to the reciprocal of the maximal Perron value over all
branches at the characteristic vertex.

We are now ready to state our main theorem:

Theorem 2.3. Let G be a weighted tree with Laplacian matrix L. Then equality

holds in (1.3) if and only if G is a Type I tree whose characteristic vertex u has the

property that two of its Perron branches consist of single edges adjacent to pendant

vertices, v1 and v2, and

(2.11) max
1�i,j�n

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
=

2
w(u, v1)

(
=

2
w(u, v2)

)
.

�����. We begin with the “necessity” part of the proof. For a vector z ∈ �
n

let f(z) := max
1�i,j�n

|zi − zj |. Next, for any 1 � i, j � n, let δT
i,j = eT

i L# − eT
j L#, and

suppose that y is an eigenvector of L corresponding to ν. We then have that

1
ν

f(y) =
1
ν
max
1�i,j�n

|yi − yj | :=
1
ν
|yi0 − yj0 |

= |δT
i0,j0y| =

1
2
f(y)‖δi0,j0‖1

=
1
2
f(y) max

1�i,j�n
‖δi,j‖1.

In particular, ‖δi0,j0‖1 = max
1�i,j�n

‖δi,j‖1, so that, by Theorem 2.2, i0 and j0 are

pendant vertices of G. Furthermore, |δT
i0,j0y| = 1

2 max1�i,j�n
|yi − yj | ‖δi0,j0‖1 so that

Theorem 2.1 applies.

Without loss of generality, let us take i0 = 1 and j0 = n. Then, by Theorem 2.1,
the vector y is constant on the indices where e

(n)T
1 L# − e

(n)T
n L# is positive and
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constant on the indices where e
(n)T
1 L#− e

(n)T
n L# is negative. Moreover, if the k1-th

and k2-th entries of e
(n)T
1 L# − e

(n)T
n L# are positive and negative, respectively, then

|yk1 − yk2 | = max
1�i,j�n

|yi − yj |.

It is not difficult to show that the entries of e(n)Tn L# are strictly decreasing along

any path which starts at n, while the entries of e(n)T1 L# are strictly increasing along
any path which ends at 1. Hence, the entries of e

(n)T
1 L# − e

(n)T
n L# are strictly

increasing as we move along the path which starts at n and ends at 1. In particu-
lar, there is at most one vertex on that path for which the corresponding entry in

e
(n)T
1 L# − e

(n)T
n L# is 0.

As we observed in the proof of Theorem 2.2, following equation (2.10), the first

entry of the vector e
(n)T
1 L# − e

(n)T
n L# is positive and its last entry is negative, so

that |y1 − yn| = max
1�i,j�n

|yi − yj|. Since the entries in y sum to 0, without loss of

generality we can assume that y1 = max
1�i�n

yi > 0 and yn = min
1�i�n

yi < 0.

Suppose now that vertex k is on the path joining vertex 1 with vertex n. Then
from the above, we see that there are three possibilities:

(a) e
(n)T
1 L#e

(n)
k − e

(n)T
n L#e

(n)
k > 0 and yk = y1 > 0.

(b) e
(n)T
1 L#e

(n)
k − e

(n)T
n L#e

(n)
k < 0 and yk = yn < 0.

(c) e
(n)T
1 L#e

(n)
k − e

(n)T
n L#e

(n)
k = 0 and |y1 − yk|, |yn − yk| � y1 − yn.

Also note that there is at most one index k for which (c) holds.

Recall now that if G is a Type I tree, then along any path starting from the
characteristic vertex, the entries in y are either strictly increasing and positive, or

strictly decreasing and negative, or all zero. Since y1 > 0 > yn, we conclude that if
G is of Type I, then the characteristic vertex must be on the path from vertex 1 to
vertex n. Similarly, if G is a Type II tree, we find that both characteristic vertices
must be on that path.
Suppose first that G is a Type I tree whose characteristic vertex is k. Then,

yk = 0 and so, necessarily, (c) holds. The entries of y are monotonically increasing
along a path from k to 1. However, since the entries of e(n)T1 L# − e

(n)T
n L# are also

monotonically increasing on that path, yj must equal y1 if vertex j is on the path
and j �= k. We conclude that the path must have length 1, that is, k is adjacent

to the pendant vertex 1. Similarly, we obtain that k is adjacent to n. Thus we see
that the characteristic vertex k has two Perron branches which consist of single edges

adjacent to the pendant vertices 1 and n. Now from (2.4)–(2.9), we find that

e
(n)T
1 L# − e(n)Tn L# =

[ 1
w(1, k)

0 . . . 0 − 1
w(1, k)

]

and hence

max
1�i,j�n

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
=

2
w(1, k)

.
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Suppose now that G is a Type II tree with characteristic vertices i and j so that

the entries of y are increasing along the path from i to 1 and decreasing along the
path from j to n. But then there is at most one vertex on the path from 1 to n which
(c) can hold and so either yi = y1 or yj = yn, both of which yield contradictions.

Consequently, if G is a Type II tree, equality in (1.3) can not hold. This completes
the proof of the necessity part.

For the “sufficiency” part of the theorem assume that G is a Type I tree whose
characteristic vertex u has the property that two of its Perron branches consist

of single edges adjacent to pendant vertices, v1 and v2 and (2.11) holds. Then
ν = 1/w(u, v1) = 1

2 max1�i,j�n

∥∥e
(n)T
1 L# − e

(n)T
n L#

∥∥
1
. This concludes the proof of the

theorem. �

We now have the following corollary:

Corollary 2.4. Let G be an unweighted tree with Laplacian matrix L and alge-

braic connectivity ν. Then equality holds in (1.3) if and only if G is a star.

�����. The only unweighted tree whose characteristic vertex is adjacent to a
pendant vertex is a star, so if (1.3) holds, then G is a star. Conversely, it is not
difficult to show that if G is a star then ν = 1 and

max
1�i,j�n

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
= 2.

�

We conclude the paper with a corollary concerning when a tree can be weighted
to yield equality in (1.3).

Corollary 2.5. Let G be a tree on n vertices having two pendant vertices which

are adjacent to the same vertex. Then there is a weighting of G yielding equality in
(1.3).

�����. Without loss of generality we can re-label the vertices of G so that
vertices n and n − 1 are pendant and adjacent to vertex n − 2. Now weight the
edges from n and n− 1 to n− 2 with ε > 0 and weight every other edge with 1. We
shall use the results of Theorem 2.3 to show that for a choice of ε sufficiently small,

equality holds in (1.3).
Consider the branches of G at vertex n−2. Associated with the branches containing

vertices n and n−1 we have a Perron value of 1/ε, while every other branch at n−2
yields a Perron value which is independent of ε. As a result, when ε is sufficiently

small, we find that G is a Type I tree with characteristic vertex n− 2 and that the
branches at n− 2 containing n and n− 1 are Perron branches.
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Now let L be the Laplacian matrix of the (newly) weighted tree. It remains to

show that
max
1�i,j�n

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
=
2
ε
.

As in the proof of Theorem 2.3 we find that

e
(n)T
n−1 L# − e(n)Tn L# =

[
0 . . . 0

1
ε
− 1

ε

]

and so ∥∥e
(n)T
n−1 L# − e(n)Tn L#

∥∥
1
=
2
ε
.

Now suppose that 1 � i � n − 2. Letting M ∈ �
(n−1),(n−1) be the matrix whose

i, j-th entry is given by (2.9), we find that for some (n − 1)-vector x whose entries
are positive and independent of ε > 0,

e
(n−1)T
i M = xT +

1
ε
e(n−1)T .

Hence,

e
(n)T
i L# − e(n)Tn L# =

[ 1
nε

e(n)T + xT − xT e(n)

n
e(n)

∣∣∣ − n− 1
nε

− xT e(n)

n

]
.

It follows that for ε > 0 sufficiently small,

∥∥e
(n)T
i L# − e(n)Tn L#

∥∥
1
=

∥∥∥ 1
nε

e(n)T + xT − xT e(n)

n
e(n)

∥∥∥
1
+

n− 1
nε

+
xT e(n)

n

� 2n− 1
nε

+
xT e(n)(n+ 2)

n
<
2
ε
.

An analogous argument also shows that

∥∥e
(n)T
i L# − e

(n)T
n−1 L#

∥∥
1

<
2
ε

when ε > 0 is sufficiently small. Finally, suppose that 1 � i, j � n− 2. Then, again,
from (2.9) and the equations leading to it, we have that

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
=

[(
e
(n−1)T
i − e

(n−1)T
j

)
M

(
I − 1

n
J
) ∣∣∣

− 1
n

(
e
(n−1)T
i − e

(n−1)T
j

)
Me(n−1)

]
.

Since there are positive (n − 1)-vectors y and z, independent of ε > 0, such that
e
(n−1)T
i M = yT + (1/ε)e(n−1) and e

(n−1)T
j M = zT + (1/ε)e(n−1), we find that∥∥e

(i)T
i L# − e

(j)T
j L#

∥∥
1
is independent of ε, so that

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1

� 2
ε
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when ε > 0 is sufficiently small. Thus for such ε we have that

max
1�i,j�n

∥∥e
(n)T
i L# − e

(n)T
j L#

∥∥
1
=
2
ε

and so, by Theorem 2.3, equality holds in (1.3). This completes the proof. �
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