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POINTWISE CONVERGENCE FAILS TO BE STRICT

Ján Borsík1 and Roman Frič,2 Košice

(Received September 14, 1995)

Abstract. It is known that the ring B(�) of all Baire functions carrying the pointwise
convergence yields a sequential completion of the ring C(�) of all continuous functions. We
investigate various sequential convergences related to the pointwise convergence and the
process of completion of C(�). In particular, we prove that the pointwise convergence fails
to be strict and prove the existence of the categorical ring completion of C(�) which differs
from B(�).

1.

Consider the set �� of all real functions carrying the pointwise (sequential) con-
vergence. If we start with the ring C(�) of all continuous functions, then the ring
B1(�) of all 1-st Baire class functions is the first sequential closure of C(�), the ring
Bα(�) of all α-th Baire class functions, α < ω1, is the α-th sequential closure of

C(�), and the ring B(�) of all Baire functions is the smallest subset of �� contain-
ing C(�) and closed with respect to the pointwise convergence, hence sequentially
complete, see [NOV], [LAC].

Let � be a sequential convergence on B1(�) such that, for each sequence 〈fn〉
of continuous functions, 〈fn〉 converges to f ∈ B1(�) under � iff it converges to f

pointwise. Then � is said to be admissible. If � is compatible with the group or ring
structure of B1(�), then each Cauchy sequence of continuous functions converges
under � and we get B1(�) as a group or ring (sequential) precompletion of C(�).
Observe that �, for example the pointwise convergence, need not be complete. To
get a completion, in such cases we have to iterate the precompletion process. In

case of the pointwise convergence the usual sequential completion of C(�) is the ring
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B(�). In the present paper we investigate admissible convergences and alternative
ways of (pre)completing C(�).

Strictness is a natural way how to control the convergence of sequences of ideal

points in an extension of a convergence space or a precompletion of a sequential
group or ring ([FZS], [FKE], [PAU]).

An admissible convergence � on B1(�) is said to be strict if the following condition
is satisfied (see Definition 1.2 in [FZS]):

(s) Let 〈fn〉 be a sequence ranging in B1(�) \ C(�) which converges under �
to f ∈ B1(�). Then there are a subsequence 〈f ′n〉 of 〈fn〉 and sequences
〈g(k)n 〉, k ∈ �, of continuous functions such that the sequence 〈g(k)n 〉 pointwise
converges to f ′k and each diagonal sequence 〈g

(n)
d(n)〉, d : � → �, pointwise

converges to f .

In [FZS] the authors asked whether the pointwise convergence is strict. We prove
that the answer is “NO”.

Theorem 1.1. The pointwise convergence on B1(�) fails to be strict.

�����. Let p1, p2, p3, . . . denote the increasing sequence of all prime numbers.

For each n ∈ �, let An = {k/pn ; k = 1, 2, . . . , pn − 1} and let fn denote the
characteristic function of An. Let f denote the constant zero function. Then fn ∈
B1(�)\C(�) for each n ∈ � and the sequence 〈fn〉 pointwise converges to f . For each
k ∈ �, let 〈g(k)n 〉 be a sequence of continuous functions which pointwise converges to
fk. We show that there exists a mapping u of � into � such that for each mapping
v of � into �, v(k) > u(k) for each k ∈ �, and for each strictly increasing mapping
s of � into � the subsequence 〈g(s(n))v(s(n))〉 of the diagonal sequence 〈g

(n)
v(n)〉 does not

pointwise converge to f . Clearly, then the pointwise convergence on B1(�) fails to
be strict.

So, since all sets Ak are finite, for each k ∈ � choose u(k) ∈ � such that g
(k)
n (x) >

1/2 for each n > u(k) and each x ∈ Ak. Let v be a mapping of � into � such that
v(k) > u(k) for each k ∈ � and let s be a strictly increasing mapping of � into �.
From g

(s(1))
v(s(1))(1/ps(1)) > 1/2 it follows that there exists a closed interval I1 ⊂ (0, 1)

such that 1/ps(1) ∈ int I1 and g
(s(1))
v(s(1))(I1) > 1/2. Put t(1) = 1. By induction,

define a strictly increasing mapping t of � into � and a sequence 〈In〉 of closed
intervals such that int In ⊃ In+1 �= ∅ and g

(s(t(n)))
v(s(t(n)))(In) > 1/2 for all n ∈ �. Choose

t(2) ∈ � such that s(t(2)) ∈ {s(2), s(3), . . .} and As(t(2))∩ int I1 �= ∅. Choose a closed
interval I2 such that int I2 �= ∅, int I1 ⊃ I2 and g

(s(t(2)))
v(s(t(2)))(I2) > 1/2. Analogously

define t(3) and I3, . . . , t(n) and In, and so on. Now, choose x0 ∈
∞⋂

i=1
Ii �= ∅. Since
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g
(s(t(n)))
v(s(t(n)))(x0) > 1/2 for all n ∈ �, the sequence 〈g(s(n))v(s(n))〉 does not pointwise converge
to f . This completes the proof. �

2.

In this section we prove some simple facts about strict admissible convergences.

Let f and fn, n ∈ �, be functions in ��. We say (cf. [FKE]) that the sequence
〈fn〉 and the function f are linked if there are sequences 〈g(k)n 〉, k ∈ �, in �� such
that for each k ∈ � the sequence 〈g(k)n 〉 pointwise converges to fk and each diagonal

sequence 〈g(n)d(n)〉, d : � → �, pointwise converges to f . Note: condition (s) can
be reformulated as “if 〈fn〉 converges to f under � and fn ∈ B1(�) \ C(�) for all
n ∈ �, then there exists a subsequence 〈f ′n〉 of 〈fn〉 which is linked to f via a double
sequence, i.e. sequence of sequences, of continuous functions”.

Lemma 2.1. Let 〈fn〉 be a sequence of functions linked to a function f . Then

〈fn〉 converges pointwise to f .

�����. Assume that, on the contrary, for some x ∈ � the sequence 〈fn(x)〉 does
not converge to f(x). Then there exists a positive number ε such that |fn(x)−f(x)| >
ε for infinitely many n ∈ �. Clearly, this is a contradiction with the assumption that
〈fn〉 and f are linked. �

Corollary 2.2. Every strict convergence on B1(�) is finer than the pointwise
convergence.

Next, we describe the coarsest and the finest strict convergences on B1(�) com-
patible with the ring structures of B1(�).

Construction 2.3. Denote by �s the set of all pairs (〈fn〉, f) such that 〈fn〉
is a sequence of functions of B1(�), f ∈ B1(�) and for each subsequence 〈f ′n〉 of
〈fn〉 there exists its subsequence 〈f ′′n 〉 which is linked to f via a double sequence

of continuous functions. As a rule, (〈fn〉, f) ∈ �s means that the sequence 〈fn〉
converges to f under �s .

Claim 2.3.1. �s is a strict L∗0-ring convergence.

�����. It follows easily from Lemma 2.1 that each sequence �s -converges to

at most one limit. The remaining axioms of convergence follow directly from the
definition of �s . Indeed, each constant sequence converges, each subsequence of

a convergent sequence converges to the same limit, and �s satisfies the Urysohn
axiom: if 〈fn〉 and f are such that for each subsequence 〈f ′n〉 of 〈fn〉 there exists its
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subsequence 〈f ′′n 〉 such that (〈f ′′n 〉, f) ∈ �s , then (〈fn〉, f) ∈ �s . Further, sums and

products of convergent sequences converge to the corresponding sums and products
of their limits, hence �s is compatible with the ring structure of B1(�). It follows
from Lemma 2.1 that �s is admissible and since �s is clearly strict, the proof is

complete. �

Claim 2.3.2. Let � be a strict L∗0-ring convergence on B1(�). Then �s is

coarser than �.

�����. If 〈fn〉 converges to f under �, then some subsequence 〈f ′n〉 of 〈fn〉 is
linked to f via a double sequence of continuous functions and hence 〈f ′n〉 converges
to f under �s . Since �s satisfies the Urysohn axiom, it follows that � ⊂ �s . �

Construction 2.4. Denote by N the set of all sequences in B1(�) of the

form
〈 k∑

i=1
(fin − fi)gi

〉
, where k ∈ �, 〈fin〉 is a sequence of continuous functions

pointwise converging to fi ∈ B1(�), i = 1, . . . , k. Trivially, N is closed with respect
to subsequences and finite sums. Since

〈(f1n − f1)g1〉〈(f2n − fn)g2〉 = 〈(f1nf2n − f1f2)g1g2〉
− 〈(f1n − f1)f2g1g2〉 − 〈(f2n − f2)f1g1g2〉,

it follows that N is closed with respect to finite products, too. By Lemma 2 in [FZE],
there exists a unique L-ring convergence under which a sequence 〈fn〉 converges to
the constant zero function � iff 〈fn〉 ∈ N . Denote by �r its Urysohn modification.
Recall that 〈fn〉 converges to � under �r iff for each subsequence 〈f ′n〉 of 〈fn〉 there
exists its subsequence 〈f ′′n 〉 belonging to N .

Claim 2.4.1. �r is a strict L∗0-ring convergence.

�����. Obviously, �r is finer than the pointwise convergence on B1(�) and
hence the limits of �r -convergent sequences are uniquely determined. Thus �r is
an L∗0-ring convergence. If 〈fn〉 is a sequence of continuous functions pointwise
converging to f ∈ B1(�), then (〈fn〉, f) ∈ �r . Consequently, �r is admissible.
The proof of strictness of �r is straightforward. Hint: if (〈hn〉, h) ∈ �r and hn ∈
B1(�) \ C(�) for all n ∈ �, then there exists a subsequence 〈h′n〉 of 〈hn〉 such that
〈h′n − h〉 ∈ N ; hence 〈h′n〉 is of the form

〈 k∑
i=1
(fin − fi)gi + h

〉
, where fi, gi, h ∈

B1(�), and 〈fin〉 is a sequence of continuous functions pointwise converging to fi,

i = 1, . . . , k; the rest is trivial. �

Claim 2.4.2. Let � be a strict L∗0-ring convergence on B1(�). Then �r ⊂ �.

316



�����. Since � is admissible and compatible with the ring structure of B1(�),
〈(fn − f)g〉 converges under � to � whenever 〈fn〉 is a sequence of continuous func-
tions pointwise converging to f ∈ B1(�) and g ∈ B1(�). Hence �r ⊂ �.

It is known that each commutative L∗0-group can have many nonequivalent L∗0-
group completions and its Novák completion ([NOV]) yields its categorical L∗0-group
completion ([FKO]). We show that the Novák L∗0-group completion of C(�) fails to
be an L∗0-ring completion. �

Example 2.5. Let � denote the pointwise convergence on C(�). Then the
Novák L∗0-group completion of C(�) has B1(�) as its underlying group and is
equipped with an L∗0-group convergence �∗1 defined as follows: 〈fn〉 converges to
f under �∗1 iff for each subsequence 〈f ′n〉 of 〈fn〉 there exists its subsequence 〈f ′′n 〉
such that f ′′n − f = gn − g, n ∈ �, where 〈gn〉 is a sequence of continuous func-
tions pointwise converging to g ∈ B1(�). Let h be the characteristic function of
the singleton {0} and let fn be the constant function with value 1/n, n ∈ �. Then
h ∈ B1(�) and the sequence of continuous functions 〈fn〉 pointwise converges to � ,
but their product 〈hfn〉 fails to converge under �∗1 . Hence �∗1 fails to be an L∗0-ring
convergence and clearly �∗1 � �r .

Note: it is known that an L∗0-ring need not have an L∗0-ring completion ([FZE]) and
there are known sufficient conditions guaranteeing the existence of the categorical

L∗0-ring completion ([FKO]); C(�) fails to be a field and hence does not satisfy the
conditions.

We finish this section by mentioning some problems. First, we do not know

whether �s or �r is complete. Second, if not, then we can ask whether B1(�)
equipped with �s or �r has an L∗0-ring completion, at all.

3.

Our final goal is to construct an L∗0-ring completion of C(�) having a universal
extension property or, in categorical terms, an epireflection of C(�) into complete
L∗0-rings. Since C(�) is not a field, we cannot use the construction due to J. Novák.
The interested reader is referred to [FKO] for the background information about L∗0-
ring completions and to [HES] about categorical notions. To make the paper more

self-contained, we briefly recall some related notions.

Let � be an L∗0-convergence on a set Y �= ∅. For A ⊂ Y , denote by clA the set
of all � -limits of sequences ranging in A. Define 0-clA = A and, by induction, for

each ordinal number α � ω1 define α-clA =
⋃

β<α

cl(β-clA). Then 1-clA = clA and
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each α-cl yields a closure operator on Y . Further, ω1-cl is idempotent and hence a

topology; it is the finest of all topologies on Y coarser than cl.

Note: if ω1-clA = Y and f, g are continuous maps of (Y,� ) into an L∗0-space
(Y ′,� ′ ) such that f(x) = g(x) for each x ∈ A, then f = g; consequently a morphism
with a topologically dense range is an epimorphism in L∗0-spaces.
Let Y be a ring (commutative, not necessarily possessing a unit element) and

let � be an L∗0-ring convergence on Y . A sequence 〈xn〉 is said to be Cauchy if
〈x′n − x′′n〉 converges under � to zero whenever 〈x′n〉 and 〈x′′n〉 are subsequences of
〈xn〉. If each Cauchy sequence converges, then we speak of a complete L∗0-ring. Let
X be a subring of Y . Then, for each ordinal number α � ω1, the set α-clX is a
subring of Y and if Y is complete, then the subring ω1-clX is complete, too. If Y

is complete and Y = ω1-clX , then (Y,� ) is said to be an L∗0-ring completion of X
carrying the restriction of � to X . Finally, for L∗0-convergences the coordinatewise
convergence on products is the categorical one and the product of complete L∗0-rings
is a complete L∗0-ring.
Let A,B, and C denote the categories of all L∗0-rings, all L∗0-rings having a com-

pletion, and all complete L∗0-rings, respectively. A straightforward application of the
usual categorical tricks yields the following

Theorem 3.1. C is an epireflective subcategory of B.

�����. Let X be a ring carrying an L∗0-ring convergence � and let (X,�) be
its L∗0-ring completion. We show that there exists its L∗0-ring completion �(X,�) =
(X̂, �̂) having the following universal extension property: for each continuous homo-
morphism f of (X,�) into a complete L∗0-ring (Y,� ) there exists a unique continu-
ous homomorphism f̂ of (X̂, �̂) into (Y,� ) such that f(x) = f̂(x) for each x ∈ X .

Since X̂ is the smallest sequentially closed subset containing X , the embedding id:
(X,�) → (X̂, �̂) is an epimorphism and � yields an epireflector of B into C. The
construction of (X̂, �̂) is divided into two parts. The first has an auxiliary character.
Part 1. There exists a nonempty set S = {fa : (X,�) → (Xa,�a ) ; a ∈ A} of

continuous homomorphisms such that each (Xa,�a ) is a complete L∗0-ring and if
f is a continuous homomorphism of (X,�) into a complete L∗0-ring (Y,� ), then
there exists a ∈ A and a homeomorphic isomorphism g of (Xa,�a ) onto a subring
(Yf ,� � Yf ) of (Y,� ) such that f is a composition of g ◦ fa and the embedding

of (Yf ,� � Yf ) into (Y,� ). Indeed, each f determines a complete L∗0-subring of
(Y,� ) the underlying set of which is Yf = ω1-cl f(X). Since card(1-cl f(X)) cannot

exceed the cardinality of the set of all countable infinite subsets of f(X) and ω1-
cl f(X) =

⋃
β<ω1

cl(β-cl f(X)), it follows that card(Yf ) � exp card(X). Hence there is

a set {(Xb,�b ) ; b ∈ B} of complete L∗0-rings such that card(Xb) � exp card(X) and
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each (Yf ,� � Yf ) is homeomorphic and isomorphic to some (Xb,�b ), b ∈ B. Note:

S yields a so-called solution set for (X,�) with respect to the inclusion functor of C
into B.
Part 2. The product

∏
a∈A

(Xa,�a ) is a complete L∗0-ring and, via the canonical
embedding sending x ∈ X into ϕ(x) = (fa(x), a ∈ A), (X,�) can be view as the
corresponding L∗0-subring of

∏
a∈A

(Xa,�a ) (remember, (X,�) is an L∗0-subring of its

completion (X,�)). Denote by (X̂, �̂) the smallest sequentially closed L∗0-subring of∏
a∈A

(Xa,�a ) containing (X,�). It is easy to see that (X̂, �̂) has the desired properties.

This completes the proof. �

Lemma 3.2. Let (Y,� ) be a complete L∗0-ring and let X be a subring of Y . Put

X = ω-clX and define � ⊂ X
� × X as follows: (〈xn〉, x) ∈ � whenever (〈xn〉, x) ∈

� and there exists a natural number k such that xn ∈ (k-clX) for each n ∈ �.
Then (X,�) is a complete L∗0-ring and the identity mapping on X is a continuous

isomorphism of (X,�) onto (X,� � X).

�����. It is easy to verify that � is an L∗0-ring convergence on X finer than
� � X . If 〈xn〉 is a Cauchy sequence in (X,�), then there exists k ∈ � such that
x ∈ (k-clX) for each n ∈ �. Thus (X,�) is complete. �

Theorem 3.3. Let (X,�) be an L∗0-ring in B and let (X̂, �̂) be its categorical
L∗0-ring completion. Then ω-clX = X̂.

�����. The assertion follows from Lemma 3.2. Putting X̂ = Y and �̂ = � , we
easily infer that X = X̂ and � = �̂ . �

Corollary 3.4. B(�) carrying the pointwise convergence fails to be the categor-
ical completion of C(�).

�����. Indeed, ω-clC(�) = Bω(�) � B(�), while C(�) is ω-dense in its
categorical L∗0-ring completion. �

Problem. Describe the categorical L∗0-ring completion of C(�).
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