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ON ARCHIMEDEAN MV -ALGEBRAS

Ján Jakubík, Košice

(Received January 4, 1996)

In this paper we generalize results of Cignoli [1] and the author [4] concerning

complete MV -algebras to the case of archimedean MV -algebras.

1. Preliminaries and main results

For MV -algebras we apply the same terminology and notation as in [3] and [4].

We suppose the reader to be acquainted with [3], Section 1 or [4], Section 1.
Cignoli [1] studied the structure of MV -algebras which are complete nad atomic.

His main result is the following theorem:

Theorem 1. ([1], Theorem 2.6.) Let A be an MV -algebra. Then the following

conditions are equivalent:

(i) A is complete and atomic.
(ii) A is a direct product of finite linearly ordered MV -algebras.

A direct product
∏
i∈I

Ai of MV -algebras Ai is complete if and only if all Ai are

complete. Further, a complete linearly ordered MV -algebra is finite if and only if it

is atomic (cf. [4], 1.3). Thus Theorem 1 can be equivalently expressed as follows:

Theorem 1’. Let A be anMV -algebra. Then the condition (i) from Theorem 1
is equivalent with the following condition:

(ii′) A is a direct product of MV -algebras which are linearly ordered, complete

and atomic.

Let α be a cardinal, α > 1. An element a of an MV -algebra A is said to be an
α-atom if the interval [0, a] of A is a chain with card[0, a] = α. Hence the notion of
the 2-atom coincides with the notion of the atom.
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In [4] the following result was established:

Theorem 2. Let A be anMV -algebra and let α be a cardinal, α > 1. Then the

following conditions are equivalent:

(i) A is complete and α-atomic.

(ii) A is a direct product of algebras which are linearly ordered, complete and
α-atomic.

Next, if (i) is valid, then either α = 2 or α = c (the cardinality of continuum).

A nonempty subset {aj}j∈J of anMV -algebra A is said to be orthogonal if aj(1)∧
aj(2) = 0 whenever j(1) and j(2) are distinct elements of J . The MV -algebra A
will be called orthogonally complete if each orthogonal subset of A possesses the
supremum in A.
In an analogous way the notions of orthogonality and orthogonal completeness in

lattice ordered groups are defined. If G is a lattice ordered group, then neither the
completeness of G implies the orthogonal completeness, nor conversely.

Since each MV -algebra A has a greatest element we infer that if A is complete
then it must be orthogonally complete. On the other hand, an orthogonally complete

MV -algebra need not be complete.

If A is an MV -algebra, then it can be constructed by means of an abelian lattice
ordered group G with a strong unit u; G is uniquely determined (cf. Mundici [5];

cf. also [3], Section 1).

A will be said to be archimedean if G is archimedean (for an internal character-

ization of this notion cf. 2.1 below). Each complete MV -algebra is archimedean,
but not conversely. A direct product

∏
i∈I

Ai is archimedean if and only if all Ai are

archimedean.

In the present paper the following results will be proved:

Theorem 3. Let A be an MV -algebra. Then the following conditions are

equivalent:

(i) A is orthogonally complete, archimedean and atomic.
(ii) A is complete and atomic.

In the following theorem (and also in Theorem 6) we assume that Continuum
Hypothesis is valid.

Theorem 4. Let A be an MV -algebra. Let α be a cardinal, α > 1. If A is
archimedean and α-atomic, then α ∈ {2,ℵ0, c}.
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Theorem 5. Let A be an MV -algebra. Suppose that A is archimedean and
α-atomic for some α > 1. Then the following conditions are equivalent:

(i) A is orthogonally complete.
(ii) A is a direct product ofMV -algebras which are linearly ordered and α-atomic.

Theorem 6. Let A be an archimedean orthogonally complete MV -algebra.

Then A can be expressed as a direct product A1 ×A2 ×A3 ×A4 such that
(i) A1 is atomic;
(ii) A2 is ℵ0-atomic;
(iii) A3 is c-atomic;

(iv) if α > 1, then there is no α-atom in A4.

2. Proofs of Theorems 3−6

Let us begin with a more detailed investigation of the archimedean property. Let

A be an MV -algebra and let G be the corresponding lattice ordered group with a
strong unit u (cf. [3]). The underlying set A of A is the interval [0, u] of G. Therefore
the group operation + onG can be viewed as a partial binary operation on A; namely,
for a1, a2 ∈ A the operation a1+a2 is defined in A iff a1+a2 ∈ A. Let n be a positive

integer, ai = a ∈ A for i = 1, 2, . . . , n. If na = a1 + a2 + . . .+ an belongs to A, then
na is said to be defined in A.
Consider the following condition for A:
(A′) There exists a ∈ A such that (i) 0 < a, and (ii) for each positive integer n,

na is defined in A and na < u.

2.1. Lemma. The following conditions are equivalent:

(i) = (A′)

(ii) A fails to be archimedean.

�����. Let (A′) hold. Hence G is not archimedean and thus A is not
archimedean. Conversely, assume that (ii) is valid. Hence G is not archimedean.

Thus there are elements b and d in G such that 0 < nb < d holds for each positive
integer n. Put b1 = u ∧ b. Then 0 < b1. There exists a positive integer m such that
d � mu.

By way of contradiction, suppose that (A′) is not valid. We have nmb1 < mu

for each positive integer n. Hence 0 < nb1 < u for each positive n, which is a
contradiction. �
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From 2.1 we obtain an internal characterization of the archimedean property for

MV -algebras.

2.2. Lemma. If A is complete, then it is archimedean.

�����. Let A be complete. Then by [4], 1.1, G is complete as well. It is
well-known that each complete lattice ordered group is archimedean. Thus A is
archimedean. �

2.3. Lemma. Let A be an archimedeanMV -algebra. Let a be an α-atom in A,
α > 1. Then A can be represented as a direct product A1×A2, where A1 is linearly
ordered and a ∈ A1.

�����. Let G be as above. Hence G is archimedean and the interval [0, a]
of A is a chain in G. Then in view of [5], Theorem 1, there is a direct product

decomposition G = G1 ×G2 such that [0, a] ⊂ G1; moreover, G1 is linearly ordered.
Put Xi = [0, u] ∩ Gi(i = 1, 2). For x ∈ A let xi be the component of x in Gi

(i = 1, 2). The mapping x −→ (x1, x2) defines a direct product decomposition of the
lattice [0, u] with the factors X1 and X2. We have Xi = [0, ui] (i = 1, 2) and ui is a

strong unit in Gi. Hence we can consider the MV -algebra Ai on [0, ui], where the
corresponding lattice ordered group is Gi(i = 1, 2). In view of [3], 3.5 we obtain that
A is a direct product A1 ×A2. Clearly a ∈ A1 = [0, u1].

Each direct factor of an archimedean lattice ordered group is archimedean. Thus
both G1 and G2 are archimedean. This yields that A1 and A2 are archimedean as
well. �

If A and a are as in 2.3, then we denote A1 = A1(a); we also put G1 = G1(a),
where G1 is as in the proof of 2.3.

Let R and Z be the additive group of all reals or all integers, respectively, with
the natural linear order.

2.4. Proposition. Let A, a and α be as in 2.3. Then α ∈ {2,ℵ0, c}.

�����. Let G1 = G1(a). We have already remarked above that G1 is

archimedean. It is well-known that then G1 must be isomorphic to an �-subgroup R′

of R. Hence the interval [0, a] of G1 is isomorphic to an interval [0, a′] of R′. If [0, a′]

is finite, then clearly α = 2. If [0, a′] is infinite, then α � ℵ0. Since [0, a′] ⊂ R we
infer that α � c. Now Continuum Hypothesis yields that either α = ℵ0 or α = c. �

Theorem 4 above is a corollary of 2.4.
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2.5. Proposition. Let A be an archimedean orthogonally complete MV -

algebra. Suppose that for each x ∈ A there is a ∈ A such that 0 < a � x and

[0, a] is a chain. Then A is a direct product of linearly ordered MV -algebras.

�����. The case A = {0} is trivial; suppose that A �= {0}. For each a ∈ A

such that 0 < a and [0, a] is a chain we construct the linearly ordered MV -algebra

A1(a). Let {Ai}i∈I be the system of allMV -algebras that can be constructed in this
way; next, let {Gi}i∈I be the system of the corresponding �-subgroups of G. All Gi

are direct factors of G, thus they are polars of G. Also, all Gi are linearly ordered,
hence Gi(1) ∩Gi(2) = {0} whenever i(1) and i(2) are distinct elements of I. If b ∈ A

and bi is the component of b in Gi, then the system {bi}i∈I is orthogonal. Clearly
bi ∈ A for each i ∈ I. By applying the orthogonal completeness of A and using the
same method as in [4], proof of (A), part (b), then we obtain that our assertion is
valid. �

����� �� ������� �. Let (ii) be true. Then A is orthogonally complete.
In view of 2.2, A is archimedean, thus (i) holds.
Conversely, suppose that (i) is satisfied. Similarly as in the proof of 2.5 we can

suppose that A �= {0}. In view of 2.5, A is a direct product of a system {Ai}i∈I

where each Ai is linearly ordered. All Ai are archimedean and atomic. Thus all Ai

are finite (cf. the proof of 2.4). Hence all Ai are complete. This yields that A is
complete as well. �

����� �� ������� 	. We suppose that A is an archimedean MV -algebra
which is α-atomic for some α > 1.

Let (i) be valid. We apply 2.5 and construct the system {Ai}i∈I . Again, we can
suppose that A �= {0}, whence I �= ∅. All Ai (being direct factors of A) must be
α-atomic. Hence (ii) holds.
Let (ii) be true. Let {xj}j∈J be an orthogonal subset of A. We have to prove

that sup{xj}j∈J exists in A. It suffices to consider the case when xj �= 0 for each
j ∈ J . For j ∈ J and i ∈ I let xji be the component of xj in Ai. Then the system

{xji}(ji)∈J×I is orthogonal and hence there exists x =
∨
j,i

xji in A. Since xj =
∨
i∈I

xji

is valid for each j ∈ J , we have x � xj for each j ∈ J . Next, let y ∈ A, y � xj for

each j ∈ J . Let yi be the component of y in the direct factor Ai. If i ∈ I and xji �= 0
for some j ∈ J , then yi � xji, whence y � x. Thus x =

∨
j∈J

xj . �

����� �� ������� 
. We suppose that A is archimedean and orthogonally
complete. We apply 2.3. If a ∈ A is an α-atom for some α > 1, then we construct
G1 = G1(a) as in the proof of 2.3; next, we construct A1 = A1(a). Let {Gi}i∈I and

{Ai}i∈I be the set of all lattice ordered groups or allMV -algebras, respectively, that
can be constructed in this way.
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If i(1) and i(2) are distinct elements of I, then Ai(1) ∩Ai(2) = {0}. For each i ∈ I

let ui be the component of u in Ai. The system {ui}i∈I is orthogonal, hence there
exists u0 =

∨
i∈I

ui in A. We have u0 � u, thus there is u4 in A such that u0+u4 = u.

Assume there is an α-atom a in A with a � u4, α > 1. Hence there exists i(1) ∈ I

with Gi(1) = G1(a). Then

(u4)i(1) � a > 0 .

A simple calculation (analogous to that performed in [4], proof of (A)) yields that

ui(1) = (u
0)i(1) + (u4)i(1) � ui(1) + a ,

which is a contradiction. Therefore u4 ∧ a = 0 for each α-atom a with α > 1. Hence
u4 ∧ ui = 0 for each i ∈ I and thus u4 ∧ u0 = 0. Hence

u = u4 + u0 = u4 ∨ u0 .

Since the lattice [0, u] is distributive, it is a direct product [0, u0]×[0, u4] (we consider
the mapping x −→ (x ∧ u0, x ∧ u4) for each x ∈ [0, u]). We can construct the MV -

algebras A0 and A4 with A0 = [0, u0] and A4 = [0, u4]. In view of [3], 3.5, A is a
direct product A0 ×A4. We have verified that if α > 1, then A4 has no α-atom.

Let 0 < x ∈ A0. Then

x = x ∧ u0 = x ∧ (
∨

i∈I

ui) =
∨

i∈I

(x ∧ ui) .

Hence there is i(1) ∈ I such that x ∧ u0 > 0. It is clear that x ∧ ui(1) is an α-atom

in A0 for some α > 1. Thus we can apply Proposition 2.5 for A0. In view of the
construction in the proof of 2.5, A0 is a direct product of the system {Ai}i∈I .

Each Ai is α-atomic for some α ∈ {2,ℵ0, c} (cf. Theorem 4). Put
I1 = {i ∈ I : Ai is 2-atomic},
I2 = {i ∈ I : Ai is ℵ0-atomic},
I3 = {i ∈ I : Ai is c-atomic}.

In view of the direct product decomposition under consideration there are MV -
algebras Aj(j = 1, 2, 3) such that

(a) Aj is a direct product
∏

i∈Ij

Ai for j = 1, 2, 3;

(b) A0 is a direct product A1 ×A2 ×A3.
According to our construction, A1 is 2-atomic, A2 is ℵ0-atomic and A3 is c-atomic.

We also obtain that A is a direct product A1×A2×A3×A4. The proof is complete.
�
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Let us remark that if u0 = u, then A4 is a trivial direct factor, i.e., A4 = {0}.
Next, some of the sets I1, I2 or I3 can be empty. E.g., if I1 = ∅, then A1 = {0}, and
analogously in the case I2 = ∅ or I3 = ∅.

3. Examples and counterexamples

3.1. Let α be an infinite cardinal. In [4] a linearly ordered MV -algebra Aα

was constructed such that whenever 0 < a ∈ Aα, then a is an α-atom in Aα. The
algebra Aα is not archimedean.

3.2. Let R and Z be as above. Next, let Q be the additive group of all rationals

with the natural linear order. We choose 0 < r0 ∈ R, 0 < z0 ∈ Z and 0 < q0 ∈ Q.
We can construct MV -algebras A1,A2,A3 such that A1 is the interval [0, r0] of R,

A2 is the interval [0, z0] of Z, A3 is the interval [0, q0] of Q and the corresponding
lattice ordered groups are R, Z and Q, respectively. Then all Ai are archimedean

and linearly ordered, A1 is c-atomic, A2 is 2-atomic and A3 is ℵ0-atomic. By forming
direct products of replicas of A1,A2 or A3, respectively, we obtain MV -algebras of

arbitrarily large cardinalities which are atomic, ℵ0-atomic or c-atomic.

3.3. Let A3 be as in 3.2. Then A3 is orthogonally complete but fails to be
complete.

3.4. There exists a Boolean algebra B such that B is complete, cardB > 1 and

B has no atom. Let A be an MV -algebra which is constructed from B as in the
concluding part of [3]. Then A is complete, cardA > 1 and for each cardinal α with

α > 1, there are no α-atoms in A.

3.5. Put G = Z ◦ (Z × Z), where the symbol Z denotes the operation of
lexicographic product. Put u = (1, 0, 0). Then u is a strong unit in G, hence we can

construct the corresponding MV -algebra A (by means of [3], 1.3); the underlying
set of A is the interval [0, u] of G. The MV -algebra A is orthogonally complete and
atomic, but it is not a direct product of linearly ordered MV -algebras.

Added in proof: In the forthcoming monograph R. Cignoli, I.M. L. D’Ottaviano,
D. Mundici: Algebraic Foundations of Many-valued Reasoning a different terminol-

ogy for MV -algebras is used; instead of the above term “archimedean”, the term
“semisimple” is applied.
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