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0. Introduction

LetM be a compact Riemannian manifold of dimension m with smooth boundary

∂M . Let Γ(V ) denote the space of smooth sections to a vector bundle V over M .
We assume V is equipped with a pointwise fiber metric (·, ·) and a Riemannian
connection ∇ : Γ(V ) → Γ(T ∗M ⊗ V ). We shall adopt the Einstein convention and
sum over repeated indices. We use that connection ∇ on V and the Levi-Civita
connection on the cotangent bundle T ∗M to define the second covariant derivative
∇2f = dxi ⊗ dxj ⊗ f;ij . Let

D(f) := −Tr(∇2f) = −gijf;ij

be the Bochner or reduced Laplacian; this operator arises in many contexts.

We impose Dirichlet (B = BD) or Neumann (B = BN ) boundary conditions
to define a self-adjoint operator DB of Laplace type. Let E(λ,D,B) ⊂ Γ(V ) be
the eigenspaces of DB; there is an orthogonal direct ΣL2(V ) =

⊕
λ

E(λ,D,B). Let

k(t, x1, x2, D,B) be the fundamental solution of the heat equation and let

a(D,B)(t) := TrL2(e
−tDB) =

∑

λ

e−tλ dim(E(λ,D,B))

=
∫

M

TrVx K(t, x, x,D,B) dx.

As t ↓ 0+, there is an asymptotic expansion

a(D,B)(t) ∼
∑

n�0
an(D,B)t(n−m)/2.

1 1991 Mathematics Subject Classification: 58G25
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The asymptotics of the heat equation, an(D,B), are locally computable. If we take

the trivial connection on the trivial line bundle over M , the Bochner Laplacian is
the usual scalar Laplacian ∆0 = δ0d0. We consider the following heat conduction
problem. Suppose M has initial temperature 1 at time t = 0 and suppose that the

boundary is kept at temperature 0 for all t > 0. Then the temperature function is
h(t, x) :=

∫
M
K(t, x, y,∆0,BD) dy and the total heat energy content is

βM (t) :=
∫

M×M

K(t, x1, x2,∆0,BD) dx1 dx2.

Again, as t ↓ 0+, there is an asymptotic expansion

βM (t) ∼
∑

n�0
βn(M)t

n/2.

The heat content asymptotics, βn(M), are locally computable.

Let π : Z → Y be a Riemannian submersion with closed fibers F (y) := π−1(y)
where Y is a compact manifold with smooth boundary ∂Y . Let VY be a vector bundle

over Y with a fiber metric and a Riemannian connection ∇Y . Give the pull back
bundle VZ := π∗(VY ) over Z the pull back fiber metric and pull back Riemannian

connection ∇Z := π∗∇Y . Pull-back induces a natural map π∗ : Γ(VY )→ Γ(VZ) such
that π∗∇Y = ∇Zπ

∗. Let DY be the Bochner Laplacian on Y and let DZ be the

Bochner Laplacian on Z. In §1, we generalize a theorem of Watson [9] and show
that π∗DY = DZπ

∗ if and only if the fibers of π are minimal.

If the fibers of π are minimal, then vol(F (y)) := vol(F ) is independent of y; see
[1, 1.10]. We will show in Lemma 2.1 that if we average the heat kernel of DZ over

the fibers we recover the heat kernel of DY , i.e.

K(t, y1, y2, DY ,B) = vol(F )−2
∫

(f1,f2)∈F (y1)×F (y2)
K(t, f1, f2, DZ ,B) df1 df2.

We take D = ∆0 and B = BD to show that

βZ(t) = vol(F )βY (t) and βn(Z) = vol(F )βn(Y ).

Principal bundles form a particularly natural family of examples. We shall assume

the structure group G is compact and choose a bivariant metric on G. If we choose
a G equivariant connection on Z to split TZ =H ⊕ V into horizontal and vertical

fibers, we define a G invariant metric on Z and π becomes a Riemannian submersion
with totally geodesic fibers; see Besse [3, 9.59] for details. Let π(zi) = yi. Then

K(t, y1, y2, DY ,B) = vol(G)−2
∫

(g1,g2)∈G×G

K(t, g1z1, g2z2, DZ ,B) dg1 dg2.
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Even in this special situation, these does not seem to be a simple relationship between

a(DY ,B)(t) and a(DZ ,B)(t); the curvature enters in a non-trivial fashion.

This brief note was motivated by questions which were asked by C. Gordon and
it is a pleasure to acknowledge helpful discussions with her.

1. The Bochner Laplacian

We refer [6] for the proof of:

Theorem 1.1. Let π : Z → Y be a Riemannian submersion where Z and Y are

closed manifolds.

(a) If ϕ ∈ E(λ,∆0Y ) and if π∗ϕ ∈ E(µ,∆0Z), then µ = λ.
(b) The following assertions are equivalent:

(i) π∗∆0Y = ∆
0
Zπ

∗.

(ii) The fibers of π are minimal submanifolds of Z.

Remark. See [6,7] for related results about the form valued Laplacian ∆p; asser-

tion (b) was first proved by Watson [9].

In this section, we generalize Theorem 1.1 to:

Theorem 1.2. Let π : Z → Y be a Riemannian submersion where the fibers of

π are compact and where Y is a compact manifold with smooth boundary. Impose

Dirichlet or Neumann boundary conditions.

(a) If ϕ ∈ E(λ,DY ,B) and if π∗ϕ ∈ E(µ,DZ ,B), then µ = λ.

(b) The following assertions are equivalent:

(i) π∗DY = DZπ
∗.

(ii) The fibers of π are minimal submanifolds of Z.

Remark. If the fibers of π are minimal submanifolds of Z, then vol(F )−1/2π∗ is
a partial isometry;

(π∗ϕ1, π∗ϕ2)L2(Z) = vol(F )(ϕ1, ϕ2)L2(Y ) ∀ϕ1, ϕ2 ∈ Γ(VY ).

We decompose the tangent bundle TZ = V ⊕H into the vertical and horizontal
distributions; let �V and �H be the corresponding projection operators. We use the

metric to identify the tangent and cotangent spaces. Let indices {a, b} range from
1 to dim(Y ) and index local orthonormal frames {Fa} for TY . Let fa = π∗Fa be

the corresponding local orthonormal frames for the horizontal distribution H . Let
indices {i, j} range from dim(Y ) + 1 to dim(Z) and index local orthonormal frames
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{ei} for the vertical distribution V . Let Γ denote the Christoffel symbols of the

Levi-Civita connection. The mean curvature vector is defined by

θ := �H ((∇z)eiei);

θ ≡ 0 if and only if the fibers of π are minimal. Let int denote interior multipli-
cation; if f̃ ∈ Γ(VZ), int(θ)(∇z f̃) ∈ Γ(VZ). We begin the proof of Theorem 1.2 by

establishing a fundamental identity:

Lemma 1.3. DZπ
∗ − π∗DY = intZ(θ)π∗∇Y .

����� �� ����� 1.3. Since the calculations are local, we may assume the
vector bundle V is trivial. Let ω be the connection 1-form of the connection ∇Y . If

ϕ = (ϕ1, . . . , ϕν) ∈ Γ(VY ), let Fa(ϕ) = (Fa(ϕ1), . . . , Fa(ϕν)). We expand

∇Y ϕ = F a ⊗ ϕ;a and ∇2Y ϕ = F a ⊗ F b ⊗ ϕ;ab

where ϕ;a = Fa(ϕ) + ωa(ϕ) and ϕ;ba = Fa(ϕ;b) + wa(ϕ;b) + ΓY
acbϕ;c. Thus

DY ϕ = −(Fa(ϕ;a) + ωa(ϕ;a) + ΓY
acaϕ;c).

Let ϕ̃ = π∗ϕ. Since ω̃ = π∗ω, we have that ∇Z ϕ̃ = π∗(∇Y ϕ). Thus ϕ̃;i = 0 so

DZϕ̃ = −(fa(ϕ̃;a) + ωa(ϕ̃;a) + ΓZ
acaϕ̃;c)− ΓZ

iciϕ̃;c.

Since ΓZ c
ab = π

∗(ΓY c
ab ),

DZπ
∗ − π∗DY = −ΓZ

iciϕ̃;c = int(θ)(∇Z ϕ̃) = int(θ)π∗(∇Y ϕ).

�

����� �� �	����� 1.2. Suppose that 0 �= ϕ ∈ E(λ,DY ,B) and ϕ̃ ∈
E(µ,DZ ,B) for λ �= µ. Then (µ− λ)ϕ̃ = int(θ)π∗∇Y ϕ. This implies that

(µ− λ)|ϕ̃|2 = int(θ)π∗(∇Y ϕ,ϕ) = 1
2 int(θ)π

∗d(ϕ,ϕ) = 1
2 (θ, π

∗d(|ϕ|2)).

We argue for a contradiction. Choose y ∈ Y so |ϕ|2 is maximal. If ỹ ∈ π−1(y),
then |ϕ̃|2 is maximal at ỹ. If y is in the interior of Y , then |ϕ|2 has an interior
local maximum so d|ϕ|2(y) = 0. Consequently 12 (θ, π∗d(|ϕ|2)) vanishes at ỹ and
(λ−µ)|ϕ̃|2(ỹ) = 0. Since λ �= µ, |ϕ|2(y) = 0. This shows that the maximum value of
|ϕ|2 is zero so ϕ ≡ 0. This contradiction shows that y belongs to the boundary of Y .
If B = BD, then ϕ vanishes on the boundary so |ϕ|2 can not attain its maximum
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on the boundary and this is impossible. If B = BN , the normal derivative of ϕ

vanishes on the boundary. Since |ϕ|2 attains its maximum on the boundary, the
tangential derivatives of |ϕ|2 vanish at y so again d(|ϕ|2)(y) = 0 which is impossible.
This contradiction proves assertion (a).

The implication (ii)⇒ (i) is an immediate consequence of Lemma 1.3. Conversely,
suppose (i) holds. Then int(θ)π∗(∇Y ϕ) vanishes identically for all ϕ ∈ Γ(VY ). Since

θ is a horizontal differential form, θ ≡ 0 so the fibers are minimal. �

2. Heat kernel

Let K(t, x1, x2, D,B) denote the kernel of the fundamental solution of the heat

equation for a Bochner LaplacianD with Dirichlet or Neumann boundary conditions
B. If {λν , ϕν} is a spectral resolution of D, then

K(t, x1, x2, D,B) :=
∑

ν

e−tλνϕν(x1)⊗ ϕν(x2).

Suppose the fibers of π are minimal. We give the fibers the induced Riemannian

metric to define integration over the fibers.

Lemma 2.1. Let π : Z → Y be a Riemannian submersion with minimal fibers.

K(t, y1, y2, DY ,B) = vol(F )−2
∫

(f1,f2)∈F (y1)×F (y2)
K(t, f1, f2, DZ ,B) df1 df2.

�����. Since the fibers are minimal, ∆Zπ
∗ϕν = λνπ

∗ϕν . Thus we may take a

spectral resolution for ∆Z of the form

{{λν, π
∗ϕν}, {µσ, ψσ}}

where {µσ, ψσ} are spectral resolution of ∆Z acting on π∗(L2(VY ))⊥;
∫

Z

(ψσ(z), (π∗ψν))(z) dz = 0 ∀ν.

Let Ψσ(y) :
∫

z∈F (y) ψσ(z) dz = π∗(χσ) for χσ ∈ Γ(VY ). We use Fubini’s theorem to
express the integral over Z as an iterated integral by first integration over the fibers

and then integrating over the base. Since the fibers have constant volume,

vol(F )(χσ, ϕν)L2(Y ) =
∫

Z

(ψσ(z), ϕν(πz)) dz = 0 ∀ν.

This shows that χσ = 0; the Lemma now follows. �
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The following is now an immediate consequence of Lemma 2.1:

Lemma 2.2. Let π : Z → Y be a Riemannian submersion with minimal fibers.

βZ(t) = vol(F )βY (t) and βn(Z) = vol(F )βn(Y ).

Remark. We refer to Theorem A.2 below. In the formula for β3, there is no
term Rabab; such a term would spoil this relationship since the fiber variable could
enter. Similarly, in the formula for β5, the are no terms involving RammbRaccb or

LaaLbcRbddc as again such terms would spoil this formula.

The analogue of Lemma 2.2 fails for the heat asymptotics a(·) since we must
restrict to the diagonal; first averaging over the product of pairs of fibers and then

restricting to the diagonal is not easily related to first restricting to the diagonal
and then averaging over a single fiber. This is most easily illustrated with a pair of

examples

Example 2.3. Let F = S1, Y = S2, and Z = S1 × S2 define the trivial principal
bundle

S1 → S1 × S2 → S2.

If {λν , ϕν} is a spectral resolution of ∆0Y and {µσ, ψσ} is a spectral resolution of ∆0F ,
then {λν + µσ, ϕνψσ} is a spectral resolution of ∆0Z . Thus

a(∆0Z)(t) = a(∆
0
F )(t) · a(∆0Y )(t),

an(∆0Z) =
∑

p+q=n

ap(∆0F )aq(∆0Y ).

Since ap(∆0F ) = 0 for p > 0, we see the invariants rescale;

an(∆0Z) = a0(∆
0
F ) · an(∆0Y ).

Example 2.4. Let F = S1, Y = S2, and Z = S3 be the Hopf fibration

S1 → S3 → S2.

The formulas of Theorem A.1 show

an(Z) �= a0(F )an(Y );

the curvature of the bundle enters. We refer to [8] for an explicit calculation of
a(S2)(t) and a(S3)(t).
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Appendix A

We recall for the convenience of the reader some well known formulas concerning
the heat equation and the heat content asymptotics. We impose Dirichlet boundary

conditions. Let R be the Riemann curvature tensor and L the second fundamental
form. Let τ and � be the scalar curvature and the Ricci tensor. We adopt the

following notational conventions that differ from those established in §1. Let {ei}
for 1 � i � m be a local orthonormal frame for the tangent bundle. Near the

boundary we let em be the inward unit geodesic normal and let indices a, b, . . . range
from 1 to m− 1. See [2, 4, 5] for the proofs of the following results:

Theorem A.1. Let an = an(M,∆0,BD).

(a) a0 = (4�)−m/2 vol(M).

(b) a1 = −4−1(4�)−(m−1)/2 vol(∂M).
(c) a2 = (4�)−m/26−1{

∫
M
τ +

∫
∂M
2Laa}

(d) a3(M,∆,BD) = −(384)−1(4�)−(m−1)/296−1
∫

∂M (16τ + 8Ramam + 7LaaLbb −
10LabLab).

(e) a4 = (4�)−m/2360−1
{∫

M

(12τ;kk + 5τ2 − 2�2 + 2R2)

+
∫

∂M

(18τ;m + 20τLaa + 4RamamLbb − 12RambmLab + 4RabcbLac

+ 24Laa:bb + 40/21LaaLbbLcc − 88/7LabLabLcc + 320/21LabLbcLac)

}
.

(f) In the special case that the boundary is totally geodesic, we have

a5 = − 5760−1(4�)(m−1)/2
∫

∂M

(48τ;ii + 20τ2 − 8�2 + 8R2 − 20�;mmτ

+ 12τ;mm + 15�mm;mm + 16Rammb�ab − 17�mm�mm − 10RammbRammb).

Theorem A.2.

(0) β0 = vol(M).

(1) β1 = − 2√
�
vol(∂M).

(2) β2 = 1
2

∫
∂M Laa.

(3) β3 = − 1
6
√
�

∫
∂M
(LaaLbb − 2LabLab − 2�mm).

(4) β4 = 1
32

∫
∂M
(−2LabLabLcc + 4LabLacLbc − 2RambmLab + 2RabcbLac + τ;m).
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(5) β5 =
1

240
√
�

∫

∂M

(8�mm;mm − 8Laa�mm;m + 16LabRammb;m − 4�2mm

+ 16RammbRammb − 4LaaLbb�mm − 8LabLab�mm + 64LabLacRmbcm

− 16LaaLbcRmbcm − 8LabLacRbddc − 8LabLcdRacbd + 4RabcmRabcm

+ 8RabbmRaccm − 16Laa:bRbccm − 8Lab:cLab:c + LaaLbbLccLdd

− 4LaaLbbLcd + 4LabLabLcdLcd − 24LaaLbcLcdLdb + 48LabLbcLcdLda).
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