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GRAPH AUTOMORPHISMS OF A FINITE MODULAR LATTICE

Ján Jakubík, Košice

(Received June 25, 1997)

G. Birkhoff ([2], Problem 6) proposed the following problem:

To find all finite lattices L such that each automorphism of the unoriented graph
corresponding to L turns out to be a lattice automorphism.

Let us denote by C the class of all lattices which satisfy the condition mentioned.
In the present note we give a partial solution to this problem concerning modular

lattices. By applying the methods and the results of [3] and [4] we prove
(∗) Let L be a finite modular lattice. Then the following conditions are equivalent:
(i) L belongs to C.
(ii) No direct factor of L having more than one element is self-dual.

Let us remark that the related Problem 5 in [2] (proposed already in [1] as Problem
8 and dealing with unoriented graphs of finite lattices) was solved in [3] for the

particular case of modular lattices and remains unsolved for the general case.

1. Preliminaries

In the whole paper L denotes a finite lattice. For a, b ∈ L we put a ≺ b or b � a

if a < b and the interval [a, b] of L is a two-element set.
Let G(L) be the unoriented graph such that

(i) L is the set of all vertices of G(L);
(ii) a pair (x, y) ∈ L× L is an edge in G(G) if and only if either x ≺ y or x � y.

For each lattice A we denote by A∼ the lattice which is dual to A. If there exists
an isomorphism of A onto A∼, then A is called self-dual.

Let us have a direct product A × B of finite lattices A and B. Then for (a1, b1),
(a2, b2) ∈ A×B the relation

(a1, b1) ≺ (a2, b2)
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is valid if and only if either a1 ≺ a2 and b1 = b2, or a1 = a2 and b1 ≺ b2. From this

we conclude

1.1. Lemma. Let ψ be an isomorphism of L onto the direct product A × B.

Further suppose that χ is an isomorphism of B onto B∼. For each x ∈ L we put

ϕ(x) = y, where

ψ(x) = (a, b), y = ψ−1((a, χ(b))).

Then ϕ is an automorphism of the graph G(L).

1.2. Lemma. Let the assumptions of 1.1 be satisfied. Further suppose that B
has more than one element. Then ϕ fails to be a lattice automorphism on L.

�����. Choose a ∈ A. There exist b1, b2 ∈ B with b1 ≺ b2. Put

x = ψ−1((a, b1)), y = ψ−1((a, b2)).

Then x ≺ y. We have

ϕ(x) = ψ−1((a, χ(b1))), ϕ(y) = ψ−1((a, χ(b2)))

and χ(b1) � χ(b2). Therefore ϕ(x) � ϕ(y). �

1.3. Corollary. If L belongs to C, then no direct factor of L having more than
one element is self-dual.

2. Internal direct product decompositions

Let A,B be lattices and let

ψ : L→ A×B

be an isomorphism of L onto the direct product A×B. For x ∈ L with ψ(x) = (a, b)
we put a = xA, b = xB.

Let x0 be a fixed element of L. We denote

A0 = {x ∈ L : xB = x
0
B}, B0 = {x ∈ L : xA = x

0
A}.

Then A0 and B0 are convex sublattices of L with A0 ∩B0 = {x0}. Moreover, A0 is
isomorphic to A and B0 is isomorphic to B.
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Consider the mapping

(1) ψ0 : L→ A0 ×B0

defined by
ψ(x) = (x(A0), x(B0)),

where x(A0) is an element of A0 such that

(x(A0))A = xA;

similarly, x(B0) is an element of B0 such that

(x(B0))B = xB.

Then the mapping ψ0 is an isomorphism of L onto the lattice A0 × B0. We say
that ψ0 is an internal direct product decomposition of L with the central element

x0. The lattices A0 and B0 are called internal direct factors of L. (Cf. [4].)

2.1. Lemma. (Cf. [4], Lemma 2.4.) Suppose that (1) is an internal direct
product decomposition of L with the central element x0 and that, moreover,

ψ1 : L→ A0 × C0

is also an internal direct product decomposition of L with the central element x0.

Then B0 = C0.

Now suppose that L1 and L2 are finite modular lattices and that ϕ is an isomor-
phism of G(L1) onto G(L2). Such situation was investigated in [3].

We denote by A1 the set of all intervals [x, y] of L1 such that

x ≺ y and ϕ(x) ≺ ϕ(y).

Further let B1 be the set of all intervals [u, v] of L1 such that

u ≺ v and ϕ(u) � ϕ(v).

Analogously we define the sets A2 and B2 of intervals of L2 (with ϕ−1 instead
of ϕ).

Let x01 be a fixed element of L1. We denote by A
0
1 the set of all elements x ∈ L1

such that either x = x01, or there exist y1, y2, . . . , yn ∈ L1 which satisfy the following
conditions:

(i) y1 = x01, yn = x,

(ii) if i ∈ {1, 2, . . . , n − 1}, then the elements yi, yi+1 are comparable and the
corresponding interval of L1 belongs to A1.
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Similarly we define the set B01 ⊆ L1 (taking B1 instead of A1).
Further let x02 be an arbitrary element of L2. In an analogous way we define the

subsets A02 and B
0
2 of L2 (taking ϕ

−1 instead of ϕ).

Looking at the construction performed in [3] (cf. the lemmas used for proving The-
orem 1 in [3]) and applying the notion of the internal direct product decomposition

we arrive at the following lemma:

2.2. Lemma. Under the assumptions as above, there exist internal direct

product decompositions

ψ1 : L1 → A01 ×B01 (with the central element x01),

ψ2 : L2 → A02 ×B02 (with the central element x02)

such that

(i) the lattices A01 and A
0
2 are isomorphic,

(ii) the lattice B01 is isomorphic to (B
0
2)
∼.

3. Proof of (∗)

Suppose that no direct factor of L having more than one element is self-dual.

Let ϕ be an automorphism of the graph G(L). We put L = L1 = L2 and apply

Lemma 2.2 above. Choose x0 in L and put x0 = x01 = x
0
2. Then under the notation

as in Section 2 we have

A1 = A2, B1 = B2.

Thus, in the set-theoretical sense, we get A01 = A02. Further, since A
0
1 and A

0
2 are

sublattices of L, we obtain that A01 and A
0
2 are equal as lattices. Put A

0
1 = A = A

0
2.

Then in view of 2.2 we obtain internal direct product decompositions

ψ1 : L→ A×B01 ,

ψ2 : L→ A×B02

with the same central element x0. Thus according to 2.1,

B01 = B
0
2 .

Moreover, in view of 2.2 (ii), B01 is dually isomorphic to B
0
2 , hence B

0
1 is self-dual.

Then the assumption yields that B01 is a one element set.
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Since the element x0 of L was arbitrarily chosen, we conclude that the set B1 must
be empty and thus all prime intervals of L belong to A1.
Let x, y ∈ L. If x < y, then there are y1, y2, . . . , yn in L such that x = y1 ≺

y2 ≺ . . . ≺ yn = y, whence ϕ(x) = ϕ(y1) ≺ ϕ(y2) ≺ . . . ≺ ϕ(yn) = ϕ(y), thus

ϕ(x) < ϕ(y). Conversely, by applying ϕ−1 instead of ϕ we get that ϕ(x) < ϕ(y)
implies x < y. Hence ϕ is a lattice isomorphism.

Therefore we have

3.1. Lemma. Suppose that L is a modular lattice such that none of its direct
factors having more than one element is self-dual. Then each automorphism of G(L)

is an automorphism of the lattice L.

Now, (∗) is a consequence of 1.3 and 3.1.
We conclude by remarking that all the above considerations remain valid if the

assumption that L is a finite modular lattice is replaced by the assumption that L
is a modular lattice such that each bounded chain in L is finite.
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