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LOCALLY SYMMETRIC IMMERSIONS
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Abstract. We use reflections with respect to submanifolds and related geometric results
to develop, inspired by the work of Ferus and other authors, in a unified way a local the-
ory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian
manifold and in locally symmetric spaces. In particular we treat the case of real and com-
plex space forms and study additional relations with holomorphic and symplectic reflections
when the ambient space is almost Hermitian. The global case is also taken into consideration
and several examples are given.

MSC 2000 : 53B25, 53C35, 53C40, 53C42
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1. Introduction

The study of symmetric immersions and submanifolds in the framework of a study
of extrinsic differential geometry has been initiated by Ferus in [5] when the ambi-
ent space is a Euclidean space. Moreover, he showed that these manifolds may be

characterized as those having parallel second fundamental form and he provided a
full classification. (See also [18].) Later on this notion has been extended by several

authors to the case of rank one symmetric spaces (see [12] for the detailed references)
and more generally to the class of compact symmetric spaces [12]. In these studies

the considerations are mostly of a global nature.

Reflections with respect to a linear subspace play a basic role in the treatment

of Ferus. This concept has been generalized and the notion of a local or global
reflection with respect to a submanifold of an arbitrary Riemannian manifold has

* Supported by the Consejería de Educación del Gobierno de Canarias.
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been introduced and studied intensively. See, for example, [4], [20], [22], [23] for

more information and further references.

In this paper we define and treat extrinsic locally and globally symmetric immer-

sions and submanifolds of a Riemannian manifold in a unified way by considering
reflections with respect to submanifolds which are naturally associated to the immer-

sion or submanifold. These reflections are called (local) extrinsic symmetries. The
extrinsic symmetric immersions or submanifolds are the ones which have isometric
extrinsic symmetries. Results from the study of the geometry related to reflections

lead to a series of characterization theorems and provide examples and classifications
when the ambient space is locally symmetric, in particular for real and complex space

forms. A detailed account of this is given in Section 3 for the general case and in
Sections 4 and 5 for the above mentioned special cases. Finally, in Section 6 we con-

sider extrinsic symmetries for the case of almost Hermitian ambient spaces and focus
our attention on the study of holomorphic and symplectic extrinsic symmetries. This

leads to the notion of a (locally) Hermitian symmetric immersion or submanifold.
Again several examples and characterizations are given.

2. Preliminaries

Let f be an isometric immersion of an n-dimensional Riemannian manifold (M, g)
into an n-dimensional Riemannian manifold (M, g). In what follows and if the argu-
ment is local we will sometimes identify M with its image to simplify the notation.

Moreover, (M, g), (M, g) and the immersion f are supposed to be analytic and M
and M connected where necessary. Further, we denote by ∇ (resp. ∇) the Levi
Civita connection of M (resp. M) and the associated Riemannian curvature tensor
R (resp. R) is taken with the sign convention

RUV = ∇[U,V ] − [∇U ,∇V ]

for all U, V ∈ X(M), the Lie algebra of smooth vector fields onM. Next, we denote by
σ the second fundamental form of M , by ∇⊥ the normal connection in the normal

bundle N(M) of M and by R⊥ its curvature tensor. The Gauss and Weingarten
formulas are, respectively:

∇XY = ∇XY + σ(X,Y ),

∇XU = −SUX +∇⊥
XU

where X,Y ∈ X(M) and where SU denotes the shape operator of M corresponding
to the local normal vector field U. Here we have g(SUX,Y ) = g(σ(X,Y ), U).
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Further, we recall the Codazzi equation

(2.1) (RXY Z)
⊥ = −(∇̃Xσ)(Y, Z) + (∇̃Y σ)(X,Z)

for X,Y, Z ∈ X(M) and where ∇̃σ is defined by

(∇̃Xσ)(Y, Z) = ∇⊥
X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ)

for all X,Y, Z ∈ X(M).

f is said to be totally geodesic if σ = 0, parallel if ∇̃σ = 0 and minimal if tr σ = 0.
Moreover the immersion f is called a full immersion if there does not exist a totally
geodesic submanifold N of M with dimN < dimM such that f(M) ⊂ N. The first

normal space N1mM and the first osculating space O1mM at m ∈M are defined by

N1mM = span{σ(X,Y ) | X,Y ∈ TmM}, O1mM = TmM ⊕N1mM.

When f is parallel, then dimN1mM and dimO
1
mM are constant and hence, N

1(M) =⋃
m∈M

N1mM and O1(M) =
⋃

m∈M

O1mM are subbundles of TM |M , the restriction of

the tangent bundle TM of M to M. Finally, f is said to be 1-full if O1mM = TmM

for all m ∈M. For a parallel immersion this is clearly so if the equality holds at one

point m of M.

Now we state a lemma which will be needed later on.

Lemma 2.1. [9], [21] Let f : M →M be a parallel Kähler immersion of a Kähler

manifold M into a locally Hermitian symmetric space M. Then we have

Rm(TmM,TmM)TmM ⊂ TmM,

Rm(TmM,N1mM)TmM ⊂ N1mM,

Rm(N1mM,N1mM)TmM ⊂ TmM,

Rm(TmM,TmM)N1mM ⊂ N1mM,

Rm(TmM,N1mM)N
1
mM ⊂ TmM,

Rm(N
1
mM,N1mM)N

1
mM ⊂ N1mM

for each m ∈M.
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3. Local extrinsic symmetries

Letm ∈M and denote by expM
m and exp

M
f(m) the exponential maps ofM andM at

m and f(m), respectively. They induce diffeomorphims of open balls Bm = Bm(r) ⊂
TmM and Bf(m) = Bf(m)(r) ⊂ Tf(m)M onto the open geodesic balls Um ⊂ M and

U f(m) ⊂ M of radius r, respectively. Here we suppose that r is smaller than
min{i(m), i(f(m))} where i(m) (resp. i(f(m)) denotes the injectivity radius of M
at m (resp. of M at f(m)). Since f is an isometry, we have f(Um) ⊂ U f(m). Next,
let B⊥

m = {u ∈ NmM | ‖u‖ < r} denote the (n− n)-dimensional open ball of radius

r in NmM and let U −
m and U +

m denote the topologically embedded submanifolds in
M of dimension n and n− n, respectively, given by

U −
m = exp

M
f(m) f∗mBm, U +

m = exp
M
f(m)B

⊥
m.

Clearly, U −
m = f(Um) for all m ∈M when f is totally geodesic.

Next, let TU +
m
(s) denote the tubular neighborhood of radius s around U +

m , that

is,
TU +

m
(s) = {expU +

m
(p, x) | x ∈ NpU

+
m , ‖x‖ < s, p ∈ U +

m }

where s is supposed to be smaller than the distance from U +
m to its nearest focal

point and where expU +
m
denotes the exponential map of the normal bundle N(U +

m )

of U +
m , that is,

expU +
m
(p, x) = expM

p (x).

Now, we denote by ϕm the local reflection with respect to U +
m defined on TU +

m
(s)

by
ϕm : q = expU +

m
(p, x) �→ ϕm(q) = expU +

m
(p,−x)

for all p ∈ U +
m and all x ∈ NpU +

m such that ‖x‖ < s [22]. ϕm is said to be the
local extrinsic symmetry at m for f. It is an involutive local diffeomorphism and U +

m

belongs to the fixed point set of ϕm. Moreover,

(3.1) ϕm∗x = −x, ϕm∗u = u

for all tangent x and all normal u of M. For sufficiently small r the restriction of ϕm

to U −
m coincides with the geodesic symmetry of U

−
m . Further, if f is totally geodesic,

then ϕm ◦ f = f ◦ sm on Um where sm denotes the local geodesic symmetry of M

centered at m.
In [4] a criterion is derived for isometric reflections with respect to a submani-

fold. By using this we obtain the following criterion for isometric local extrinsic
symmetries.
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Proposition 3.1. Let f : (M, g)→ (M, g) be an isometric immersion. Then the

local extrinsic symmetry ϕm at m ∈M for f is an isometry if and only if
(i) U +

m is totally geodesic;

(ii) (∇2kx...xR)xyx is normal to U +
m ,

(∇2k+1x...x R)xyx is tangent to U +
m ,

(∇2k+1x...x R)xux is normal to U +
m

for all k ∈ �, all normal x, y and all tangent u of U +
m .

Further, let Φ : m �→ Φm be the (1, 1)-tensor field ofM along the immersion which
is defined by

Φmx = −x, Φmu = u

for all tangent x and all normal u of f(M) at f(m). For each m ∈M , Φm determines
the (local) Φ-rotation ψm of U f(m) defined by

ψm = expM
f(m) ◦Φm ◦ (expM

f(m))
−1.

See [15]. Clearly, ψm fixes all points of U +
m . Further, we have

Lemma 3.1. On a sufficiently small neighborhood the local extrinsic symmetry
ϕm is an isometry if and only if ψm is an isometry. In this case we have ϕm = ψm.

�����. First, let ϕm be an isometry. Then we have, since ϕm fixes f(m),

ϕm = expM
f(m) ◦(ϕm∗)f(m) ◦ (expM

f(m))
−1.

This and (3.1) implies ϕm = ψm and so, ψm is an isometry.
To prove the converse, we first show that

(3.2) (ψm∗)px = −x

for all p ∈ U +
m and all x ∈ NpU +

m . Therefore, let α be a curve in U +
m from p to

f(m). Since ψm is an isometry which fixes α we have

(ψm∗)p = Pα ◦ Φm ◦ P−1
α

where Pα denotes the parallel translation along α [6]. Then (3.2) follows since U +
m

is totally geodesic.
Further, since ψm is an isometry with U +

m belonging to the fixed point set, we

have
ψm = expU +

m
◦ψm∗|U +

m
◦ (expU +

m
)−1.

Using this and (3.2) we see that ψm = ϕm and hence ϕm is an isometry. �
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Using the criterion [8, Theorem 6] we then get

Proposition 3.2. Let f : (M, g)→ (M, g) be an isometric immersion. Then the

local extrinsic symmetry ϕm at m for f is an isometry if and only if

(∇k
x...xR)xyxy = (∇k

Φx...ΦxR)ΦxΦyΦxΦy

for all k ∈ � and all x, y ∈ Tf(m)M.

We finish this section by stating a nice geometric property for parallel immer-

sions which plays a fundamental role in the development of the theory of symmetric
submanifolds. It is based on [18, Theorem 2].

Proposition 3.3. Let f : (M, g) → (M, g) be a parallel immersion. If the local
extrinsic symmetry ϕm is an isometry, then we have on Um:

ϕm ◦ f = f ◦ sm,

where sm denotes the geodesic symmetry of M at m. In particular ϕm maps f(Um)

onto itself.

4. Locally symmetric immersions

In the rest of this paper we shall consider isometric immersions and submanifolds
equipped with isometric local extrinsic symmetries.

We start with

Proposition 4.1. Let f : (M, g) → (M, g) be an isometric immersion. If each
local extrinsic symmetry ϕm is an isometry, then f is a parallel immersion and (M, g)
is an (intrinsic) locally symmetric space.

�����. Since each ϕm is an isometry, we get

(∇̃xσ)(y, z) = ϕm∗(∇̃xσ)(y, z) = (∇̃ϕm∗xσ)(ϕm∗y, ϕm∗z) = −(∇̃xσ)(y, z)

for all x, y, z tangent to f(M) at f(m). Hence ∇̃σ = 0. The rest follows now at once
from Proposition 3.3. �

This result motivates the following
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Definition 4.1. An isometric immersion f of (M, g) into (M, g) is said to be

(extrinsic) locally symmetric if for each m ∈ M the local extrinsic symmetry ϕm is
an isometry. If moreover, M is a submanifold of M , then M is called an (extrinsic)
locally symmetric submanifold.

Next, we derive some characterizations of locally symmetric immersions.

Theorem 4.1. An isometric immersion of (M, g) into (M, g) is locally symmetric
if and only if for each m ∈M
(i) U +

m is totally geodesic;

(ii)
(
∇k+2l

v k...vx2l...x
R

)
xy
x is tangent,

(
∇k+2l+1

v k...vx2l+1... x
R

)
xy
x is normal,(

∇k+2l+1
v k...vx2l+1... x

R
)
xu
x is tangent,

for all k, l ∈ � and for all x, y tangent and all u, v normal.

�����. First, let each local extrinsic symmetry ϕm be an isometry. Then U +
m

is totally geodesic since it belongs to the fixed point set. Further, ϕm preserves R
and its covariant derivatives. Then (ii) follows by taking into account (3.1).

Next, we prove the converse. Let γ be the geodesic s �→ γ(s) = expM
f(m)(sv)

through f(m) and tangent to a unit vector v ∈ NmM. Further, let {Ej , j = 1, . . . , n}
be a parallel basis along γ such that, at f(m), E1(0), . . . , En(0) are tangent to f(M)
and En+1(0), . . . , En(0) are normal. For this basis and using the notation

(
∇k

a...aR
)
bcde
=

(
∇k

Ea...Ea
R

)
EbEcEdEe

for a, b, c, d, e ∈ {1, . . . , n}, we may write

(
∇k

a...aR
)
bcde
(γ(r)) =

(
∇k

a...aR
)
bcde
(f(m)) + r

(
∇k+1

va...aR
)
bcde
(f(m))

+
1
2
r2

(
∇k+2

vva...aR
)
bcde
(f(m)) + . . .

Then it follows from (ii) that the conditions (ii) in Proposition 3.1 are satisfied

because we may, since U +
m is totally geodesic, always take the basis such that x = E1,

y = E2 and u = En+1 for arbitrary orthogonal tangent x, y and normal u. So, ϕm is

an isometry and this completes the proof. �

From this we get at once

Corollary 4.1. A hypersurfaceM of a Riemannian manifold (M, g) is (extrinsic)
locally symmetric if and only if the conditions (ii) from Theorem 4.1 hold for M.
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Corollary 4.2. Each parallel hypersurface of a locally symmetric Riemannian
manifold is (extrinsic) locally symmetric.

The next characterization follows from Proposition 3.2.

Theorem 4.2. An isometric immersion f of (M, g) into (M, g) is locally sym-
metric if and only if for each m ∈M we have

(∇k
x...xR)xyxy = (∇k

Φx...ΦxR)ΦxΦyΦxΦy

for all k ∈ � and all orthogonal x, y ∈ Tf(m)M.

Up to now we considered a local treatment of extrinsic symmetry although in the
literature mostly the global case is considered. Therefore, we consider now some

global aspects. We start with

Definition 4.2. An isometric immersion f of (M, g) into (M, g) is said to be

(extrinsic) symmetric if for every m ∈M there exist isometries ϕm and sm ofM and
M , respectively, such that

(i) sm(m) = m;
(ii) ϕm ◦ f = f ◦ sm;

(iii) ϕm∗a = −a for a ∈ Tf(m)f(M) and ϕm∗a = a for a ∈ T⊥f(m)f(M).

In this case, ϕm is called the (global) extrinsic symmetry at m for f.

Note that sm is the (global) intrinsic symmetry of M at m. It follows that then

M is a Riemannian symmetric space. In particular, M is complete. Further, if M is
an embedded submanifold, then Definition 4.2 is much simpler. In fact, then M is

extrinsic symmetric if for every m ∈ M there exists an isometry ϕm of M different
from the identity, such that ϕm(f(m)) = f(m), ϕm(f(M)) = f(M) and (iii) holds.
From the uniqueness of isometries for initial data and taking into account Lemma

3.1, ϕm in Definition 4.2 is the extension to the whole of M of the local extrinsic
symmetry atm which is an isometry. So, every extrinsic symmetry is extrinsic locally

symmetric and every extrinsic symmetric submanifold is extrinsic locally symmetric.
The converse does not hold in general. To see this, it is enough the note that the

restriction of a locally symmetric immersion to any open submanifold induces a
similar immersion. However, we have

Theorem 4.3. Any complete locally symmetric submanifold M embedded into a
simply connected symmetric space M is globally symmetric.

�����. Since M is simply connected, each local extrinsic symmetry may be

extended to a global isometry which, since M is complete and taking into account
Proposition 3.3, maps f(M) onto itself. �
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5. Some particular cases

In this section we shall treat locally symmetric immersions into special Riemannian

spacesM.More specifically, we treat locally symmetric, real and complex space forms
M.

A. Locally symmetric immersions into locally symmetric spaces.
The conditions of Theorem 4.1 become much simpler for locally symmetric spaces

M. We have

Corollary 5.1. An isometric immersion of a Riemannian manifold (M, g) into a

locally symmetric Riemannian manifold (M, g) is locally symmetric if and only if
(i) U +

m is totally geodesic for each m ∈M ;
(ii) Rxyx is tangent to f(M) for all tangent x, y or equivalently, f(M) is curvature
invariant.

Using Proposition 4.1 and the Codazzi equation (2.1) we then have

Proposition 5.1. Let (M, g) be a locally symmetric Riemannian manifold. An
isometric immersion f of (M, g) into (M, g) is locally symmetric if and only if f is

parallel and U +
m is totally geodesic for each m ∈M.

In Corollary 5.1 we may replace (ii) by another condition. Indeed, we have

Proposition 5.2. Let (M, g) be a locally symmetric Riemannian manifold. An

isometric immersion of (M, g) into (M, g) is locally symmetric if and only if U +
m

and U −
m are totally geodesic for each m ∈ M. In this case U +

m and U −
m are locally

symmetric submanifolds.

�����. The proof follows at once by using Lie triple systems (see [4]). �

Next, we have the following form of Theorem 4.2.

Corollary 5.2. Let (M, g) be a locally symmetric Riemannian manifold. An

isometric immersion f of (M, g) into (M, g) is locally symmetric if and only if
(i) f is parallel;

(ii) Ruvu is normal to f(M) for all u, v ∈ N(M).

From this and Proposition 5.1 we get

Corollary 5.3. Let f be a parallel immersion of (M, g) into a locally symmetric

Riemannian manifold (M, g). Then Ruvu is normal to f(M) for all u, v ∈ N(M) if
and only if, for each m ∈M , U +

m is a totally geodesic submanifold of M.
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B. Locally symmetric immersions into real space forms.
In what follows we shall denote byM(c) a Riemannian manifold (M, g) of constant

sectional curvature c. Then we have

RXY Z = c{g(X,Z)Y − g(Y, Z)X}

for X,Y, Z ∈ X(M).

Using Corollary 5.1 and Corollary 5.2 we then obtain

Proposition 5.3. Let f be an isometric immersion of (M, g) into a real space
form M(c). Then the following statements are equivalent:

(i) f is locally symmetric;

(ii) f is parallel;

(iii) U +
m is totally geodesic for all m ∈M.

Note that all complete parallel embedded submanifolds and hence, all symmetric

submanifolds of a complete and simply connected M(c̄) are classified in [1] (see also
[5], [19]).

Further, we have

Proposition 5.4. A Riemannian manifold is a space of constant sectional curva-
ture if and only if every geodesic is a locally symmetric submanifold.

�����. For an Mn(c) the result follows from Proposition 5.3.

Conversely, let the geodesic α be a locally symmetric submanifold. Then U +
m is

totally geodesic. Since α is arbitrary, it follows that the axiom of (n − 1)-planes is
satisfied and hence M has constant curvature [2]. �

C. Locally symmetric immersions into complex space forms.
Now, we suppose that (M, g, J) = M(h) is a Kähler manifold of constant holo-

morphic sectional curvature h. Then we have

RXY Z =
h

4

{
g(X,Z)Y − g(Y, Z)X + 2g(JX, Y )JZ + g(JX,Z)JY − g(JY, Z)JX

}

for X,Y, Z ∈ X(M) and hence

(5.1) Ruvu =
h

4

{
g(u, u)v − g(u, v)u+ 3g(Ju, v)Ju

}

for tangent vectors u, v.
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As is well-known, there are two interesting kind of immersions into an almost

Hermitian manifold, namely the holomorphic and the totally real ones. More specif-
ically, an isometric immersion f of a Riemannian manifold (M, g) into an almost
Hermitian manifold (M, g, J) is called holomorphic (resp. totally real) if each tan-

gent space of f(M) is mapped into itself (resp. the normal space) by the almost
Hermitian structure J.

These immersions will also play a fundamental role in the study of locally sym-
metric immersions. Indeed, it follows from [3, Proposition 3.1] that each parallel

immersion into a Kähler manifold of constant holomorphic sectional curvature h 	= 0
is either holomorphic or totally real. This, together with Corollaries 5.2, 5.3, Theo-

rem 4.1 and (5.1), then yields at once

Proposition 5.5. Let f be an isometric immersion of (M, g) into a complex space
form M(h), h 	= 0. Then the following statements are equivalent:
(i) f is locally symmetric;

(ii) f is parallel and holomorphic or totally real with 2 dimM = dimM ;

(iii) for all m ∈M , U +
m is totally geodesic and holomorphic or totally real of dimen-

sion 12 dimM.

From now on we will denote by Mn(h) a complete simply connected Kähler mani-

fold of constant holomorphic sectional curvature h and of complex dimension n. For
h = 0 this is a Euclidean space E2n and since symmetric submanifolds in E2n are

known [5] we shall suppose further that h 	= 0.
Complete parallel Kähler submanifolds embedded in M(h) have been classified

completely in [14] for h > 0 and [7] for h < 0. For the case of complete parallel

totally real submanifolds and h 	= 0 we refer to [10], [11], [13]. The reduction
theorem [11, Theorem 2.4] for complete parallel submanifolds in M(h), h 	= 0, leads
to the classification of all these submanifolds and hence, also to that of the (extrinsic)
symmetric submanifolds. In fact, using Proposition 5.5 we get

Proposition 5.6. Let M be an extrinsic symmetric embedded submanifold of

Mn(h), h 	= 0. Then there exists a unique complete and totally geodesic submanifold
N of Mn(h) such that M ⊂ N and TqN = O1qM for any q ∈ M. Moreover, the

following cases occur:

(a) M is a parallel Kähler submanifold and N is M r(h) for some r � n;

(b) M is a totally geodesic totally real submanifold and soM is �Pn (h4 ) or �H
n (h4 )

for h > 0 or h < 0, respectively; here N =M ;

(c) M is a totally real but non-totally geodesic submanifold and N =Mn(h).
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Finally, from Proposition 5.5 and using the axioms of holomorphic 2- and (n− 2)-
planes for Kähler manifolds M with dimM = n � 4 [16], [24], we get

Proposition 5.7. Let (M, g, J) be a Kähler manifold of dimM � 4. Then the
following statements are equivalent:

(i) (M, g, J) is of constant holomorphic sectional curvature;

(ii) for each m ∈M and each u ∈ TmM there exists an extrinsic locally symmetric

surface through m and tangent to span {u, Ju};
(iii) for each m ∈M and each u ∈ TmM there exists an extrinsic locally symmetric

submanifold of codimension 2 through m and orthogonal to span {u, Ju}.

6. Locally Hermitian symmetric immersions

In this last section we suppose that (M, g, J) is an almost Hermitian manifold

and f an isometric immersion of an (M, g) into (M, g). We will now focus on the
holomorphic or symplectic character of the local extrinsic symmetries ϕm, m ∈ M.

Here, ϕm is said to be holomorphic if

(6.1) ϕm∗ ◦ J = J ◦ ϕm∗

and symplectic if

(6.2) ϕ∗mΩ = Ω

where Ω denotes the Kähler form on (M, g, J) defined by Ω(X,Y ) = g(X, JY ) for
all X,Y ∈ X(M).

Proposition 6.1. If the local extrinsic symmetry ϕm is holomorphic for each

m ∈ M , then f and each U +
m are holomorphic. Moreover, if (M, g, J) is a Kähler

manifold, then U +
m is totally geodesic.

�����. Let x ∈ Tf(m)f(M). Then

ϕm�Jx = Jϕm�x = −Jx.

Hence, from (3.1) it follows that Jx is tangent. In similar way it follows that U +
m

is holomorphic for each m ∈ M. The last part of the Proposition follows from [4,
Corollary 12]. �
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Proposition 6.2. If the local extrinsic symmetry ϕm is symplectic for each m ∈
M , then f and each U +

m are holomorphic. Moreover, U
+

m is minimal.

�����. Let a, b ∈ Tf(m)M , m ∈M. Then (6.2) implies

(6.3) g(ϕm∗a, Jϕm∗b) = g(a, Jb).

Next, let b be normal to f(M). Then ϕm∗b = b and so (6.3) yields that Jϕm∗a− Ja
is tangent to f(M). Hence, for a tangent, we get

Jϕm∗a− Ja = −2Ja

and so, Ja is also tangent. Using a similar procedure we see that also U +
m is holo-

morphic. The minimality of U +
m follows from [20, Theorem A] �

Proposition 6.3. Let f be a totally geodesic immersion of (M, g) into (M, g, J).
If all ϕm, m ∈M , are holomorphic or symplectic, then f(M) is a locally Hermitian
symmetric space.

�����. From Proposition 6.1 and Proposition 6.2 it follows that f is holomor-
phic. Moreover, since f is totally geodesic, the intrinsic local symmetries on f(M)

are holomorphic or symplectic. So, the result follows from [17]. �

Next, we give

Definition 6.1. A locally symmetric immersion (resp. submanifold) in an al-
most Hermitian manifold is said to be a (extrinsic) locally Hermitian symmetric if
all its local extrinsic symmetries are holomorphic or, equivalently, symplectic.

Note that in this case the immersion f is parallel and holomorphic. Moreover,

with the induced structure (J, g), f(M) is a locally Hermitian symmetric space. In
particular, g is a Kähler metric.

Further, using Propositions 6.1 and 6.2 we have

Proposition 6.4. Let f : (M, g) → (M, g, J) be an isometric immersion. Then

f is locally Hermitian symmetric if and only if all its local extrinsic symmetries are

holomorphic and symplectic.

For Kähler manifolds, locally Hermitian symmetric immersions are precisely Käh-
ler immersions which are locally symmetric. Indeed, we have

Proposition 6.5. Let (M, g, J) be a Kähler manifold and f : (M, g)→ (M, g, J)
a locally symmetric Kähler immersion. Then f is locally Hermitian symmetric.
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�����. Since f is holomorphic ϕm satisfies ϕm∗ ◦ J = J ◦ ϕm∗ at each f(m).

Further, for any point y in a normal neighborhood U of f(m) in M , let α be a
geodesic from f(m) to y in U . Because ϕm is an isometry, we have ϕm∗ ◦ Pα =
Pϕm(α) ◦ϕm∗ where Pα and Pϕm(α) denote the parallel translations along α and the

image curve ϕm(α), respectively. Then, using the fact that J is parallel on M , we
conclude that

(ϕm∗)y ◦ Jy = Jϕm(y) ◦ (ϕm∗)y.

Hence, ϕm preserves J and f is locally Hermitian symmetric. �

From this and Proposition 5.5 we obtain

Corollary 6.1. An isometric immersion f in a Kähler manifoldM(h) of constant
holomorphic sectional curvature h 	= 0 is locally Hermitian symmetric if and only if
f is a parallel Kähler immersion.

Now, we give some results when (M, g, J) is a locally Hermitian symmetric space.
The proofs follow directly by using Propositions 6.1, 6.2 and [4, Theorem 19, Corol-

laries 15, 16].

Proposition 6.6. An isometric immersion f of (M, g) into a locally Hermitian
symmetric space (M, g, J) is locally Hermitian symmetric if and only if every local

extrinsic symmetry is holomorphic.

Proposition 6.7. An isometric immersion f of (M, g) into a locally Hermitian
symmetric space (M, g, J) is locally Hermitian symmetric if and only if for allm ∈M ,
U +

m is totally geodesic and ϕm is symplectic.

Proposition 6.8. Let (M, g, J) be a locally Hermitian symmetric space and let
f : (M, g)→ (M, g) be locally symmetric. Then f is locally Hermitian symmetric if

and only if U +
m is holomorphic.

Further, using Lemma 2.1, Corollary 5.2 and Proposition 6.5, we get

Proposition 6.9. A 1-full, parallel Kähler immersion of a Kähler manifold into
a locally Hermitian symmetric space is locally Hermitian symmetric.

Finally, based on Proposition 6.9 and [21, Corollary 4.3] we have

Proposition 6.10. Let (M, g, J) be a simply connected Hermitian symmetric

space and f a parallel Kähler immersion of a Kähler manifold M into M. Then we

have:
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(i) There exists a unique complete totally geodesic Kähler submanifold N of M

such that f(M) ⊂ N and TqN = O1qM for any point q ∈M.

(ii) f : M → N is a locally Hermitian symmetric immersion.

Remark 6.1. All 1-full immersions f : M → N as in Proposition 6.10 have
been classified for M complete in [21]. In that paper it is proved that M and N are

holomorphically isometric to Riemannian products �m×M1×. . .×Ms×M1×. . .×Mt

and �
m ×M1 × . . . ×Ms × �Pn1 × . . . × �Pnt , respectively. Here �m is an m-

dimensional complex Euclidean space, M i, 1 � i � s, and Mj, 1 � j � t, are
semisimple Hermitian symmetric spaces. The immersion f is, up to congruences, the

product immersion f = id0× id1× . . .× ids ×f1× . . .×ft where fj : Mj → �P nj are
full parallel Kähler embeddings. Following [14] fj is one of the following embeddings:

a Veronese embedding of degree 2, a Segre embedding or a canonical embedding of
a compact irreducible Hermitian symmetric space of rank 2.
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