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1. Introduction

We continue the research ([1], [2], [3]) using stabilizer subgroups for transitive
l-permutation groups. We will prove that a transitive l-permutation group is 2-

transitive if and only if the stabilizer group Gα of a point α acts transitively on
{w | w < α}, if and only if for each γ < β < α, there exists g ∈ Gα such that

β � γg. We will also discuss primitive components and will obtain that a transitive
l-permutation group is normal-valued if and only if every primitive component is

regular.

Let Ω be a chain and (G,Ω) an l-permutation group on Ω. If αG = Ω for α ∈ Ω,
then (G,Ω) is called transitive. Let ∆ be a subset of Ω. The stabilizer of G on ∆,

G∆ = {g ∈ G | δg = δ for all δ ∈ ∆}, Gα and G(∆) = {g ∈ G | ∆g = ∆} are prime
subgroups of G ([2]). If ∆ is a Gα-orbit, ∆ is said to be positive if ∆ > {α} (negative
if ∆ < {α}). If ∆ is an orbit of Gα and |∆| > 1, ∆ is said to be a long orbit of Gα.

Let (G,Ω) be a transitive l-permutation group, α ∈ Ω, and let (Ck, Ck) be a

covering pair of convex congruences ([2]). Then αCk is a block of (G,Ω), and G

induces an action on Ω/Ck. Let Ωk = αCk/Ck be the chain of Ck-classes within αCk.
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So the stabilizer G(αCk) induces an order-permutation of Ωk by Gk. (Gk,Ωk) is called

the kth primitive component of (G,Ω) ([2]).

2. Transitivity

We first discuss the transitivity for l-permutation groups.

Lemma 1. Let (G,Ω) be a transitive l-permutation group, and let ∆ be a block.

Then {∆g | g ∈ G} is a partition of Ω, and the convex congruence associated with
the partition is denoted by C∆. Furthermore each g ∈ G induces an order-preserving

permutation on the chain {∆g | g ∈ G}, i.e. ∆→ ∆g.

�����. The set {∆g | g ∈ G} is a partition of Ω because of transitivity of G

and the definition of the block ([2], Theorem 1.6.1). �

Theorem 2. Let (G,Ω) be a transitive l-permutation group, and let∆ be a block.

The following conditions are equivalent:

(i) G(∆) is a normal subgroup of G for each block ∆ of (G,Ω).

(ii) G(∆g) = G(∆) for every g ∈ G.

(iii) G(∆) = e where e is the identity.

(iv) (G,Ω/C∆) is regular, where C∆ is the congruence associated with the partition
{∆g | g ∈ G}.

�����. The subgroup G(∆) is normal in G if and only if G(∆) = G(∆g) by
transitivity and the fundamental identity ([3]). But (ii) ⇒ (iii), (iv) ⇒ (iii) and (iii)
⇒ (i) are obvious. Now we only prove that (iii) ⇒ (iv). If (∆f)hi = ∆g, i = 1, 2,
for any f, g ∈ G, then ∆fh1g

−1 = ∆fh2g
−1 = ∆, i.e., fhig

−1 ∈ G(∆) = e. Hence

fhi = g, and h1 = h2. So (G,Ω/C(∆)) is regular. �

Lemma 3. Let (G,Ω) be a transitive l-permutation group. If the stabilizer

subgroup Gα of a point α is transitive on {w | w < α}, then the stabilizer subgroup
Gβ is also transitive on {w | w < β} for every β ∈ Ω.

�����. Let α = βf by the transitivity condition. If γ, δ < β, then αf−1 > γ, δ

and α > γf, δf . There exists g ∈ Gα such that (δf)g = γf by hypothesis. So

δ(fgf−1) = γ and fgf−1 ∈ Gβ by the fundamental identity. Hence γ ∈ δGβ . �

Theorem 4. Let (G,Ω) be a transitive l-permutation group. Then the following

conditions are equivalent:

(i) (G,Ω) is 2-transitive.
(ii) The stabilizer subgroup Gα is transitive on {w | w < α}.
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(iii) For every γ < β < α, there exists g ∈ Gα such that β � γg.

�����. (i) ⇒ (ii). If β, γ ∈ {w | w < α}, i.e., β < α, γ < α, then there exists

g ∈ G such that β = γg and αg = α. So β � γg and g ∈ Gα.

(ii) ⇒ (iii). If γ < β < α, i.e., γ, β ∈ {w | w < α}, there is g ∈ Gα such that
β = γg, i.e. β � γg.

(iii) ⇒ (ii). If β, γ ∈ {w | w < α}, let γ < β < α. There is g ∈ Gα such that

β � γg. Let β = γf for some f ∈ G by transitivity. Since α((f ∨ e) ∧ g) = α, we
have (f ∨ e) ∧ g ∈ Gα and γ((f ∨ e) ∧ g) = β.

(ii) ⇒ (i). If α1 < α2 and β1 < β2, let α2h = β2 for some h ∈ G. Then

α1h < α2h = β2. For α1h and β1, there exists g ∈ Gβ2 such that (α1h)g = β1. But
we have also α2hg = β2. Hence G is 2-transitive. �

3. Primitivity

We now return to primitivity of l-permutation groups. Let α, β be distinct points

of Ω. Let ∆ be the union of blocks which contain α but not β. Then ∆ is a block.
Let Λ be the intersection of blocks containing both ∆ and β. Then Λ is also a block,

and Λ covers ∆ in the chain of blocks containing α under inclusion. Let Ck and Ck

be the convex congruences corresponding to ∆ and Λ, respectively. Thus (Ck, Ck) is

a covering pair, and k is called the value V al(α, β) ([2]).

Theorem 5. Let (G,Ω) be a transitive l-permutation group. Then the set

K(G,Ω) = {(Gk,Ωk) | k ∈ K} of primitive components is a chain under inclusion.
Moreover, every primitive component must be 2-transitive, regular or periodically
primitive.

�����. Every block of (G,Ω) containing α is a chain because G is transitive,

so K(G,Ω) is a chain where (Ck, Ck) < (Ck′ , Ck′
) if Ck � Ck′

([2], Theorem 3A). For
the second part, every primitive component (Gk,Ωk) is primitive ([2], Theorem 3E).

Then Gk is 2-transitive, regular or periodically primitive ([2], Theorem 4.3.1). �

We have the following applications for the above Structure Theory.

Theorem 6. Let (G,Ω) be a transitive l-permutation group. Then the following

conditions are equivalent:

(i) G is normal-valued.

(ii) fg � g2f2 for all f, g ∈ G+.

(iii) All primitive components of (G,Ω) are regular.
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�����. (i)⇒ (iii). Suppose that a primitive component (Gk,Ωk) is not regular,

then it must be 2-transitive or periodic. For every ∆ ∈ Ωk, G(∆) is not a normal
subgroup of Gk. There is g ∈ G such that ∆ �= ∆g ∈ αCk, i.e., g /∈ G(∆). Thus
G(∆) is a value of G. By primitivity of Gk, G(∆) is a maximal prime subgroup of Gk.

Hence Gk is a cover of G(∆). So G is not normal valued.

(iii) ⇒ (ii). Suppose that fg � g2f2 for some f, g ∈ G+, then αfg > αg2f2,
where α ∈ Ω. Hence αfg > α. Let k = V al(αfg, α). Then the primitive component

(Gk,Ωk) is regular. By primitivity of Gk, (Gk,Ωk) is the regular representation of
a subgroup of the set of real numbers R. Let f and g be positive real translations

induced respectively by f and g on αCk/Ck. Then we have ∆fg > ∆g2f2 where
∆ = αCk ∈ αCk/Ck, a contradiction.

(ii) ⇒ (i). By the Holland Representation Theorem, let V (g) be a value. Then G

is an l-subgroup of A(∪G/V (g)) ([4], Theorem 5.4), and G is the transitive action
on each individual space G/V (g) for each g ∈ G. Let V (g)∗ be a cover of V (g),

and G(V (g)) = V (g). Then V (g)∗ is the smallest prime subgroup containing G(V (g)).
Hence G/V (g) has the smallest nontrivial convex congruence, and it has the smallest

nonsingleton block of (G, G/V (g)). Suppose that a value V (g) of G is not normal
in its cover V (g)∗, and ∆ is the smallest nonsingleton block containing the point
V (g). Since V (g) is not normal in G(∆) and G(∆) = V (g)∗, the primitive component

(G(∆) | ∆,∆) is not regular. So it must be 2-transitive or periodic, and it can not
satisfy the identity “fg � g2f2 for all f, g ∈ G+”. Let z be periodic and ∆ = (α, αz).

Then (G(∆) | ∆,∆) is 2-transitive ([2], Theorem 4.3.1). Then this identity must also
fail in G. Suppose this identity holds for G. Then it must be true in G(∆)

∣∣∆, which
is an l-homomorphic image of an l-subgroup of an l-homomorphic image of G. �
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