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ON SOME COMMUTATIVITY THEOREMS FOR FINITE RINGS

AND FINITE GROUPS

Roberto J. F. de Morais, Paraíba

(Received October 25, 1996)

In this note we investigate the relation between nilpotent elements in a ring and
commutative conditions in both finite rings and finite groups.

Theorem 1. Let R be a finite ring without nilpotent elements. Then R is

commutative.

�����. Since R is finite and has no nilpotent element then for any a ∈ R we
have

(1) an(a) = am(a)

where n and m are integers which depend on a. First, we will restrict ourselves to
the case in which R is a division ring. In fact our condition (1) then implies that

an(a)−m(a)+1 = a,

that is

ak(a) = a

and this condition for our division ring clearly leads to commutativity by Jacobson’s

Commutativity Theorem.
Since our ring has no nilpotent element, Jacobson’s radical is {0} and the ring

is semi-simple. Hence we can apply Wedderburn-Artin decomposition theorem for
semi-simple artinian rings. Now suppose that we have a matrix ring n × n in this

decomposition; the matrix 


0 0 . . . 0

0 0 . . . 0
. . . . . . . . . . . .

1 0 . . . 0
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is clearly nilpotent. Therefore no matrix rings over division rings can occur in this

decomposition; that is, all components of R are division rings, which by the first part
of our proof are commutative. Hence R is commutative. �

Theorem 2. Suppose R is a finite ring of characteristic p (a prime). The R is

commutative if, and only if, the group of invertible elements of R is commutative.

�����. The theorem is an immediate consequence of the following one. �

De Morais Basis Theorem. Let A be a finite dimensional algebra with unit

over a field F . Then A has a base of invertible elements.

Now we pass to a different category of results, namely to theorems about com-

mutativity of groups. These theorems, however, are based on ideas which depend
essentially on the assumptions and statements of the previous part of our paper.

Theorem 3. Let G be a finite group of order n. Then G is non-commutative if,

and only if, for any finite field F such that the characteristic of F does not divide

the order of G, there exist m and a family {ki : ki ∈ F} not all zero such that if
a =

∑
kigi, then am = 0.

�����. In order to prove sufficiency and necessity of our condition we will
consider the group algebra F (G). Under our hypothesis F (G) is semi-simple, hence

if F (G) has nilpotent elements then in the decomposition of F (G) by Wedderburn’s
Structure Theorem some matrix algebra will occur and F (G) is non-commutative

and the same holds for G. Necessity follows easily by proceeding in the opposite
direction. Indeed, if G and consequently F (G) are non-commutative this implies

that some matrix algebra occurs in the decomposition of F (G) and hence we have
nilpotent elements in F (G) as we have show in the proof of Theorem 1. �

Theorem 4. Let G be a finite group of order n. A necessary and sufficient

condition for G to be commutative is that given any field F with charF ×n, for any

a with a =
∑

kigi, ki ∈ F we have

(1) am(a) = al(a)

with am(a) �= 0, where m and 1 are integers which depend on a.

�����. From (1) supposing m > 1 we have

(2) al(1− am−l) = 0.
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Now if a is nilpotent then 1− am−l is invertible and equation (2) is absurd. Hence

F (G) has no nilpotent element and the commutativity of both F (G) and G follows
from Theorem 1.
To prove necessity, we remark that F (G) is semi-simple and the commutativity

of G implies the commutativity of F (G), therefore in the decomposition of F (G) no
matrix algebra and hence no nilpotent element occurs. Now F (G) is finite and thus

for all a =
∑

kigi, ki ∈ F , we have

am(a) = al(a).

�
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