Ladislav Bican Almost Butler groups

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 2, 367-378

Persistent URL: http://dml.cz/dmlcz/127576

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ALMOST BUTLER GROUPS

LADISLAV BICAN, Praha

(Received December 2, 1998)

Abstract. Generalizing the notion of the almost free group we introduce almost Butler groups. An almost B_2 -group G of singular cardinality is a B_2 -group. Since almost B_2 groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that G is a B_1 -group. Some other results characterizing B_2 -groups within the classes of almost B_1 -groups and almost B_2 -groups are obtained. A theorem of [BR] stating that a group G of weakly compact cardinality λ having a λ -filtration consisting of pure B_2 -subgroup is a B_2 -group appears as a corollary.

All groups in this paper are additively written abelian. By a *smooth* (ascending) union of a group G we mean a collection of pure subgroups G_{α} indexed by an initial segment of ordinals with the property that $G_{\beta} \leq G_{\alpha}$ when $\beta < \alpha$ and $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$

whenever α is a limit ordinal. For unexplained terminology and notation see [F1].

An exact sequence $E: 0 \longrightarrow H \longrightarrow G \xrightarrow{\beta} K \longrightarrow 0$ with K torsion-free is *balanced* if the induced map $\beta_*: \text{Hom}(J, G) \longrightarrow \text{Hom}(J, K)$ is surjective for each rank one torsion-free group J. Equivalently, E is balanced if all rank one (completely decomposable) torsion-free groups are projective with respect to E.

A torsion-free group B is said to be a B_1 -group (Butler group) if Bext(B, T) = 0 for all torsion groups T, where Bext is the subfunctor of Ext consisting of all balancedexact extensions.

A subgroup D of a torsion-free group G is said to be *decent* in G if D is pure and, for any finite rank pure subgroup C/D of G/D, there is a finite rank Butler group B of C such that C = D + B. The subgroup D is said to be *prebalanced* in G, if the same holds for every rank one pure subgroup C/D of G/D. Our definition of a decent subgroup is slightly stronger than that of [AH] since we demand D to be

This research has been partially supported by the grant GA CR 201/95/1453 of the Czech Republik Grant Agency.

pure. It is easy to verify that decency is transitive. Also, if $A \leq B \leq G$ and if both A and B/A are decent subgroups of G and G/A, respectively, then B is decent in G.

Another relevant concept in the study of infinite rank Butler groups is the *torsion* extension property (TEP). A (pure) subgroup H of a torsion-free group G is said to have TEP in G, or briefly, H is TEP in G, if every homomorphism $H \to T$ with T torsion extends to a homomorphism $G \to T$.

A torsion-free group G is called a B_2 -group if G is the union of a smooth ascending chain of pure subgroups $G = \bigcup_{\alpha < \mu} H_{\alpha}$ where, for each $\alpha + 1 < \mu$, $H_{\alpha+1} = H_{\alpha} + B_{\alpha}$ with B_{α} a Butler group of finite rank. We will call $\{H_{\alpha} \mid \alpha < \mu\}$ a B-filtration of the group G.

Recall that a pure subgroup K of a torsion-free group G is said to be preseparative, if for each $g \in G \setminus K$ there is a countable subset $\{h_0, h_1, \ldots\} \subseteq K$ such that for each $h \in K$ there are $m, n < \omega, m \neq 0$, with $\mathbf{t}(g+h) \leq \mathbf{t}(mg+h_0) \cup \mathbf{t}(mg+h_1) \cup \ldots \cup$ $\mathbf{t}(mg+h_n)$. In this case we will also say that $\{h_0, h_1, \ldots\}$ is a preseparative set for g over K. An equivalent definition of a preseparative subgroup has been given in Bican, Fuchs [15] under the name \aleph_0 -prebalanced subgroup. Let K be a corank one pure subgroup of a torsion-free group G. The types $\mathbf{t}(J)$ of those pure rank one subgroups J of G which are not contained in K generate a lattice ideal $\mathfrak{I}_{G|K}$ in the lattice of all types. The subgroup K is preseparative in G if this ideal is countably generated. If the corank of K in G is greater than one, then K is defined to be preseparative in G if it is preseparative in every pure subgroup H of G containing K as a corank one subgroup. A smooth ascending union $G = \bigcup_{\alpha < \mu} H_{\alpha}$ of preseparative subgroups with $H_0 = H$ and $|G_{\alpha+1}/G_{\alpha}| \leq \aleph_0$ (equivalently $G_{\alpha+1}/G_{\alpha}$ of rank one) for each $\alpha < \mu$ is called a preseparative chain from H to G. For H = 0 we speak about a preseparative chain of G.

Recall [AH] that a collection \mathfrak{C} of subgroups of G is called an *axiom-3 family* if \mathfrak{C} satisfies (i) $0, G \in \mathfrak{C}$; (ii) if $\{H_i \mid i \in I\}$ is any set of subgroups in \mathfrak{C} , then their sum $\sum_{i \in I} H_i \in \mathfrak{C}$; (iii) if $H \in \mathfrak{C}$ and X is a countable subset of G, then there is a $K \in \mathfrak{C}$ containing H and X such that K/H is countable. If, moreover, each $A \in \mathfrak{C}$ is TEP in G (and consequently G/A is a B_2 -group) then such an axiom-3 family has been called *canonical* in [BR]. Looking at the proof of [B2; Theorem 6] we see that with a given B-filtration of a B_2 -group G it is associated a canonical axiom-3 family $\mathcal{F}(G)$ of decent, TEP and B_2 -subgroups of G in the natural way, given by the closed subsets of the corresponding ordinal number. It is natural to speak about a *canonical axiom-3 family of decent subgroups corresponding to a given B-filtration* of G. It is not too hard to show (use e.g. [B2; Lemma 3]) that if $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is a B-filtration of G and $G = \bigcup_{\alpha < \lambda} K_{\alpha}$ is any smooth ascending union consisting of

members of the given *B*-filtration of *G*, then $\mathcal{F}(K_{\beta}) \subseteq \mathcal{F}(K_{\alpha})$ whenever $\beta \leq \alpha$ and $\bigcup_{\beta < \alpha} \mathcal{F}(K_{\beta}) \subseteq \mathcal{F}(K_{\alpha}), \alpha$ limit. Moreover, if $H \leq K$ are members of $\mathcal{F}(G)$, then one can easily prove the existence of a *B*-filtration from *H* to *K*.

Several recent results (cf. e.g. [FR1], [FR2], [BR], [BRV]) show that Butler groups form an appropriate generalization of free groups. Recall that for an infinite cardinal λ a torsion-free group G is said to be λ -free if each subgroup of G of cardinality strictly less than λ is free. Unlike the case of free abelian groups, a (pure) subgroup of a B_1 -group (B_2 -group) need not be a B_1 -group (B_2 -group). However, as mentioned above, B_2 -groups are characterized in [AH] (see also [FMa]) as torsion-free groups having an axiom-3 family \mathfrak{C} of decent and TEP B_2 -subgroups, and consequently every subset X of G is contained in a member of \mathfrak{C} of cardinality $|X| \cdot \aleph_0$. In the light of these facts it is natural to work with some families of subgroups of the given group G and to distinguish between hereditary and non-hereditary families. Thus we are led to the following definitions.

1. Definition. Let λ be an uncountable cardinal. A collection \mathfrak{C} of subgroups of the group G is called a *weak* λ -cover of G if each member of \mathfrak{C} has cardinality less than λ , every subset $\emptyset \neq X \subseteq G$ with $|X| < \lambda$ is contained in a member of \mathfrak{C} of cardinality $|X| \cdot \aleph_0$ and \mathfrak{C} is closed under smooth ascending unions $H = \bigcup_{\alpha < \kappa} H_{\alpha}$ with $|H| < \lambda$. Moreover, we say that a weak λ -cover \mathfrak{C} of the torsion-free group G is *hereditary*, if for each uncountable $H \in \mathfrak{C}$ the set $\mathfrak{C}_H = \{K \in \mathfrak{C} \mid K \leq H, |K| < |H|\}$ is a weak |H|-cover of H.

In what follows similar notions and results concerning B_1 -groups and B_2 -groups will appear several times. For the sake of brevity we shall use the notation B_* -group in the sense that it means either a B_1 -group or a B_2 -group throughout. In other words, this abbreviation will record two facts at once.

2. Definition. Let λ be an uncountable cardinal. A torsion-free group G is said to be a (*hereditary*) λ - B_* -group if it has a (hereditary) weak λ -cover \mathfrak{C} consisting of pure B_* -subgroups. If, moreover, G is of cardinality λ , then G is called a (*hereditary*) almost B_* -group.

Recall that a subset C of the regular cardinal λ is called a *cub* (closed and unbounded set) if it is cofinal to λ , i.e. for each $\alpha < \lambda$ there is $\beta \in C$ with $\alpha < \beta$ (C is unbounded) and each limit ordinal $\alpha < \lambda$ such that $\alpha \cap C$ is cofinal to α belongs to C (C is closed). A subset of λ is said to be *stationary*, if it intersects every cub in λ non-trivially. Now we are ready to present our results. We start with the singular cardinality case concerning almost B_2 -groups.

 κ -Shelah game. Let κ be a regular uncountable cardinal and let G be a torsionfree group of cardinality $|G| > \kappa^+$. We define the κ -Shelah game on G in the following way: Player I picks subgroups G_{2i} , $i < \omega$, of cardinality κ and player II picks G_{2i+1} such that $G_i \leq G_{i+1}$ for all $i < \omega$. Player II wins if G_{2i+1} is decent and TEP in G_{2i+3} for each $i < \omega$.

3. Lemma. If κ is a regular uncountable cardinal and G an almost B_2 -group of cardinality $\lambda > \kappa^+$, then player II has a winning strategy in the κ -Shelah game.

Proof. Let \mathfrak{C} be a weak λ -cover of pure B_2 -subgroups of G. In view of Lemma 1.2 in [H], the κ -Shelah game is determinated and so we are going to show that player I has no winning strategy. By way of contradiction let us assume that I has a winning strategy s and that he has picked G_0 . Take H_0 to be any member of \mathfrak{C} of cardinality κ containing G_0 and assume that H_{β} , $\beta < \alpha$, have been already defined for some $0 < \alpha < \kappa^+$. For α limit we simply set $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$, while for $\alpha = \beta + 1$ we select H_{α} to be any member of \mathfrak{C} of cardinality κ containing H_{β} and all $s(H_{\alpha_0}, \ldots, H_{\alpha_n}), \alpha_0 < \ldots < \alpha_n < \alpha, n < \omega$. The union $H = \bigcup_{\alpha < \kappa^+} H_{\alpha}$ belongs to \mathfrak{C} by the hypothesis and [B1; Lemma 12] yields the existence of a cub U in κ^+ such that H_{α} is TEP in H for each $\alpha \in U$. Moreover, in virtue of [BR; Proposition 5.1] the H_{α} 's can be assumed decent in H.

Now when player I has chosen G_{2i} in the κ -Shelah game, then player II picks G_{2i+1} to be H_{α} , where α is the least non-limit element of U containing G_{2i} .

As in the case of free groups we are going to prove the following result.

4. Theorem. An almost B_2 -group of singular cardinality λ is a B_2 -group.

Proof. There is a smooth ascending union $\lambda = \bigcup_{\alpha < \mu} \kappa_{\alpha}$ with $\kappa_0 > \mu = \operatorname{cof} \lambda$ and κ_{α} regular whenever α is non-limit. Further, let \mathfrak{C} be a weak λ -cover of B_2 -subgroups of G and let $G = \bigcup_{\alpha < \mu} G_{\alpha}$ be a smooth union with $G_{\alpha} \in \mathfrak{C}$ and $|G_{\alpha}| = \kappa_{\alpha}$.

Set $G^0_{\alpha} = G_{\alpha}$ for each $\alpha < \mu$ and assume that G^n_{α} has been already defined for some $n < \omega$ and all $\alpha < \mu$. For α limit or 0 set $H^n_{\alpha} = G^n_{\alpha}$ and for α successor take H^n_{α} according to the κ_{α} -Shelah game $G^0_{\alpha}, H^0_{\alpha}, G^1_{\alpha}, H^1_{\alpha}, \ldots$, the hypotheses of Lemma 3 being obviously satisfied. For each $\alpha < \mu$ let $\{h^j_{\alpha} \mid j < \kappa_{\alpha}\}$ be any list of the elements of H^n_{α} . Moreover, H^n_{α} has a canonical axiom-3 family $\mathcal{F}(H^n_{\alpha})$ of decent and TEP subgroups corresponding to a given *B*-filtration of H^n_{α} . The routine set-theoretical arguments lead to the conclusion that we can select G^{n+1}_{α} in such a way that it has cardinality κ_{α} , contains $H^n_{\alpha} \cup \{h^j_{\gamma} \mid \gamma < \mu, j < \kappa_{\alpha}\}$ and $G^{n+1}_{\alpha} \cap H^n_{\alpha+1} \in \mathcal{F}(H^n_{\alpha+1})$.

Now for each α non-limit H^n_{α} is TEP and decent in H^{n+1}_{α} by Lemma 9, hence $H^{n+1}_{\alpha}/H^n_{\alpha}$ is a B_2 -group by [B2; Theorem 12], the *B*-filtration of H^n_{α} extends to that

of H_{α}^{n+1} by [DHR; Proposition 3.9] and consequently $\mathcal{F}(H_{\alpha}^{n}) \subseteq \mathcal{F}(H_{\alpha}^{n+1}) \subseteq \mathcal{F}(H_{\alpha})$, where $H_{\alpha} = \bigcup_{n < \omega} H_{\alpha}^{n}$. Moreover, for $\alpha < \mu$ arbitrary we have $H_{\alpha} = H_{\alpha} \cap H_{\alpha+1} = \bigcup_{n < \omega} (H_{\alpha}^{n} \cap H_{\alpha+1}^{n}) \leq \bigcup_{n < \omega} (G_{\alpha}^{n+1} \cap H_{\alpha+1}^{n}) \leq \bigcup_{n < \omega} (H_{\alpha}^{n+1} \cap H_{\alpha+1}^{n+1}) = H_{\alpha}$ and so $H_{\alpha} \in \bigcup_{n < \omega} \mathcal{F}(H_{\alpha+1}^{n}) \subseteq \mathcal{F}(H_{\alpha+1})$. Hence there is a *B*-filtration from H_{α} to $H_{\alpha+1}$ and consequently it remains to show that the union $G = \bigcup_{\alpha < \omega} H_{\alpha}$ is smooth.

Let $\alpha < \mu$ be a limit ordinal and let $h \in H_{\alpha}$ be arbitrary. Then $h \in H_{\alpha}^{n}$ for some $n < \omega$ and consequently $h = h_{\alpha}^{j}$ for some $j < \kappa_{\alpha}$. Thus $j < \kappa_{\beta}$ for some $\beta < \alpha$, the chain $\{\kappa_{\alpha} \mid \alpha < \mu\}$ being assumed smooth. This yields $h \in G_{\beta}^{n+1} \leq H_{\beta}$ and the proof is complete.

Leaving open the case of almost B_1 -groups of singular cardinalities we proceed to the regular cardinals.

In [B3] the following construction based on the ideas of [F2] and [FMa] was investigated.

5. Construction. Let H be a preseparative subgroup of a torsion-free group G and let R be a fixed set of representatives of cosets of G/H. For each $g \in R$ we fix a preseparative set $\{h_n^g \mid n < \omega\} \subseteq H$ for g over H. Now if we set $B = \langle \langle mg + h_n^g \rangle_* \mid g \in R, m, n < \omega, m \neq 0 \rangle$ then it is easy to verify that G = H + B and |B| = |G/H|.

Further, if $G = \bigcup_{\alpha < \mu} H_{\alpha}$ is a smooth ascending union of preseparative subgroups, then for each $\alpha < \mu$ we can construct a subgroup $B_{\alpha} \leq G$ in such a way that $H_{\alpha+1} = H_{\alpha} + B_{\alpha}, |B_{\alpha}| = |H_{\alpha+1}/H_{\alpha}|$ and, obviously, $H_{\alpha} = \sum_{\varrho < \alpha} B_{\varrho} + H_0$ for all relevant α 's.

Recall that a subset $S \subseteq \mu$ is said to be *closed*, if $L_{\beta} \cap B_{\beta} \leq H_0 + \langle B_{\gamma} | \gamma \in S, \gamma < \beta \rangle$ for each $\beta \in S$. It was proved in [B3] that for a closed subset $S \subseteq \mu$ the subgroup $G(S) = H_0 + \sum_{\beta \in S} B_{\beta}$ is pure in G (Lemma 2.3) and preseparative in G (Lemma 2.4). Moreover, every union of closed subsets is closed (Lemma 2.5).

6. Lemma. Let $G = \bigcup_{\alpha < \mu} H_{\alpha}$ be a preseparative chain of a torsion-free group G. If $\overline{S} \subseteq \mu$ is a closed subset, then every element $\lambda \in \overline{S}$ lies in a countable closed subset of μ contained in \overline{S} .

Proof. By way of contradiction let us assume that $\lambda \in \overline{S}$ is the first ordinal which is not in a countable closed subset contained in \overline{S} . Since $H_{\lambda} \cap B_{\lambda}$ is countable, it has a basis $\{x_0, x_1, \ldots\}$ (possibly finite). If we set $\nu(g) = \nu$ for $g \in G$ whenever $g \in H_{\nu+1} \setminus H_{\nu}$, then we infer from $x_i \in H_{\lambda}$ that $\lambda_i = \nu(x_i) < \lambda$. We claim that $\lambda_i \in \overline{S}$. If not, then $H_{\lambda} \cap B_{\lambda} \leq \langle B_{\gamma} | \gamma \in \overline{S}, \gamma < \lambda \rangle$ yields that $x_i = y + z$ with $y \in \langle B_{\gamma} \mid \gamma \in \overline{S}, \gamma < \lambda_i \rangle$ and $z \in \langle B_{\gamma} \mid \gamma \in \overline{S}, \gamma > \lambda_i \rangle$. Assuming z non-zero, z is expressible in the form $z = z_1 + \ldots + z_k$, $0 \neq z_i \in B_{\varrho_i}$, with $\lambda_i < \varrho_1 < \ldots < \varrho_k$ and ϱ_k as small as possible. Now $z_k = x_i - y - z_1 - \ldots - z_{k-1} \in H_{\varrho_{k-1}}$, which contradicts the choice of ϱ_k . Hence z = 0 and $x_i = y \in \langle B_{\gamma} \mid \gamma \in \overline{S}, \gamma < \lambda_i \rangle \subseteq H_{\lambda_i}$, contradicting $\nu(x_i) = \lambda_i$. Thus $\lambda_i \in \overline{S}, \lambda_i < \lambda, x_i \in B_{\gamma_1} + \ldots + B_{\gamma_n}, \gamma_i \in \overline{S},$ $\gamma < \lambda_i$, and the choice of λ yields the existence of a countable closed subset S_i of \overline{S} containing $\lambda_i, \gamma_1, \ldots, \gamma_n$. Now the set $S = \bigcup_{i < \omega} S_i$ is a closed countable subset of \overline{S} and so is $S \cup \{\lambda\}$, since $x_i \in G(S)$ for each $i < \omega$ and consequently $H_\lambda \cap B_\lambda \leqslant G(S)$, G(S) being pure in G and containing the basis $\{x_0, x_1, \ldots\}$ of $H_\lambda \cap B_\lambda$.

7. Lemma. Let λ be a regular uncountable cardinal and $G = \bigcup_{\alpha < \lambda} H_{\alpha}$ a λ -filtration consisting of B_2 -groups. Then

- (a) G has a preseparative chain consisting of B_2 -groups of cardinalities strictly less than λ ;
- (b) G is a hereditary almost B_2 -group.

Proof. (a) By [F3; Theorem 8.2] there is a preseparative chain from H_{α} to $H_{\alpha+1}$ for every $\alpha < \mu$ and the transitivity of preseparativeness yields (a) in view of the fact that the members of the preseparative chain from H_{α} to $H_{\alpha+1}$ are B_2 -groups again by the same reason.

(b) Assume that $G = \bigcup_{\alpha < \lambda} H_{\alpha}$ is a preseparative chain of G consisting of B_2 groups of cardinalities less than λ . Realizing that the family $\mathfrak{D} = \{G(S) \mid S \subset \lambda, S \text{ closed and bounded}\}$ is a hereditary weak λ -cover of G owing to Lemma 6 and taking into account the closedness of closed subsets under unions we only have to verify that G(S) is a B_2 -group whenever $S \subset \lambda$ is closed and bounded, $S \subseteq \mu < \lambda$. Set $S_0 = S$ and assume that for some $\beta \leq \mu$ the closed subsets $S_{\gamma}, \gamma < \beta$, of μ have been already defined. For β limit the union $S_{\beta} = \bigcup_{\gamma < \beta} S_{\gamma}$ is a closed subset of μ . If $\gamma = \beta - 1$ exists and $H(S_{\gamma}) = H_{\mu}$ then we stop. Otherwise we take the first ordinal $\delta \in \mu \setminus S_{\gamma}$. In view of Lemma 6 there is a countable closed subset $S' \subseteq \mu$ containing δ and we can set $S_{\beta} = S_{\gamma} \cup S'$. Obviously, $G(S_{\beta})/G(S_{\gamma})$ is countable and consequently in this way we obtain (by [B3; Lemma 2.4]) a preseparative chain from G(S) to H_{μ} . Thus G(S) is a B_2 -group by [F3; Theorem 8.2].

8. Corollary. Let λ be a regular uncountable cardinal and G a λ - B_2 -group with a weak λ -cover \mathfrak{C} consisting of B_2 -groups. If $K \leq G$ is any subgroup of cardinality λ , then there is a subgroup H of G of cardinality λ that contains K and is an almost B_2 -group. Especially, if K is a smooth ascending union of members of \mathfrak{C} then it is an almost B_2 -group. Proof. Let $\{k_{\alpha} \mid \alpha < \lambda\}$ be any list of elements of K. Set $H_0 = 0$ and assume that for some $\alpha < \lambda$ the members H_{β} of \mathfrak{C} containing $\{k_{\gamma} \mid \gamma < \beta\}$ have been already defined for each $\beta < \alpha$. For α limit we simply set $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$, while for $\alpha = \beta + 1$ we take as H_{α} any member of \mathfrak{C} containing $H_{\beta} \cup \{k_{\beta}\}$ of cardinality $|H_{\beta}| \cdot \aleph_0$. Then $H = \bigcup_{\alpha < \lambda} H_{\alpha}$ contains K and is an almost B_2 -group by Lemma 7. The rest is obvious.

9. Theorem. The following conditions are equivalent for an uncountable torsion-free group *G*:

- (i) G is an almost B_2 -group;
- (ii) $G = \bigcup_{\alpha < \lambda} H_{\alpha}$ is a smooth ascending union of B_2 -subgroups with $|H_{\alpha}| < |G|$ for every $\alpha < \lambda$;
- (iii) G has a preseparative chain consisting of B_2 -groups of cardinalities less than |G|;
- (iv) G is a hereditary almost B_2 -group.

Proof. If G is of singular cardinality then it is a B_2 -group by Theorem 4 and the assertion holds. For $|G| = \lambda$ regular (i) implies (ii) and (iv) implies (i) trivially, while the rest follows easily from the preceding lemma.

10. Corollary. An almost B_2 -group is a B_2 -group if and only if it is a B_1 -group.

Proof. By [F3; Theorem 4.1] and Theorem 9.

The notion of a λ -cover was introduced and investigated in [BRV]. The only difference between this and the weak λ -cover is that the weak λ -cover consists of subgroups of cardinalities strictly less than λ only. Now we are going to extend the notion of a cub and a stationary set in the following natural way.

11. Definition. Let λ be a regular uncountable cardinal and \mathfrak{C} a weak λ -cover of the group G. A collection \mathfrak{D} of members of \mathfrak{C} is called a \mathfrak{C} -*cub* provided it is closed under smooth ascending unions $H = \bigcup_{\alpha < \kappa} H_{\alpha}$ with $H \in \mathfrak{C}$ and every element of \mathfrak{C} is contained in that of \mathfrak{D} . Furthermore, a subcollection \mathfrak{E} of \mathfrak{C} is called \mathfrak{C} -stationary if it intersects each \mathfrak{C} -cub non-trivally.

If G is a torsion-free B_1 -group of regular cardinality λ and $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ is any its λ -filtration consisting of B_1 -subgroups then there is a cub $C \subseteq \lambda$ such that, for each $\alpha \in C$, G_{α} is TEP in G_{β} whenever $\alpha < \beta < \lambda$. This very important result in the theory of infinite rank Butler groups has been proved in [DHR; Theorem 7.1] (for the simplified proof see [F2]). As a special case we obviously get that G has a

 λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ such that the set $\{\alpha < \lambda \mid G_{\alpha} \text{ is not TEP in } G_{\alpha+1}\}$ is not stationary. It follows from [BB; Proposition 2.2] that the general condition is also sufficient. Now we are going to show that the special one is sufficient, too.

12. Theorem. Let G be an almost B_* -group of regular uncountable cardinality λ . The following conditions are equivalent:

- (i) G is a B_* -group;
- (ii) for any λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ of G consisting of B_* -groups the set $E = \{\alpha < \lambda \mid G_{\alpha} \text{ is not TEP in some } G_{\beta}\} \subseteq \lambda$ is not stationary;
- (iii) there is a λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ of G consisting of B_* -groups such that the set $E = \{\alpha < \lambda \mid G_{\alpha} \text{ is not TEP in some } G_{\beta}\} \subseteq \lambda$ is not stationary;
- (iv) for each weak λ -cover \mathfrak{C} of B_* -subgroups of G the set $U = \{H \in \mathfrak{C} \mid H \text{ is not TEP in some } K \in \mathfrak{C}\}$ is not \mathfrak{C} -stationary;
- (v) there is a weak λ -cover \mathfrak{C} of B_* -subgroups of G such that the set $U = \{H \in \mathfrak{C} \mid H \text{ is not TEP in some } K \in \mathfrak{C}\}$ is not \mathfrak{C} -stationary.

Proof. We start with the B_1 -groups case. (i) implies (ii). By [DHR; Theorem 7.1] there is a cub C in λ such that for each $\alpha \in C$, G_{α} is TEP in G_{β} for all $\alpha < \beta < \lambda$. Hence $E \cap C = \emptyset$.

The implications (ii) implies (iii) and (iv) implies (v) are obvious.

(iii) implies (iv). Let $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ be a given λ -filtration of G and let $C \subseteq \lambda$ be a cub disjoint with the set E. If \mathfrak{C} is any weak λ -cover of G consisting of B_1 -groups, then we can construct a λ -filtration $G = \bigcup_{\alpha < \lambda} H_{\alpha}$ from the members of \mathfrak{C} in the natural way. The set $D = \{\alpha < \lambda \mid G_{\alpha} = H_{\alpha}\}$ is a cub in λ and $C \cap D$ is a cub in λ , too. Now for each $\alpha \in C \cap D$ we see that $G_{\alpha} = H_{\alpha}$ is TEP in any G_{β} with $\alpha < \beta < \lambda$ and so the regularity of λ yields that $\{G_{\alpha} \mid \alpha \in C \cap D\}$ is a \mathfrak{C} -cub which is obviously disjoint with U.

(v) implies (i). Let $\mathfrak{D} \subseteq \mathfrak{C}$ be a \mathfrak{C} -cub such that $\mathfrak{D} \cap U = \emptyset$. Constructing a λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ of G from the members of \mathfrak{D} in the usual way, we see that G_{α} is TEP in $G_{\alpha+1}$ for each $\alpha < \lambda$ and an application of [BB; Proposition 2.2] completes the proof of this part.

Proceeding to B_2 -groups the implications (i) implies (ii) and (iii) implies (iv) follow from the above part, every B_2 -group being a B_1 -group, while the implications (ii) implies (iii) and (iv) implies (v) are trivial. To prove the remaining implication (v) implies (i) note that G is a B_1 -group by the first part and so Corollary 10 completes the proof. Now we proceed to a result on TEP subgroups which is closely related to [BR; Proposition 5.1] and which enables us to prove a stronger version of the implication $(ii) \implies (i)$ in the preceding theorem.

13. Proposition. Let G be a torsion-free group which is expressible as a smooth ascending union of pure subgroups $G = \bigcup_{\alpha < \lambda} G_{\alpha}$, where λ is a limit ordinal. Then there is a cub C in λ such that for each $\alpha \in C$ either G_{α} is not TEP in $G_{\alpha'}$ where α' is the successor of α in C or it is TEP in G_{β} whenever $\alpha < \beta$ and $\beta \in C$.

Proof. Note that if $K \leq H \leq G$ are pure subgroups of G, then if K is TEP in G, it is obviously TEP in H. Thus, if the set $\{\beta < \lambda \mid G_{\alpha} \text{ is TEP in } G_{\beta}\}$ is unbounded, then G_{α} is TEP in G_{β} whenever $\alpha < \beta < \lambda$. Set t(0) = 0 and assume that $t(\beta) < \lambda$ have been already selected for some $\alpha < \lambda$ and all $\beta < \alpha$. For α limit we simply set $t(\alpha) = \bigcup_{\beta < \alpha} t(\beta)$, while for $\alpha = \beta + 1$ we put $t(\alpha) = t(\beta) + 1$ if $G_{t(\beta)}$ is TEP in each G_{γ} , $t(\beta) < \gamma < \lambda$, and otherwise we take $t(\alpha)$ to be the first ordinal $\gamma < \lambda$ such that $G_{t(\beta)}$ is not TEP in G_{γ} . Obviously, $C = \{t(\alpha) \mid \alpha < \lambda\}$ is the cub in λ having the required property.

14. Proposition. Let G be a smooth ascending union $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ of pure B_* subgroups, where λ is a limit ordinal. Then there is a cub C in λ such that for each $\alpha \in C$ the group G_{α} is TEP in G_{β} for each $\beta \in C$, $\alpha < \beta$, whenever it is TEP in $G_{\alpha'}$,
where α' is the successor of α in C. If the set $E = \{\alpha \in C \mid G_{\alpha} \text{ is not TEP in } G_{\alpha'}\}$ is not stationary in λ then G is a B_* -group.

Proof. The first part follows immediately from Proposition 13. Now if E is not stationary, then there is a cub D in λ such that $D \cap E = \emptyset$. The intersection $C \cap D$ is a cub in λ disjoint to E, hence G_{α} is TEP in $G_{\alpha'}$ for each $\alpha \in C \cap D$ and its successor α' in $C \cap D$. By [BB; Proposition 2.2] G is a B_1 -group and in the case of B_2 -groups G has a preseparative chain by Lemma 7 and [F3; Theorem 4.1] applies.

For the sake of completeness we shall include the following result on B_2 -groups (for the free group due independently to J. Gregory, D. W. Kueker, A. Mekler and S. Shelah) which has been proved in fact in [BR]. Moreover, we shall extend it to a similar result for almost B_1 -groups. The definition of a weakly compact cardinal was repeated in [BR]. The only fact we will need in the sequel is the following property satisfied by weakly compact cardinals.

Property (P). A regular cardinal λ is said to have the property (P) if for any stationary set $E \subseteq \lambda$ there is a regular cardinal $\kappa < \lambda$ such that $E \cap \kappa$ is stationary in κ .

15. Theorem. If $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ is a smooth ascending union of pure B_* -subgroups such that $|G_{\alpha}| = |\alpha| \cdot \aleph_0$ for each $\alpha < \lambda$ and λ is a regular cardinal having the property (P), then G is a B_* -group.

Proof. Assume first that G_{α} 's are B_1 -groups. By Proposition 13 there is a cub C in λ such that for each $\alpha \in C$ the subgroup G_{α} is TEP in every G_{β} , $\alpha < \beta < \lambda$, whenever it is TEP in $G_{\alpha'}$, α' being the successor of α in C. In view of Proposition 14 it suffices to show that the set $E = \{\alpha \in C \mid G_{\alpha} \text{ is not TEP in } G_{\alpha'}\}$ is not stationary.

Assume, by way of contradiction, that E is a stationary subset of λ . By Property (P), there is a regular cardinal $\kappa < \lambda$ such that $E \cap \kappa$ is stationary in κ . Now $G_{\kappa} = \bigcup_{\alpha < \kappa} G_{\alpha}$ is a κ -filtration of the B_1 -group G_{κ} consisting of B_1 -subgroups and so Theorem 12 yields that the set $E_{\kappa} = \{\alpha < \kappa \mid G_{\alpha} \text{ is not TEP in some } G_{\beta}\}$ is not stationary in κ . Thus, there is a cub D in κ such that $E_{\kappa} \cap D = \emptyset$. Hence $E \cap \kappa \cap D \neq \emptyset$, $E \cap \kappa$ being stationary in κ , and so for $\alpha \in E \cap \kappa \cap D$ we have $\alpha \in E \cap \kappa$ showing that G_{α} is not TEP in $G_{\alpha'}$, where α' is the successor of α in C. On the other hand, $\alpha \in D$ means that $\alpha \notin E_{\kappa}$ and consequently G_{α} is TEP in every G_{β} , $\alpha < \beta < \kappa$. If G_{α} 's are B_2 -groups, G has a preseparative chain by Lemma 7 and it suffices to use [F3; Theorem 4.1].

16. Corollary. An almost B_* -group G of a weakly compact cardinality λ is a B_* -group.

Proof. If \mathfrak{C} is a weak λ -cover of G consisting of B_* -subgroups, then we can construct, in the natural way, a λ -filtration $G = \bigcup_{\alpha < \lambda} G_\alpha$ of G such that $|G_\alpha| = |\alpha| \cdot \aleph_0$ for each $\alpha < \lambda$ and Theorem 15 applies.

17. Corollary ([BR; Theorem 5.3]). Let λ be a regular cardinal with the Property (P) and let $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ be a λ -filtration of G consisting of B_2 -subgroups. Then G is a B_2 -group.

Proof. Without loss of generality we may assume that $G_0 = 0$ and we can construct a refinement of the given λ -filtration to $G = \bigcup_{\alpha < \lambda} H_{\alpha}$ in such a way that H_{α} is a B_2 -group and $|H_{\alpha}| = |\alpha| \cdot \aleph_0$ for each $\alpha < \lambda$. Set $H_0 = 0$ and assume that for some $\alpha < \lambda$ we have constructed $H_{\beta} = G_{\alpha}$ with the required properties. Let \mathfrak{C} be an axiom-3 family of decent and B_2 -subgroups of $G_{\alpha+1}$ and let $\{g_{\gamma} \mid \gamma < |G_{\alpha+1}|\}$ be any list of elements of $G_{\alpha+1}$. Assuming that for some $\beta \leq \gamma$ the subgroup H_{γ} has been already constructed in such a way that $H_{\gamma} \subsetneqq G_{\alpha+1}$ and $|H_{\gamma}| = |\gamma| \cdot \aleph_0$, we can take $H_{\gamma+1}$ to be a member of \mathfrak{C} containing H_{γ} and the element g_{δ} with the smallest δ such that $g_{\delta} \notin H_{\gamma}$. Taking simply unions for limit ordinals, we see that after an appropriate number of steps we reach $G_{\alpha+1}$. Now it suffices to use Theorem 15. \Box Again, we will leave open the question whether B_1 -groups are in general almost B_1 -groups or not, and we will conclude this note by presenting some criteria under which an almost B_1 -group is a B_2 -group.

18. Theorem. A B_1 -group G of uncountable cardinality λ is a B_2 -group if and only if it is a hereditary almost B_1 -group.

Proof. If G is a B_2 -group then by [AH] it has an axiom-3 family \mathfrak{D} of decent and TEP B_2 -subgroups determined by the so called closed subsets of the ordinal λ . It is easy to verify (see e.g. [B2; Theorem 6]) that the set \mathfrak{C} of all members of \mathfrak{D} of cardinality strictly less than λ is obviously the desired hereditary weak λ -cover of the group G.

To prove the converse let \mathfrak{C} be a hereditary weak λ -cover of G and let λ be the smallest (uncountable) cardinal for which there exists a B_1 -group G of cardinality λ satisfying the stated conditions which is not a B_2 -group. By [BS] and [DR] any B_1 -group of cardinality at most \aleph_1 is a B_2 -group and so $\lambda \geq \aleph_2$. Assuming λ regular we can construct a λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ of G consisting of members of \mathfrak{C} . The choice of λ yields that all G_{α} 's are B_2 -groups, \mathfrak{C} being hereditary. Now G is a B_1 -group and so by Theorem 12 the set $E = \{\alpha < \lambda \mid G_{\alpha} \text{ is not TEP in some } G_{\beta}\}$ is not stationary and an application of Theorem 12 yields that G is a B_2 -group, contradicting the hypothesis. Thus λ is necessarily singular. Again, the choice of λ yields that all the members of \mathfrak{C} are B_2 -groups and Theorem 4 yields the final contradiction completing the proof.

19. Corollary. An almost B_1 -group G of uncountable cardinality λ is a B_2 group if and only if it has a hereditary weak λ -cover \mathfrak{C} of B_1 -groups such that the set $E = \{H \in \mathfrak{C} \mid H \text{ is not TEP in some } K \in \mathfrak{C}\}$ is not \mathfrak{C} -stationary.

Proof. We start with the sufficiency of the condition. Let λ be the smallest cardinal for which there is an almost B_1 -group G satisfying the stated conditions which is not a B_2 -group. As in the preceding proof we have $\lambda \geq \aleph_2$. For λ regular G is a B_1 -group by Theorem 12 and Theorem 18 applies. The case of λ singular, as well as the converse implication, have been solved in the preceding proof.

References

- [AH] Albrecht, U., Hill, P.: Butler groups of infinite rank and axiom 3. Czechoslovak Math. J. 37 (1987), 293–309.
- [B1] Bican, L.: On B₂-groups. Contemp. Math. 171 (1994), 13–19.
- [B2] Bican, L.: Butler groups and Shelah's singular compactness. Comment. Math. Univ. Carolin. 37 (1996), 11–178.

- [B3] Bican, L.: Families of preseparative subgroups. Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 149–162.
- [BB] El Bashir, R., Bican, L.: Remarks on B₂-groups. Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 133–142.
- [BF] Bican, L., Fuchs, L.: Subgroups of Butler groups. Comm. Algebra 22 (1994), 1037–1047.
- [BR] Bican, L., Rangaswamy, K. M.: Smooth unions of Butler groups. Forum Math. 10 (1998), 233–247.
- [BRV] Bican, L., Rangaswamy, K. M., Vinsonhaler Ch.: Butler groups as smooth ascending unions. To appear.
 - [BS] Bican, L., Salce, L.: Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., Springer-Verlag 1006 (1983), 171–189.
- [DHR] Dugas, M., Hill, P., Rangaswamy, K. M.: Infinite rank Butler groups II. Trans. Amer. Math. Soc. 320 (1990), 643–664.
 - [DR] Dugas, Rangaswamy, K. M.: Infinite rank Butler groups. Trans. Amer. Math. Soc. 305 (1988), 129–142.
 - [F1] Fuchs, L.: Infinite Abelian Groups, vol. I and II. Academic Press, New York, 1973 and 1977.
 - [F2] Fuchs, L.: Infinite rank Butler groups. Preprint.
 - [F3] Fuchs, L.: Infinite rank Butler groups. J. Pure Appl. Algebra 98 (1995), 25–44.
- [FMa] Fuchs, L., Magidor, M.: Butler groups of arbitrary cardinality. Israel J. Math. 84 (1993), 239–263.
- [FR1] Fuchs, L., Rangaswamy, K. M.: Butler groups that are unions of subgroups with countable typesets. Arch. Math. 61 (1993), 105–110.
- [FR2] Fuchs, L., Rangaswamy, K. M.: Unions of chains of Butler groups. Contemp. Math. 171 (1994), 141–146.
- [FV] Fuchs, L., Viljoen, G.: Note on the extensions of Butler groups. Bull. Austral. Math. Soc. 41 (1990), 117–122.
 - [H] Hodges, W.: In singular cardinality, locally free algebras are free. Algebra Universalis 12 (1981), 205–220.
 - [R] Rangaswamy, K. M.: A property of B₂-groups. Comment. Math. Univ. Carolin. 35 (1994), 627–631.

Author's address: KA MFF UK, Sokolovská 83, 18600 Praha 8 – Karlín, Czech Republik, e-mail: bican@karlin.mff.cuni.cz.