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RANDOM FIXED POINT THEOREMS FOR A CERTAIN CLASS OF

MAPPINGS IN BANACH SPACES

Jong Soo Jung, Pusan, Yeol Je Cho, Shin Min Kang, Chinju,

Byung Soo Lee, Pusan, and Balwant Singh Thakur, Gariaband

(Received December 2, 1997)

Abstract. Let (Ω,Σ) be a measurable space and C a nonempty bounded closed convex
separable subset of p-uniformly convex Banach space E for some p > 1. We prove random
fixed point theorems for a class of mappings T : Ω × C → C satisfying: for each x, y ∈ C,
ω ∈ Ω and integer n � 1,

‖T n(ω,x)− T n(ω, y)‖
� a(ω) · ‖x− y‖+ b(ω){‖x− T n(ω,x)‖+ ‖y − T n(ω, y)‖}
+ c(ω){‖x− T n(ω, y)‖+ ‖y − T n(ω,x)‖},

where a, b, c : Ω → [0,∞) are functions satisfying certain conditions and T n(ω, x) is the
value at x of the n-th iterate of the mapping T (ω, ·). Further we establish for these mappings
some random fixed point theorems in a Hilbert space, in Lp spaces, in Hardy spaces Hp

and in Sobolev spaces Hk,p for 1 < p < ∞ and k � 0. As a consequence of our main result,
we also extend the results of Xu [43] and randomize the corresponding deterministic ones
of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].

Keywords: p-uniformly convex Banach space, normal structure, asymptotic center, ran-
dom fixed points, generalized random uniformly Lipschitzian mapping

MSC 2000 : Primary 47H10, 47H09; Secondary 60H25

1. Introduction

In recent years randomizations of deterministic fixed point theorems of nonlin-
ear mappings have received much attention in nonlinear functional analysis (see

This studies were supported by the Basic Science Research Institute Program, Ministry
of Education, 1997, Project No. BSRI-97-1405.
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Bharucha-Reid [2, 3], Boscan [4], Castaing and Valadiez [7], Chang [8], Engl [12],
Itoh [14, 15], Lin [20], Nowak [23], Papageorgiou [24, 25], Rybinski [30], Sehgal and
Singh [32], Sehgal and Waters [31], Tan and Yuan [35, 36], and Xu [40, 42, 43]). In
particular, Xu [43] obtained some random fixed point theorems for nonlinear uni-
formly Lipschitzian mappings in Banach spaces.
In this paper, we prove certain random fixed point theorems for a class of map-

pings, which we call generalized uniformly Lipschitzian mappings in the Banach
space. Our results extend the result of Xu [43] and also randomize the correspond-
ing deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu
[37], and Xu [39,41].

2. Preliminaries

Let (Ω,Σ) be a measurable space with Σ a sigma algebra of subsets of Ω. Let
(E, d) be a metric space. We denote by CL(E) (resp. CB(E), K(E)) the family of
all nonempty closed (resp. closed bounded, compact) subsets of E, and by H the
Hausdorff metric on CB(E) induced by d, i.e.,

H(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

for A, B ∈ CB(E), where d(x, B) = inf{d(x, y) : y ∈ B} is the distance from x to
B ⊂ E. A multifunction f : Ω→ E is called (Σ-) measurable if, for any open subset
B of E, the set f−1(B) = {ω ∈ Ω: f(ω) ∩ B �= ∅} ∈ Σ. Note that in Himmelberg
[16], this is called weakly measurable. Since in the present paper only this type of
measurability is used, we omit the term ‘weakly’ for simplicity. Note also that if
f(ω) ∈ K(E) for all ω ∈ Ω, then f is measurable if and only if f−1(F ) ∈ Σ for all
closed subsets F of E. A measurable operator x : Ω → E is called a measurable
selector for a measurable multifunction f : Ω → E if x(ω) ∈ f(ω). Let M be a
nonempty closed subset of E. Then a mapping f : Ω×M → E is called a random
operator if, for each x ∈ M , the mapping f(·, x) : Ω→ E is measurable. An operator
x : Ω → E is said to be a random fixed point of f if x is measurable and x(ω) ∈
f(ω, x(ω)) for all ω ∈ Ω.
Let C be a nonempty subset of a normed linear space E. Then a mapping f : C →

C is said to be uniformly Lipschitzian if there exists a constant k > 0 such that

‖fnx− fny‖ � k‖x− y‖

for all x, y ∈ C and integers n � 1. A uniformly Lipschitzian mapping f is said to
be nonexpansive if k = 1. A mapping f : C → C is said to be generalized uniformly
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Lipschitzian if there exist constants a, b, c > 0 with 3b+ 3c < 1 such that

‖fnx− fny‖ � a · ‖x− y‖+ b{‖x− fnx‖ + ‖y − fny‖}
+ c{‖x− fny‖+ ‖y − fnx‖}

for each x, y ∈ C and integers n � 1. By taking b = c = 0, it will be seen that this
class of mappings is more general than uniformly Lipschitzian mappings.
A random mapping f : Ω × C → C is said to be continuous (resp. uniformly

Lipschitzian, etc.) if, for fixed ω ∈ Ω, the mapping f(ω, ·) : C → C has the above
particular property.
Here we list for convenience the following two theorems.

Theorem A [38]. Let (Ω,Σ) be a measurable space, E a Polish space and
F : Ω→ CL(E) a measurable mapping. Then F has a measurable selector.

Theorem B [35]. Let (Ω,Σ) be a measurable space, E a separable metric space
and X a metric space. If f : Ω× E → X is measurable in ω ∈ Ω and continuous in
x ∈ E and if x : Ω→ E is measurable, then f(·, x(·)) : Ω→ X is measurable.

We also need the following propositions.

Proposition 1 [3]. Let C be a closed convex separable subset of a Banach
space and (Ω,Σ) a measurable space. Suppose f : Ω → C is a multifunction that
is w-measurable, i.e. for each x∗ ∈ E∗, the dual space of E, the numerically-valued
multifunction x∗f : Ω→ (−∞,∞) is measurable. Then f is measurable.

Proposition 2 [14]. Suppose {Tn} is a sequence of measurable set-valued op-
erators from Ω to CB(E) and T : Ω → CB(E) is an operator. If, for each ω ∈ Ω,
H(Tn(ω), T (ω))→ 0, then T is measurable.

The normal structure coefficient N(E) of E is defined (cf. Bynum [5]) by

N(E) = inf

{
diamC

γC(C)

}
,

where the infimum is taken over all bounded convex subsets C of E consisting of
more than one point, diamC = sup{‖x − y‖ : x, y ∈ C} is the diameter of C and
γC(C) = inf

x∈C

(
sup
y∈C

‖x − y‖
)
is the Chebyshev radius of C relative to itself. A space

E is said to have uniformly normal structure if N(E) > 1. It is known that every
uniformly convex Banach space has uniformly normal structure (cf. Daneš [9]) and
that N(H) =

√
2 for a Hilbert space H . Recently, Pichugov [26] (cf. Prus [28])
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calculated that N(Lp) = min{2 1p , 2 p−1
p }, 1 < p < ∞. Some estimates for the normal

structure coefficient in other Banach spaces may be found in Prus [29].
Recall that the modulus of convexity of a Banach space E is the function δ(·)

define on [0,2] by

δ(ε) = inf{1− 1
2‖x+ y‖ : ‖x‖ � 1, ‖y‖ � 1, ‖x− y‖ � ε}.

E is said to be uniformly convex if δ(ε) > 0 for all 0 < ε � 2.
Let p > 1 and denote by λ a number in [0, 1] and by Wp(λ) the function λ · (1 −

λ)p + λp · (1 − λ).
The functional ‖ · ‖p is said to be uniformly convex (cf. Zalinescu [44]) on the

Banach space E if there exists a positive constant cp such that for all λ ∈ [0, 1] and
x, y ∈ E, the following inequality holds:

(1) ‖λx+ (1− λ)y‖p � λ‖x‖p + (1− λ)‖y‖p −Wp(λ) · cp · ‖x− y‖p.

Xu [41] proved that the functional ‖ · ‖p is uniformly convex on the whole Banach
space E if and only if E is p-uniformly convex, i.e. there exists a constant c > 0 such
that the moduli of convexity δE(ε) � c · εp for all 0 � ε � 2.

3. Main results

In this section we always assume that (Ω,Σ) is a measurable space, C a non-
empty bounded closed convex subset of a Banach space E, and T : Ω × C → C

is a generalized random uniformly Lipschitzian mapping, i.e., there exist functions
a, b, c : Ω→ [0,∞) =: �+ with 3b(ω) + 3c(ω) < 1 and

(2) ‖T n(ω, x)− T n(ω, y)‖
� a(ω) · ‖x− y‖+ b(ω){‖x− T n(ω, x)‖+ ‖y − T n(ω, y)‖}
+ c(ω){‖x− T n(ω, y)‖+ ‖y − T n(ω, x)‖}

for all x, y ∈ C, ω ∈ Ω and integers n � 1. Here T n(ω, x) is the value at x of the
n-th iterate of the mapping T (ω, ·).
The following lemma was given in [43]:

Lemma 1 [43]. Let M be a separable metric space and f : Ω × M → � =:
(−∞,∞) a Carathéodory mapping, i.e., for every x ∈ M , the mapping f(·, x) : Ω→
� is measurable and for every ω ∈ Ω, the mapping f(ω, ·) : M → � is continuous.
Then for any s ∈ �, the mapping F̃s : Ω→ M defined by

F̃s(ω) = {x ∈ M : f(ω, x) < s}, ω ∈ Ω
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is measurable. If, in addition, M is a closed convex separable subset of a normed
linear space, F̃s(ω) is nonempty for all ω ∈ Ω, and f is convex in x ∈ M , then the
mapping Fs : Ω→ M defined by

Fs(ω) = {x ∈ M : f(ω, x) � s}, ω ∈ Ω

is measurable.

Now, we are in position to give our main result:

Theorem 1. Let (Ω,Σ) be a measurable space. Let E be a p-uniformly convex
Banach space for some p > 1, C a nonempty bounded closed convex separable subset
of E, and T : Ω× C → C a generalized random uniformly Lipschitzian mapping. If
for each ω ∈ Ω

[
(α(ω) + β(ω))p · {(α(ω) + β(ω))p − 1}

cp ·Np

] 1
p

< 1,

where

α(ω) =
a(ω) + b(ω) + c(ω)
1− b(ω)− c(ω)

, β(ω) =
2b(ω) + 2c(ω)
1− b(ω)− c(ω)

,

N is the normal structure coefficient of E and cp is the constant given in inequal-
ity (1), then T has a random fixed point.

�����. Fix a measurable function x0 : Ω→ C and define function f : Ω×C →
�
+ by

f(ω, x) = lim sup
n→∞

‖T n(ω, x0(ω))− x‖, x ∈ E.

By Theorem B, it is easily seen that f is measurable in ω ∈ Ω and continuous in
x ∈ E. Now, by following the argument of Xu in [43], we show that there exists a
measurable function x : Ω→ C such that

(3) f(ω, x(ω)) = inf
x∈C

f(ω, x), ω ∈ Ω.

To this end we set
r(ω) = inf

x∈C
f(ω, x)

and
F (ω) = {x ∈ C : f(ω, x) = r(ω)}.

Since E is reflexive and f is convex in x, it is easily seen that each F (ω) is nonempty
closed convex. We first show that r(·) is measurable. Suppose {yn} is a countable
dense subset of C. Then we have for each ω ∈ Ω

r(ω) = inf
n�1

f(ω, yn).
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It thus follows that r(·) is measurable since each f(·, yn) is measurable. Next, for
each integer k � 1 we set

Fk(ω) =

{
x ∈ C : f(ω, x) � r(ω) +

1
k

}
.

Then each Fk(·) : Ω → C is measurable by Lemma 1, and is closed convex valued.
It is clear that

(4) F (ω) =
∞⋂

k=1

Fk(ω).

We now claim that F : Ω → C is measurable. By separability of C, we have a
metric, denoted dw, on C which induces the weak topology on C. Let Hw be the
corresponding Hausdorff metric. We now show that

(5) lim
k→∞

Hw(Fk(ω), F (ω)) = 0, ω ∈ Ω.

In fact, since {Fk(ω)} is a decreasing sequence, we have from (4) that the limit in
(5), denoted h(ω), exists and it is not difficult to see that

h(ω) = lim
k→∞

sup
y∈Fk(ω)

dw(y, F (ω)).

If h(ω) > 0, then for each k � 1 there exists a yk ∈ Fk(ω) such that

(6) dw(yk, F (ω)) >
1
2
h(ω).

Since {yk} is contained in C and C is weakly compact, there exists a subsequence
{yk′} of {yk} which is weakly convergent to some y ∈ C, i.e., dw(y′k, y) → 0 as
k′ →∞. Again, since {Fk(ω)} is a decreasing sequence of closed convex (and hence
weakly closed) subsets, it follows that

(7) y ∈
∞⋂

k=1

Fk(ω) = F (ω).

On the other hand, by continuity of the distance dw, we have by (6) that
dw(y, F (ω)) � 1

2h(ω) > 0, which implies that y does not belong to F (ω). This
contradicts (7) and (5) is proved. From (5) and Proposition 2, it follows that there
exists a w-measurable selector x for F . This x clearly satisfies (3). (Note that by
uniform convexity of E, there is exactly one x(ω) ∈ C that satisfies (3).) Now by
induction we can define a sequence {xn(ω)} of measurable functions xn : Ω → C
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with x0(ω) ≡ x0 such that for each m � 0, xm+1(ω) is the asymptotic center of the
sequence {T n(ω, xm(ω))} in C, i.e.

lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖ = inf
y∈C
lim sup

n→∞
‖T n(ω, xm(ω))− y‖.

Let for each ω ∈ Ω and integer m � 0

rm(ω) = lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖

and

Dm(ω) = sup
n�1

‖xm(ω)− T n(ω, xm(ω))‖.

By using (2) after a simple calculation, we have for each x, y in C and ω ∈ Ω,

‖T i(ω, x) − T j(ω, y)‖ � a(ω) + b(ω) + c(ω)
1− b(ω)− c(ω)

· ‖x− T j−i(ω, y)‖

+
2b(ω) + 2c(ω)
1− b(ω)− c(ω)

· ‖T j(ω, y)− x‖,

i.e.,

(8) ‖T i(ω, x)− T j(ω, y)‖ � α(ω) · ‖x− T j−i(ω, y)‖+ β(ω) · ‖T j(ω, y)− x‖.

By the result of Lim [18, Theorem 1] and by (8) we have

rm(ω) = lim sup
i→∞

‖T i(ω, xm(ω))− xm+1(ω)‖

� 1
N
· lim sup

n→∞
{‖T i(ω, xm(ω))− T j(ω, xm(ω))‖ : i, j � n}

� 1
N
· lim sup

n→∞
{α(ω) · ‖xm(ω)− T j−i(ω, xm(ω))‖

+ β(ω) · ‖xm(ω)− T j(ω, xm(ω))‖ : i, j � n}

and so

(9) rm(ω) �
(α(ω) + β(ω))

N
·Dm(ω),
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where N is the normal structure coefficient of E. For each fixed m � 1 and all
n > k � 1, we have from (1) and (8)

‖λxm+1(ω) + (1− λ)T k(ω, xm+1(ω))− T n(ω, xm(ω))‖p

+ cp ·Wp(λ) · ‖xm+1(ω)− T k(ω, xm+1(ω))‖p

� λ‖xm+1(ω)− T n(ω, xm(ω))‖p

+ (1− λ) · ‖T k(ω, xm+1(ω))− T n(ω, xm(ω))‖p

� λ‖xm+1(ω)− T n(ω, xm(ω))‖p

+ (1− λ) · α(ω) · ‖xm+1(ω)− T n−k(ω, xm(ω))‖
+ β(ω) · ‖xm+1(ω)− T n(ω, xm(ω))‖)p.

Taking the limit superior as n →∞ on each side, by definition of xm(ω) we get

rp
m(ω) + cp ·Wp(λ) · ‖xm+1(ω)− T k(ω, xm+1(ω))‖p

� {λ+ (1− λ) · (α(ω) + β(ω))p}rp
m(ω).

It then follows that

Dp
m+1(ω) � (1 − λ){(α(ω) + β(ω))p − 1}

cp ·Wp(λ)
· rp

m(ω)

� (1 − λ){(α(ω) + β(ω))p − 1}
cp ·Wp(λ)

· (α(ω) + β(ω))p

Np
·Dp

m(ω).

Letting λ → 1, we conclude that

(10)

Dm+1(ω)

�
[
(α(ω) + β(ω))p{(α(ω) + β(ω))p − 1}

cp ·Np

] 1
p

·Dm(ω)

= A ·Dm(ω), m = 1, 2, . . .

where A =
[
(α(ω)+β(ω))p·{(α(ω)+β(ω))p−1}

cp·Np

] 1
p

< 1 by the assumption of the theorem.

So, in general,
Dm+1(ω) � A ·Dm(ω) � . . . � Am+1D0(ω).

Since
‖xm+1(ω)− xm(ω)‖ � ‖xm+1(ω)− T n(ω, xm(ω))‖

+ ‖T n(ω, xm(ω))− xm(ω)‖,
taking the limit superior as n →∞ on each side, we have

‖xm+1(ω)− xm(ω)‖ � rm(ω) +Dm(ω)

� 2 ·Dm(ω) � . . . � 2 · Am+1D0(ω),

→ 0
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as m → ∞. It then follows that {xm(ω)} is a Cauchy sequence. Let x(ω) =
lim

m→∞
xm(ω) for each ω ∈ Ω. Then we have from the triangle inequality and by (8)

‖x(ω)− T (ω, x(ω))‖
� ‖x(ω)− xm(ω)‖+ ‖xm(ω)− T (ω, xm(ω))‖
+ ‖T (ω, xm(ω))− T (ω, x(ω))‖

� ‖x(ω)− xm(ω)‖+ ‖xm(ω)− T (ω, xm(ω))‖
+ α(ω) · ‖xm(ω)− x(ω)‖+ β(ω) · ‖T (ω, x(ω))− xm(ω)‖

and so

‖x(ω)− T (ω, x(ω))‖ � 1 + α(ω) + β(ω)
1− β(ω)

· ‖x(ω)− xm(ω)‖

+
1

1− β(ω)
· ‖xm(ω)− T (ω, xm(ω))‖ → 0

as m → +∞. Hence T (ω, x(ω)) = x(ω) for each ω ∈ Ω. This x(ω) is obviously
measurable and thus it is a random fixed point of T . This completes the proof. �

If we put b(ω) = c(ω) = 0 in Theorem 1, then we have the following result.

Corollary 1 [43, Theorem 1]. Let (Ω,Σ) be a measurable space. Let E be a
p-uniformly convex Banach space for some p > 1, C a nonempty bounded closed
convex separable subset of E, and T : Ω× C → C a random uniformly Lipschitzian
mapping. If for each ω ∈ Ω

α(ω) <

[
1
2

(
1 +

√
1 + 4 · cp ·Np

)] 1
p

,

where N is the normal structure coefficient of E and cp is the constant given in the
inequality (1), then T has a random fixed point.

Now we give applications of the above established inequalities analogous to (1) in
some Banach spaces. Let us begin with the following wellknown result.

Lemma 2. (i) In a Hilbert space H , the following equality holds:

(11) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1 − λ)‖x− y‖2

for all x, y in H and λ ∈ [0, 1].
(ii) If 1 < p � 2, then we have for all x, y in Lp and λ ∈ [0, 1]

(12) ‖λx+ (1 − λ)y‖2 � λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ) · (p− 1) · ‖x− y‖2.
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(The inequality (12) is contained in Lim, Xu and Xu [19] and Smarzewski [34].)
(iii) Assume that 2 < p < ∞ and tp is the unique zero of the function g(x) =

−xp−1 + (p− 1)x+ p− 2 in the interval (1,∞). Let

cp = (p− 1) · (1 + tp)2−p =
1 + tp−1p

(1 + tp)p−1
.

Then we have the inequality

(13) ‖λx+ (1− λ)y‖p � λ‖x‖p + (1− λ)‖y‖p −Wp(λ) · cp · ‖x− y‖p

for all x, y in Lp and λ ∈ [0, 1]. (The inequality (13) is essentially due to Lim, Xu
and Xu [19] and Xu [41].)

By Theorem 1 and Lemma 2, we immediately obtain the following results:

Theorem 2. Let (Ω,Σ) be a measurable space. Let C be a nonempty closed
convex separable subset of a Hilbert space H and T : Ω × C → C a generalized
random uniformly Lipschitzian mapping. If for each ω ∈ Ω

[
(α(ω) + β(ω))2{(α(ω) + β(ω))2 − 1}

2

] 1
2

< 1,

where α(ω), β(ω) are as in Theorem 1, then T has a random fixed point.

Theorem 3. Let (Ω,Σ) be a measurable space. Let C be a nonempty closed
convex separable subset of Lp, 1 < p < ∞, and T : Ω × C → C a generalized
uniformly Lipschitzian mapping. If for each ω ∈ Ω

[
(α(ω) + β(ω))2{(α(ω) + β(ω))2 − 1}

(p− 1) · 2 p−1
p

] 1
2

< 1 for 1 < p � 2

and [
(α(ω) + β(ω))p · {(α(ω) + β(ω))p − 1}

cp · 2

] 1
p

< 1 for 2 < p < ∞,

where α(ω), β(ω) are as in Theorem 1, then T has a random fixed point.

If we put b(ω) = c(ω) = 0 in Theorem 2 and Theorem 3, then we obtain the
following results.

Corollary 2 [43, Corollary 1]. Let (Ω,Σ) be a measurable space. Let C be a
nonempty closed convex separable subset of a Hilbert space H and T : Ω×C → C a
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random uniformly Lipschitzian mapping. If α(ω) <
√
2 for each ω ∈ C, then T has

a random fixed point.

Corollary 3 [43, Corollary 2]. Let (Ω,Σ) be a measurable space. Let C be a
nonempty closed convex separable subset of Lp, 1 < p < ∞, and T : Ω × C → C a
uniformly Lipschitzian mapping. If for each ω ∈ Ω

α(ω) <

[
1
2

(
1 +

√
1 + 4 · (p− 1) · 2 p−1

p

)] 1
2

if 1 < p � 2

and

α(ω) <

[
1
2

(
1 +

√
1 + 8 · cp

)] 1p
if 2 < p < ∞,

where cp is as in (1), then T has a random fixed point.

Suppose now that E is a uniformly convex Banach space whose modulus of
convexity is denoted by δ(·). Let τ > 1 be the unique solution of the equation
τ · (1 − δE( 1τ )) = 1. Goebel and Kirk [13] proved that if T is a uniformly α-
Lipschitzian self-mapping of a nonempty bounded closed convex subset C of E and
if α < τ , then T has a fixed point. For a Hilbert space H , τ =

√
5
2 and for Lp, we

have τ = (1 + p
2 )

1
p . Lifshitz [22] and Lim [17] extended the Geobel and Kirk’s result

in the setting of Hilbert space and Lp spaces, respectively (see also [6, 19, 33 and
39]). In [43], Xu presented its stochastic version.
It is also wellknown that ifE is a uniformly convex Banach space, then the equation

(14) r2δ−1E

(
1− 1

r

) 1
N
= 1

has a unique solution r > 1, where N is the normal structure coefficient of E.
Now we give more a general stochastic version of the result of Goebel and Kirk [13].

Theorem 4. Let (Ω,Σ) be a measurable space. Let E be a uniformly convex
Banach space, C a nonempty bounded closed convex separable subset of E, and
T : Ω× C → C a generalized random uniformly Lipschitzian mapping. Let

(α(ω) + β(ω)) < r

for all ω ∈ Ω, where

α(ω) =
a(ω) + b(ω) + c(ω)
1− b(ω)− c(ω)

, β(ω) =
2b(ω) + 2c(ω)
1− b(ω)− c(ω)

,

and r > 1 is the unique solution of (14). Then T has a random fixed point.
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�����. As in the proof of Theorem 1 above, taking x0(ω) ≡ x0 ∈ C, we
can inductively construct a sequence {xm(ω)} of measurable mappings xm : Ω →
C such that for each m � 0, xm+1(ω) is the asymptotic center of the sequence
{T n(ω, xm(ω))} in C, i.e.

lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖ = inf
y∈C
lim sup

n→∞
‖T n(ω, xm(ω))− y‖.

Let for each ω ∈ Ω and integer m � 0

rm(ω) = lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖

and

Dm(ω) = sup
n�1

‖xm(ω)− T n(ω, xm(ω))‖.

Then by the proof of Theorem 1, we also have

(15) rm(ω) �
(α(ω) + β(ω))

N
·Dm(ω),

where N is the normal structure coefficient of E. We may assume Dm(ω) > 0 for all
m � 0. Let m � 0 be fixed and let ε > 0 be small enough. First choose j � 1 such
that

‖T j(ω, xm+1(ω))− xm+1(ω)‖ > Dm+1(ω)− ε

and then choose n0 � 1 so large that

‖T n(ω, xm(ω))− xm+1(ω)‖ < rm(ω) + ε

and

‖T n(ω, xm(ω))− T j(ω, xm+1(ω))‖ � α(ω) · ‖T n−j(ω, xm(ω))− xm+1(ω)‖
+ β(ω) · ‖T n(ω, xm(ω))− xm+1(ω)‖

� α(ω)(rm(ω) + ε) + β(ω)(rm(ω) + ε)

= (α(ω) + β(ω))(rm(ω) + ε)

for all n � n0. It then follows that

‖T n(ω, xm(ω))− 1
2 (xm+1(ω) + T j(ω, xm+1(ω)))‖

� (α(ω) + β(ω))(rm(ω) + ε)

(
1− δE

(
Dm+1(ω)− ε

(α(ω) + β(ω))(rm(ω) + ε)

))
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for all n � n0 and hence

rm(ω)

� lim sup
n→∞

‖T n(ω, xm(ω))−
1
2
(xm+1(ω) + T j(ω, xm+1(ω)))‖

� (α(ω) + β(ω))(rm(ω) + ε)

(
1− δE

(
Dm+1(ω)− ε

(α(ω) + β(ω))(rm(ω) + ε)

))
.

Taking the limit as ε → 0, we obtain

rm(ω) � (α(ω) + β(ω))rm(ω)

(
1− δE

(
Dm+1(ω)

(α(ω) + β(ω))rm(ω)

))
,

which together with (15) leads to the inequality

Dm+1(ω) � (α(ω) + β(ω))2δ−1E

(
1− 1
(α(ω) + β(ω))

)
1
N

Dm(ω).

Hence we have

(16) Dm+1(ω) � ADm(ω) � Am+1D0(ω),

where A = (α(ω)+β(ω))2δ−1E (1− 1
(α(ω)+β(ω)))

1
N Dm(ω) < 1 by assumption. Noticing

‖xm+1 − xm‖ � lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖

+ lim sup
n→∞

‖T n(ω, xm(ω))− xm(ω)‖

� rm(ω) +Dm(ω) � 2 ·Dm(ω) � . . . � 2 · AmD0(ω),

we obtain from (16) that {xm(ω)} is a Cauchy sequence. Let

x(ω) = lim
m→∞

xm(ω)

for each ω ∈ Ω. Then by the proof of Theorem 1, we conclude that this x(ω) is a
random fixed point of T . �

The following is also an improvement of Theorem 3 of Xu [43], which is the random
version of Theorem 3.1 of Casini and Maluta [6].

Theorem 5. Let (Ω,Σ) be a measurable space. Let E be a Banach space with
uniformly normal structure, C a nonempty bounded closed convex separable subset
of E, and T : Ω×C → C a generalized random uniformly Lipschitzian mapping. Let

(α(ω) + β(ω)) < N
1
2
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for all ω ∈ Ω, where

α(ω) =
a(ω) + b(ω) + c(ω)
1− b(ω)− c(ω)

, β(ω) =
2b(ω) + 2c(ω)
1− b(ω)− c(ω)

,

and N is the normal structure coefficient of E. Then T has a random fixed point.

�����. Let x0 be an arbitrary point of C and set x0(ω) ≡ x0. Now by
Lemma 2 of Xu [43] and Theorem B, we can inductively construct a sequence {xm}
of measurable functions xm : Ω→ C such that for each ω ∈ Ω and integer m � 0,
(i) ‖xm+1(ω)− z‖ � lim sup

n→∞
‖T n(ω, xm(ω))− z‖ for all z ∈ E, and

(ii) lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖ � 1
N A({T n(ω, xm(ω))}), where A({zn}) =

lim sup
n→∞

{‖zi − zj‖ : i, j � n} is the asymptotic diameter of {zn}.
Set for each ω ∈ Ω and integer m � 0

Dm(ω) = sup
k�1

‖T k(ω, xm(ω))− xm(ω)‖

and

r =
[α(ω) + β(ω)]2

N
.

Then r < 1. From (i), (ii) and (8), it follows that

Dm(ω) � sup
i�1
lim sup

n→∞
‖T n(ω, xm−1(ω))− T i(ω, xm(ω)))‖

� α(ω) lim sup
n→∞

‖T n−i(ω, xm−1(ω))− xm(ω)‖

+ β(ω) lim sup
n→∞

‖T n(ω, xm−1(ω))− xm(ω)‖

� α(ω) + β(ω)
N

A({T n(ω, xm−1(ω))}).

However, by (8) we have for all i > j

‖T i(ω, xm−1(ω))− T j(ω, xm−1(ω))‖ � α(ω)‖xm−1(ω)− T i−j(ω, xm−1(ω))‖
+ β(ω)‖xm−1(ω)− T i(ω, xm−1(ω))‖

� (α(ω) + β(ω))Dm−1(ω).

Therefore we conclude that

Dm(ω) � [α(ω) + β(ω)]2

N
Dm−1(ω)

= rDm−1(ω) � . . . � rmD0(ω),

392



and
‖xm(ω)− xm+1(ω)‖ � sup

n�1
‖xm(ω)− T n(ω, xm(ω))‖

+ lim sup
n→∞

‖T n(ω, xm(ω))− xm+1(ω)‖

� Dm(ω) +
1
N

A({T n(ω, xm(ω))})

�
(
1 +

α(ω) + β(ω)
N

)
Dm(ω)

�
(
1 +

α(ω) + β(ω)
N

)
rmD0(ω),

which implies that {xm(ω)} is a Cauchy sequence whose limit is denoted by x(ω).
From the proof of Theorem 1, it follows that this x is a random fixed point of T .
This completes the proof. �

If we put b(ω) = c(ω) = 0 in Theorem 4 and Theorem 5, then we also have the
following results.

Corollary 4 [43, Theorem 2]. Let (Ω,Σ) be a measurable space. Let E be
a uniformly convex Banach space, C a nonempty bounded closed convex separable
subset of E, and T : Ω × C → C a random uniformly Lipschitzian mapping such
that α(ω) < r for all ω ∈ Ω, where r > 1 is the unique solution of (14). Then T has
a random fixed point.

Corollary 5 [43, Theorem 3]. Let (Ω,Σ) be a measurable space. Let E be a
Banach space with uniformly normal structure, C a nonempty bounded closed convex
separable subset of E, and T : Ω×C → C a random uniformly Lipschitzian mapping
such that α(ω) < N

1
2 for all ω ∈ Ω, where N is the normal structure coefficient of E.

Then T has a random fixed point.

4. Additional results

Using the results of Prus and Smarzewski [27], Smarzewski [33] and Xu [41], we
can obtain from Theorem 1 fixed point theorems, for example, for Hardy and Sobolev
spaces.

Let Hp, 1 < p < ∞, denote the Hardy space [11] of all functions x analytic in the
unit disc |x| < 1 of the complex plane and such that

‖x‖ = lim
r→1−

(
1
2�

∫ 2�

0
|x(reiθ)|p dθ

) 1
p

< ∞.
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Now, let Ω be an open subset of Rn. Denote by Hk,p(Ω), k � 0, 1 < p < ∞
the Sobolev space [1, p. 149] of distributions x such that Dαx ∈ Lp(Ω) for all
|α| = α1 + . . .+ αn � k equipped with the norm

‖x‖ =
( ∑

|α|�k

∫

Ω
|Dαx(ω)|p dω

) 1
p

.

Let (Ωα,Σα, µα), α ∈ Λ, be a sequence of positive measure spaces, where the
index set Λ is finite or countable. Given a sequence of linear subspaces Xα in
Lp(Ωα,Σα, µα), we denote by Lq,p, 1 < p < ∞ and q = max{2, p} [21], the lin-
ear space of all sequences x = {xα ∈ Xα : α ∈ Λ} equipped with the norm

‖x‖ =
(∑

α∈Λ
(‖xα‖p,α)q

) 1
q

,

where ‖ · ‖p,α denotes the norm in Lp(Ωα,Σα, µα).
Finally, let Lp = Lp(S1,Σ1, µ1) and Lq = Lq(S2,Σ2, µ2), where 1 < p < ∞,

q = max{2, p} and (Si,Σi, µi) are positive measure spaces. Denote by Lq(Lp) the
Banach spaces [10, III. 2.10] of all measurable Lp-valued functions x on S2 such that

‖x‖ =
(∫

S2

(‖x(s)‖p)qµ2(ds)

) 1
q

.

These spaces are q-uniformly convex with q = max{2, p} [27, 33] and the norm in
these spaces satisfies

‖λx+ (1− λ)y‖q � λ‖x‖q + (1− λ)‖y‖q − d ·Wq(λ) · ‖x− y‖q

with a constant

d = dp =





p− 1
8

if 1 < p � 2,
1

p · 2p if 2 < p < ∞.

Hence from Theorem 1 we have the following result.

Theorem 6. Let (Ω,Σ) be a measurable space. Let C be a nonempty closed
convex separable subset of the space E, where E = Hp, or E = Hk,p(Ω) or E = Lq,p

or E = Lq(Lp), and 1 < p < ∞, q = max{2, p}, k � 0. Let T : Ω × C → C be a
generalized random uniformly Lipschitzian mapping. If for each ω ∈ Ω

[
(α(ω) + β(ω))q{(α(ω) + β(ω))q − 1}

d ·N2
] 1

q

< 1,

where α(ω), β(ω) are as in Theorem 1, then T has a random fixed point.
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