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Abstract. In this paper, we present a representation theorem for probabilistic metric
spaces in general.
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K. Menger, B. Schweizer, A. Sklar [1], H. Sherwood [3] and R. Stevens [5] inves-

tigated the relationship between probabilistic metrics and numerical metrics. Using
a collection of ordinary metrics, R. Stevens presented a representation theorem of a

class for probabilistic metric spaces:

Theorem A (cf. [5], p. 267). If (S, F ) is a Menger space under the t-norm

T = Min and if each distance distribution function Fpq(x) (p, q ∈ S, p �= q) is
continuous, then (S, F ) is a metrically generated PM space.

Since Min is the strongest possible t-norm, one conjectures that Theorem A admits
a considerable improvement (cf. [5], p. 267). In this paper, we thoroughly improve
Theorem A and give a representation theorem for probabilistic metric spaces in

general (sup
a<1

T (a, a) = 1).

Definition 1. Let S be a nonempty set and Ω an index set. Let {dt : t ∈ Ω} be
a collection of mappings from S × S into [0,+∞). Then {dt : t ∈ Ω} is a collection
of semi-metrics on S if it satisfies the following conditions:
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(SM-1) For any t in Ω and all p, q in S, dt(p, q) = 0 if and only if p = q;

(SM-2) For all t in Ω and all p, q in S, dt(p, q) = dt(q, p);
(SM-3) For every t in Ω, there exists a τ in Ω such that dt(p, r) � dτ (p, q)+dτ (q, r)

for all p, q and r in S.

Definition 2. A PM space (S, F ) is semi-metrically generated if and only if

there exist a probability space (Ω, B, P ) and a collection of semi-metrics {dt : t ∈ Ω}
on S such that

(SMG-1) for every real number x and every pair p, q of points in S, the set
{t ∈ Ω: dt(p, q) < x} is a B-measurable set;

(SMG-2) for every real number x and every pair p, q of points belonging to S we
have F (p, q) = Fpq , where Fpq is the distribution function defined by

(1) Fpq(x) = P{t ∈ Ω: dt(p, q) < x}.

The correctness of Definition 2 follows immediately from the following Theorem 1.

Theorem 1. Let (Ω, B, P ) be a probability space and {dt : t ∈ Ω} a collection
of semi-metrics on S. If {dt : t ∈ Ω} satisfies the condition (SMG-1) in Definition 2
and F is defined by (1), then (S, F ) is a PM space.

�����. Theorem 1 can be proved by using the properties of probability mea-

sures. �

Theorem 2. If (S, F, T ) is a Menger space with sup
a<1

T (a, a) = 1, then each dis-

tance distribution function Fpq(x) (p, q ∈ S, p �= q) is right-continuous at zero if and

only if (S, F ) is a semi-metrically generated PM space.

�����. Necessity: Suppose that B denotes the family of all Borel sets in the
open interval (0, 1). Let L be the Lebesgue measure on (0, 1). Then ((0, 1), B, L) is

a probability space. For any t in (0, 1) and any pair p, q of points in S, we define

(2) dt(p, q) = L{x � 0: Fpq(x) < t}.

Then {dt : t ∈ (0, 1)} is a collection of mappings from S × S into [0,+∞).
For any pair p, q ∈ S of points with p �= q, by the hypothesis, the distance

distribution function Fpq(x) is right-continuous at zero. Consequently, it is not hard

to show that
dt(p, q) = L{x � 0: Fpq(x) < t} > 0

for all t in (0, 1). Therefore it is easily seen that {dt : t ∈ (0, 1)} satisfies the condition
(SM-1) in Definition 1.
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It is clear that {dt : t ∈ (0, 1)} satisfies the condition (SM-2) in Definition 1. We
now prove that {dt : t ∈ (0, 1)} satisfies the condition (SM-3) in Definition 1. In fact,
for every t in (0, 1), by sup

a<1
T (a, a) = 1, it follows that there exists a τ in (0, 1) such

that T (τ, τ) > t. Hence for any positive integer n and all p, q, r in S, by (2), we
have Fpq(dτ (p, q) + 1/n) � τ and Fqr(dτ (q, r) + 1/n) � τ . Therefore

Fpr(dτ (p, q) + dτ (q, r) + 2/n)

� T (Fpq(dτ (p, q) + 1/n), Fqr(dτ (q, r) + 1/n))

� T (τ, τ) > t.

Consequently, it follows from (2) that dt(p, r) � dτ (p, q) + dτ (q, r) + 2/n. Letting
n →∞, we obtain dt(p, r) � dτ (p, q) + dτ (q, r).

From (2), it is easy to see that for every pair p, q of points in S, dt(p, q) is a

nondecreasing function of t on (0, 1). Therefore it can be readily seen that for any pair
p, q of points in S and any real number x, the set {t ∈ (0, 1): dt(p, q) < x} is Borel-
measurable, that is, {dt : t ∈ (0, 1)} satisfies the condition (SMG-1) in Definition 2.
Now we show that the condition (SMG-2) in Definition 2 is satisfied. Indeed, for each

pair p, q of points in S, it follows from the definition of the PM space that Fpq(x) is
a nondecreasing, left-continuous function of x. Therefore, by (2) and Proposition 2

in [4], we have

Fpq(x) = L{t ∈ (0, 1): dt(p, q) < x}

for all real numbers x. From the above argument it follows that (S, F ) is a semi-
metrically generated PM space.

Sufficiency: The proof proceeds in the same way as that of Theorem 2 from [5],

and is therefore omitted. �

Remark. Obviously the condition sup
a<1

T (a, a) = 1 is much weaker than T =

Min. Moreover, B. Morrel and J. Nagata [2] showed that no condition weaker than

sup
a<1

T (a, a) = 1 can guarantee that the ε, λ neighbourhoods induce a bona fide

topology.
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