Czechoslovak Mathematical Journal

John Gimbel; Ping Zhang

Degree-continuous graphs

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 1, 163-171
Persistent URL: http://dml.cz/dmlcz/127635

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DEGREE-CONTINUOUS GRAPHS

John Gimbel, Faibanks, and Ping Zhang, Kalamazoo

(Received December 31, 1997)

Abstract

A graph G is degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1. A finite nonempty set S of integers is convex if $k \in S$ for every integer k with $\min (S) \leqslant k \leqslant \max (S)$. It is shown that for all integers $r>0$ and $s \geqslant 0$ and a convex set S with $\min (S)=r$ and $\max (S)=r+s$, there exists a connected degreecontinuous graph G with the degree set S and diameter $2 s+2$. The minimum order of a degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown that for every graph G and convex set S of positive integers containing the integer 2, there exists a connected degree-continuous graph H with the degree set S and containing G as an induced subgraph if and only if $\max (S) \geqslant \Delta(G)$ and G contains no r-regular component where $r=\max (S)$.

Keywords: distance, degree-continuous
MSC 2000: 05C12

1. Introduction

In the newly introduced area of analytic graph theory (see [1]), an integer-valued function f defined on a metric space \mathcal{M} associated with a graph G, where there is a symmetric adjacency relation defined on \mathcal{M}, is said to be continuous on \mathcal{M} if $|f(x)-f(y)| \leqslant 1$ for every two adjacent elements x and y of \mathcal{M}. Certainly, one of the best known and most studied integer-valued parameters associated with a graph is the degree of a vertex. Inspired by the terminology just described, we begin a study of this topic. Consequently, we define a graph G to be degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1 . Observe that a graph G is degree-continuous if and only if every component of G is degree-continuous.

A finite nonempty set S of integers is convex if $k \in S$ for every integer k with $\min (S) \leqslant k \leqslant \max (S)$. The degree set $\mathcal{D}(G)$ of a graph G is the set of the degrees of the vertices of G. Necessarily, the degree set of every connected degree-continuous
graph is convex. In this paper, we assume that a convex set S is of the form

$$
\begin{equation*}
S=\{r, r+1, r+2, \ldots, r+s\} \tag{1}
\end{equation*}
$$

where r and s are nonnegative integers with $s \geqslant 0$.
In fact, every convex set S as given by (1) is the degree set of some connected degree-continuous graph. For example, let $T_{r, s}$ be a rooted tree with root v such that if the distance $d(u, v)$ between u and v in $T_{r, s}$ is i, then $\operatorname{deg}_{T_{r, s}} u=r+i$, where $0 \leqslant i \leqslant s-1$. In particular, $\operatorname{deg}_{T_{r, s}} v=r$. Furthermore, the distance between v and every end-vertex of $T_{r, s}$ is s. It follows that

$$
\mathcal{D}\left(T_{r, s}\right)=\{r, r+1, r+2, \ldots, r+s-1\} \cup\{1\} .
$$

If $r+s \leqslant 3$, then $T_{r, s}$ is degree-continuous since the degree of each of its vertices is 1 or 2. Suppose that $r+s>3$. Since every vertex u that is adjacent to an end-vertex w has degree $r+s-1$, it follows that $\operatorname{deg}_{T_{r, s}} u-\operatorname{deg}_{T_{r, s}} w=r+s-2>1$ and so $T_{r, s}$ is not degree-continuous. However, $\left|\operatorname{deg}_{T_{r, s}} u_{1}-\operatorname{deg}_{T_{r, s}} u_{2}\right|=1$ for every two adjacent vertices u_{1} and u_{2} that are not end-vertices. For each end-vertex of $T_{r, s}$ we construct a complete graph K_{r+s-1} of order $r+s-1$ and add an edge between this end-vertex and each vertex in the corresponding K_{r+s-1}. Denote the resulting graph by $G_{r, s}$. It is not difficult to see that:

$$
\begin{array}{ll}
\operatorname{deg}_{T_{r, s}} u=\operatorname{deg}_{G_{r, s}} u & \text { for every vertex } u \text { of } T_{r, s} \text { that is not an end-vertex, } \\
\operatorname{deg}_{G_{r, s}} w=r+s & \text { for every end-vertex } w \text { of } T_{r, s} \text {, and } \\
\operatorname{deg}_{G_{r, s}} u=r+s-1 & \text { for every vertex } u \text { of } G_{r, s} \text { that does not belong to } T_{r, s} .
\end{array}
$$

It follows that

$$
\mathcal{D}\left(G_{r, s}\right)=\left(\mathcal{D}\left(T_{r, s}\right)-\{1\}\right) \cup\{r+s\}=S
$$

Note that if $d(u, v)$ is $r+s-1$ or $r+s+1$, then $\operatorname{deg}_{G_{r, s}} u=r+s-1$. Moreover, $\left|\operatorname{deg}_{G_{r, s}} u_{1}-\operatorname{deg}_{G_{r, s}} u_{2}\right|=1$ for every two adjacent vertices u_{1} and u_{2} of $G_{r, s}$. Hence the graph $G_{r, s}$ is degree-continuous. From the structure of $G_{r, s}$ it follows that $\operatorname{diam} G_{r, s}=2 s+2$ and $G_{r, s}$ contains a path P of length s such that the degrees of its vertices attain each element of the set S exactly once. In fact, every $v-w$ path, where w is an end-vertex of $T_{r, s}$, has this property. Figure 1 illustrates the structure of $G_{2,4}$ and so $S=\{2,3,4,5,6\}$. Clearly, $\operatorname{diam} G_{2,4}=10$ and the path $P: v_{2}, v_{3} \ldots, v_{6}$ of G has the property that $\operatorname{deg} v_{i}=i$ for $2 \leqslant i \leqslant 6$.

The discussion above gives the following theorem.
Theorem 1.1. For all integers $r \geqslant 1$ and $s \geqslant 0$ and a convex set S of integers with $\min (S)=r$ and $\max (S)=r+s$, there exists a connected degree-continuous

Figure 1. The degree-continuous graph $G_{2,4}$
graph G with the degree set S and $\operatorname{diam}(G)=2 s+2$. Moreover, G contains a path

$$
P: v_{r}, v_{r+1}, \ldots, v_{r+s}
$$

of length s with $\operatorname{deg} v_{i}=i$ for $r \leqslant i \leqslant r+s$.

2. The minimum order of a degree-continuous graph

In this section we investigate the minimum order of a degree-continuous graph with some prescribed properties. First, we study the minimum order of a degreecontinuous tree with a given maximum degree.

A fact from number theory will be useful to us here. Let a_{n} denote the number of nonempty words that can be formed from n given characters, where no character is repeated in the word. The number a_{n} (see [4], p. M3503) is given by

$$
a_{n}=n+n(n-1)+n(n-1)(n-2)+\ldots+n!
$$

Alternatively, the sequence $\left\{a_{n}\right\}$ can be defined recursively by the initial value

$$
a_{1}=1
$$

and the recursive relation

$$
a_{n}=n\left(1+a_{n-1}\right) \quad \text { for } n \geqslant 2 .
$$

We are now prepared to present a result on the order of a degree-continuous tree that is not a path.

Theorem 2.1. The order of every degree-continuous tree with maximum degree $\Delta \geqslant 3$ is at least $1+\Delta+\Delta a_{\Delta-2}$.

Proof. Let v be a vertex of a degree-continuous tree T with $\operatorname{deg} v=\Delta$. We partition $V(T)$ as $\left\{V_{1}, V_{2}, \ldots, V_{\Delta}\right\}$, where V_{k} consists of the vertices of degree k in T. We now root T at v and orient each edge of T away from v. We note that each vertex in V_{k} has at least $k-1$ descendants in V_{k-1}. Hence,

$$
\left|V_{k-1}\right| \geqslant(k-1)\left|V_{k}\right| .
$$

Furthermore, $V_{\Delta-1}$ has cardinality at least Δ. Thus,

$$
\begin{aligned}
\left|V_{\Delta}\right|+\left|V_{\Delta-1}\right|+\ldots+\left|V_{2}\right|+\left|V_{1}\right| \geqslant & 1+\Delta+\Delta(\Delta-2) \\
& +\Delta(\Delta-2)(\Delta-3)+\ldots+\Delta[(\Delta-2)!] \\
= & 1+\Delta+\Delta a_{\Delta-2}
\end{aligned}
$$

and the proof is complete.
We see that this result is sharp by considering a tree that is rooted at a vertex of degree Δ and in which each vertex of degree $k \geqslant 2$ has $k-1$ children of degree $k-1$.

Now we consider the minimum orders of more general degree-continuous graphs. We begin by stating some additional definitions. Let $G_{1}, G_{2}, \ldots, G_{k}$ be k graphs with disjoint vertex sets. Then the k-path composition $G=P_{k}\left[G_{1}, G_{2}, \ldots, G_{k}\right]$ has

$$
V(G)=\bigcup_{i=1}^{k} V\left(G_{i}\right)
$$

and

$$
E(G)=\left(\bigcup_{i=1}^{k} E\left(G_{i}\right)\right) \cup\left(\bigcup_{i=1}^{k-1}\left\{v_{i} v_{i+1}: v_{i} \in V\left(G_{i}\right) \text { and } v_{i+1} \in V\left(G_{i+1}\right)\right\}\right) .
$$

Observe that $P_{k}\left[K_{1}, K_{1}, \ldots, K_{1}\right]$ is simply a path of order k. Moreover, for $v_{1} \in$ $V\left(G_{1}\right)$,

$$
\begin{equation*}
\operatorname{deg}_{G} v_{1}=\operatorname{deg}_{G_{1}} v_{1}+\left|V\left(G_{2}\right)\right| \tag{2}
\end{equation*}
$$

For $v_{i} \in V\left(G_{i}\right)(2 \leqslant i \leqslant k-1)$,

$$
\begin{equation*}
\operatorname{deg}_{G} v_{i}=\left|V\left(G_{i-1}\right)\right|+\operatorname{deg}_{G_{i}} v_{i}+\left|V\left(G_{i+1}\right)\right| . \tag{3}
\end{equation*}
$$

For $v_{k} \in V\left(G_{k}\right)$,

$$
\begin{equation*}
\operatorname{deg}_{G} v_{k}=\left|V\left(G_{k-1}\right)\right|+\operatorname{deg}_{G_{k}} v_{k} \tag{4}
\end{equation*}
$$

For a set S as given by (1), define $m(S)$ to be the minimum order of a degreecontinuous graph G having S as its degree set. The following theorems (see [2], pp. 227, 272) will be useful.

Theorem A. For integers r and n with $0 \leqslant r<n$, there exists an r-regular graph of order n if and only if r and n are not both odd.

Theorem B. Every r-regular bipartite graph with $r \geqslant 1$ is 1-factorable.
The following theorem gives the minimum orders for degree-continuous graphs with given degree sets.

Theorem 2.2. Let S be a convex set as described in (1) and let $m=\left\lceil\frac{s}{3}\right\rceil$.

1. If $s \equiv 0(\bmod 3)$, then

$$
(m+1)\left(r+1+\frac{3 m}{2}\right) \leqslant m(S) \leqslant 1+(m+1)\left(r+1+\frac{3 m}{2}\right)
$$

Moreover, if r and m are not both even, then

$$
m(S)=(m+1)\left(r+1+\frac{3 m}{2}\right) .
$$

2. If $s \equiv 1(\bmod 3)$, then

$$
m(S)=(m+1)\left(r+2+\frac{3 m}{2}\right) .
$$

3. If $s \equiv 2(\bmod 3)$, then

$$
1+(m+1)\left(r+\frac{3(m+2)}{2}\right) \leqslant m(S) \leqslant 2+(m+1)\left(r+\frac{3(m+2)}{2}\right)
$$

Moreover, if r is even or m is odd, then

$$
m(S)=1+(m+1)\left(r+\frac{3(m+2)}{2}\right) .
$$

Proof. We will only prove the theorem in the case when $s \equiv 0(\bmod 3)$ since the proofs of the remaining cases are similar. In this case,

$$
S=\{r, r+1, r+2, \ldots, r+3 m\}
$$

where $m \geqslant 0$. Let G be a connected degree-continuous graph with the degree set S. First, we show that

$$
|V(G)| \geqslant(m+1)\left(r+1+\frac{3 m}{2}\right)
$$

For each $j(r \leqslant j \leqslant r+3 m)$, define

$$
\begin{equation*}
V_{j}=\{v \in V(G): \operatorname{deg} v=j\} \tag{5}
\end{equation*}
$$

Then $V(G)=\bigcup_{j=r}^{r+s} V_{j}$. Let $N\left(v_{j}\right)$ denote the neighborhood of a vertex $v_{j} \in V_{j}$. Then $\left|N\left(v_{j}\right)\right|=\operatorname{deg} v_{j}=j$, where $r \leqslant j \leqslant r+3 m$. Assume first that $m=0$. Since every graph with the degree set $\{r\}$ has at least $r+1$ vertices and the complete graph K_{r+1} is a degree-continuous graph with the degree set $\{r\}$, it follows that $m(S)=r+1$. Next assume that $m>0$. Let $v_{r} \in V_{r}$. Since G is degree-continuous, it follows that

$$
\left\{v_{r}\right\} \cup N\left(v_{r}\right) \subseteq V_{r} \cup V_{r+1}
$$

and so

$$
\begin{equation*}
\left|V_{r} \cup V_{r+1}\right| \geqslant\left|N\left(v_{r}\right)\right|+1=r+1 . \tag{6}
\end{equation*}
$$

For each $i(1 \leqslant i \leqslant m-1)$, since

$$
\left\{v_{r+3 i}\right\} \cup N\left(v_{r+3 i}\right) \subseteq V_{r+3 i-1} \cup V_{r+3 i} \cup V_{r+3 i+1}
$$

it follows that

$$
\begin{equation*}
\left|V_{r+3 i-1} \cup V_{r+3 i} \cup V_{r+3 i+1}\right| \geqslant\left|N\left(v_{r+3 i}\right)\right|+1=r+3 i+1 . \tag{7}
\end{equation*}
$$

Similarly, since $\left\{v_{r+3 m}\right\} \cup N\left(v_{r+3 m}\right) \subseteq V_{r+3 m-1} \cup V_{r+3 m}$, we have that

$$
\begin{equation*}
\left|V_{r+3 m-1} \cup V_{r+3 m}\right| \geqslant\left|N\left(v_{r+3 m}\right)\right|+1=r+3 m+1 \tag{8}
\end{equation*}
$$

Combining (6), (8), and (7), we obtain

$$
|V(G)| \geqslant \sum_{i=0}^{m}(r+3 i+1)=(m+1)\left(r+1+\frac{3 m}{2}\right) .
$$

In order to construct the desired degree-continuous graph, we consider two cases.

Case 1. At least one of r and m is odd. In this case, we can construct a degreecontinuous graph G of order $(m+1)\left(r+1+\frac{3 m}{2}\right)$ with the degree set S. Let H_{1} be the $(3 m-1)$-path composition

$$
H_{1}=P_{3 m-1}\left[K_{1}, K_{r}, K_{1}, K_{2}, K_{r+1}, K_{2}, K_{3}, K_{r+2}, \ldots, K_{m-1}, K_{m}, K_{r+m-1}\right] .
$$

By Theorem A, there exists an $(r-3)$-regular graph F of order $r+m-1$. Let

$$
H_{2}=P_{2}\left[P_{2}\left[F, K_{2 m+1}\right], K_{1}\right] .
$$

By Theorem B, we can construct a graph G from H_{1} and H_{2} by connecting the graph K_{r+m-1} in H_{1} with the graph F in H_{2} using an m-regular bipartite graph B such that the partite sets of B are $V_{1}=V\left(K_{r+m-1}\right)$ and $V_{2}=V(F)$, where $\left|V_{1}\right|=\left|V_{2}\right|=r+m-1$. The graph G is shown in Figure 2, where then $|V(G)|=$ $(m+1)\left(r+1+\frac{3 m}{2}\right)$ and $\mathcal{D}(G)=S$.

Figure 2. A degree-continuous graph G of order $(m+1)\left(r+1+\frac{3 m}{2}\right)$

Case 2. r and m are both even. In this case, we construct a degree-continuous graph G^{\prime} of order $1+(m+1)\left(r+1+\frac{3 m}{2}\right)$ and with the degree set S. Let $H_{1}^{\prime}=H_{1}$ be as described in Case 1, F^{\prime} an $(r-2)$-regular graph of order $r+m-1$, and $L=K_{2 m+1}-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where the edges $e_{i}=v_{i} u_{i}(1 \leqslant i \leqslant m)$ are independent in $K_{2 m+1}$. Now let

$$
H_{2}^{\prime}=P_{2}\left[P_{2}\left[F^{\prime}, L\right], K_{1}\right] .
$$

The desired graph G^{\prime} is obtained from H_{1}^{\prime} and H_{2}^{\prime} by first connecting the graph K_{r+m-1} in H_{1}^{\prime} with the graph F^{\prime} in H_{2}^{\prime} using an $(m-1)$-regular bipartite graph B^{\prime} with its partite sets $V_{1}=V\left(K_{r+m-1}\right)$ and $V_{2}=V\left(F^{\prime}\right)$ and then adding a new vertex x and edges $\left\{x v: v \in V\left(K_{r+m-1}\right) \cup\left\{v_{1}, u_{1}, v_{2}, u_{2}, \ldots, v_{m}, u_{m}\right\}\right\}$ where K_{r+m-1} is the subgraph of H_{1}^{\prime}.

The following corollary is a direct result of the manner in which degree-continuous graphs were constructed in Theorem 2.2.

Corollary 2.3. For each set $S=\{r, r+1, r+2, \ldots, r+s\}$ of positive integers with $s \geqslant 0$, there exists a degree-continuous graph G of minimum order such that $\operatorname{diam} G=2 s+2$.

3. Degree-continuous graphs with prescribed induced subgraphs

It is a well known result of König [3] that every graph G can be embedded as an induced subgraph in an r-regular graph H for every integer $r \geqslant \Delta(G)$. Of course, H is a degree-continuous graph with the degree set $\mathcal{D}(H)=\{r\}$. We now provide an extension of König's theorem, the proof of which is similar to König's.

Lemma 3.1. If G is a connected, non-regular graph and S is a convex set of positive integers where $\max \{2, \Delta(G)\} \leqslant \max (S)$, then there exists a connected degreecontinuous graph H with $\mathcal{D}(H)=S$ such that H contains G as an induced subgraph.

Proof. Let $M=\max (S)$ and $m=\min (S)$. Let G^{\prime} be a second copy of the graph G. If a vertex v has degree less than M, then join v in G to the vertex corresponding to v in G^{\prime}. This procedure is repeated until an M-regular graph H_{M} is produced. The graph H_{M} contains at least two disjoint copies of G as induced subgraphs. If $S=\{M\}$, then $H=H_{M}$. Suppose then that $S \neq\{M\}$. For $m \leqslant r<M$, let H_{r} denote an r-regular graph. For each r with $m \leqslant r \leqslant M-1$, delete an edge $u_{r} v_{r}$ from H_{r}. Furthermore, for each r with $m+1 \leqslant r \leqslant M$, delete an edge $w_{r} x_{r}$ (distinct from $u_{r} v_{r}$) from H_{r}. For $k=m, m+1, \ldots, M-1$, the edges $u_{k} w_{k+1}$ and $v_{k} x_{k+1}$ are added, denoting the resulting graph by H. The graph H has the desired properties.

We now present the following result.

Theorem 3.2. For a non-regular graph G and a convex set S of positive integers containing the number 2, there exists a connected degree-continuous graph H with $\mathcal{D}(H)=S$ which contains G as an induced subgraph if and only if
(a) G contains no r-regular component where $r=\max (S)$, and
(b) $\max (S) \geqslant \Delta(G)$.

Proof. First, we establish the necessity of condition (a). Suppose that G is a non-regular subgraph of a connected degree-continuous graph H. Clearly, if G is connected, then G contains no regular component. Suppose that G is disconnected and contains an r-regular component G_{1} with $r=\max (S)$. Since H is connected, there exists a vertex of H not in G_{1} that is adjacent to a vertex in G_{1}, implying that $\max (S)>r$, a contradiction. Since $\Delta(H) \geqslant \Delta(G)$, it follows that (b) is necessary as well.

For the converse, if G is connected, then the result follows from Lemma 3.1. Therefore, we assume that G is disconnected. Let $G_{1}, G_{2}, \ldots, G_{k}$ be components of G. We consider two cases.

Case 1: $\max (S)=2$. Then every component of G is a path. So suppose that G_{i} is a path with end-vertices u_{i} and v_{i}, where $1 \leqslant i \leqslant k$. If $S=\{1,2\}$, then we add $k-1$ new vertices $w_{i}(1 \leqslant i \leqslant k-1)$ and the new edges $v_{i} w_{i}$ and $w_{i} u_{i+1}$ to G. The resulting graph H is a path. If $S=\{2\}$, we also add a vertex w_{k} and two edges $u_{1} w_{k}$ and $w_{k} v_{k}$ to G. The resulting graph H is a cycle. So H is degree-continuous with $\mathcal{D}(H)=S$. Moreover, H contains G as an induced subgraph.

Case 2: $\max (S) \geqslant 3$. By (a), every component of G contains at least one vertex of degree less than $\max (S)$. Let $u_{i} \in V\left(G_{i}\right)$ with $\operatorname{deg}_{G} u_{i}<\max (S)$. We add a new vertex w_{k-1} and new edges $u_{k-1} w_{k-1}$ and $w_{k-1} u_{k}$ to G to produce a graph G^{*}. Then G^{*} contains $k-1$ components, namely $G_{1}, G_{2}, \ldots, G_{k-2}, G_{k-1}^{\prime}$, where G_{k-1}^{\prime} consists of G_{k-1}, G_{k}, and the edges $u_{k-1} w_{k-1}, w_{k-1} u_{k}$. Since $w_{k-1} \in V\left(G_{k-1}^{\prime}\right)$ and $\operatorname{deg}_{G^{*}} w_{k-1}=2<\max (S)$, we can repeat this procedure with G^{*}, producing a graph with $k-2$ components. In fact, if we repeat this procedure $k-1$ times, we obtain a connected graph G^{\prime} containing G as an induced subgraph. Since G^{\prime} satisfies the conditions described in Lemma 3.1 we can apply Lemma 3.1 to G^{\prime} and produce a graph H with the desired properties.

References

[1] G. Chartrand, L. Eroh, M. Schultz and P. Zhang: An introduction to analytic graph theory. Utilitas Math. To appear.
[2] G. Chartrand and L. Lesniak: Graphs \& Digraphs, third edition. Chapman \& Hall, New York, 1996.
[3] D. König: Über Graphen und ihre Anwendung auf Determinantheorie und Mengenlehre. Math. Ann. 77 (1916), 453-465.
[4] N. J. A. Sloane and S. Plouffe: The Encyclopedia of Integer Sequences. Academic Press, San Diego, 1995.

Authors' addresses: J. Gimbel, University of Alaska, Fairbanks, AK 99775; P. Zhang, Western Michigan University Kalamazoo, MI 49008-5152. U.S.A.

