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Abstract. We study sequential convergences defined on a Boolean algebra by systems of
maximal filters. We describe the order properties of the system of all such convergences.
We introduce the category of 2-generated convergence Boolean algebras and generalize the
construction of Novák sequential envelope to such algebras.
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1. Introduction

The system ConvB of all sequential convergences on a Boolean algebra B �= {0}
which are compatible with the structure of B was investigated in [10], [11] and [15].
The analogously defined system ConvL where L is a lattice was dealt with in [12]
and [13].
It is well-known that the notions of Boolean algebra and of sequential convergence

are basic tools for constructing the fundaments of probability theory ([8], [16], [17]).
The connection between Boolean algebras and probability was, indeed, appreciated
by Boole himself. Let us quote from [4]: “The design of the following treatise is to
investigate the fundamental laws of those operations of the mind by which reasoning
is performed; to give expression to them in the symbolic language of a calculus, and
upon this foundation to establish the science of Logic and construct its method,
to make that method itself the basis of a general method for the application of the
mathematical doctrine of Probabilities . . . ” (cf. also the quotation of this text in [2]).
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261



When studying the foundations of probability theory a specific subset of ConvB

occurs to be relevant ([5], [7]; see also [18], [20]). Namely, let S be a system of
homomorphisms of B onto the two-element Boolean algebra 2 (the set {0, 1} carrying
the usual Boolean operations), such that for any two distinct elements x, y ∈ B there
exists ϕ ∈ S with ϕ(x) �= ϕ(y). If 〈xn〉 is a sequence in B and x ∈ B, then we put

xn →α(S) x

if for each ϕ ∈ S there exists a positive integer m such that ϕ(xn) = ϕ(x) whenever
n � m. We denote

α(S) = {(〈xn〉, x) : xn →α(S) x}.

Then α(S) is a compatible convergence on B (see Lemma 3.1) and each ϕ ∈ S is a
sequentially continuous homomorphism of B onto 2 (carrying a natural convergence
in which only almost constant sequences converge). Furthermore, if a sequence 〈xn〉
does not converge to x with respect to α(S), then there exists ϕ ∈ S such that
ϕ(xn) �= ϕ(x) for infinitely many indexes n. Hence α(S) is an initial convergence
with respect to the system of all α(S)-sequentially continuous homomorphisms of B
onto 2. The system of all sequential convergences on B which can be constructed in
this way will be denoted by ConvB(2).
Since there is a one-to-one relationship between the homomorphisms of B onto 2

and maximal filters of B (cf., e.g., [22]), each α(S) can be defined by a system of
maximal filters of B. In fact, α(S) can be viewed as a pointwise convergence on B

(via the Stone representation of B).
A variant of pointwise convergence on an archimedean lattice ordered group G

with a weak unit (applying Yosida representation of G) was dealt with by Ball and
Hager [1].

In [3], Boolean algebras carrying sequential convergence were applied to the ab-
stract integration.
Sample results:

The partially ordered set ConvB(2) is a ∧-semilattice having the least element.
Each interval of ConvB(2) is a complete lattice. If B is infinite, then
(i) card(ConvB \ ConvB(2)) � c,
(ii) the least element of ConvB is not equal to the least element of ConvB(2).
If B is complete and completely distributive, then ConvB(2) is a complete lattice.

In general, ConvB(2) need not contain any maximal element. We introduce the
category of 2-generated convergence Boolean algebras and prove that the absolutely
sequentially closed objects form its epireflective subcategory.
In their monograph, Riečan and Neubrunn [21] developed a probability theory on

MV -algebras (Chapter 9). Sequential convergences on MV -algebras were studied
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in [14]. The methods of the present paper could be relevant also for the theory of
MV -algebras.

2. Preliminaries

We recall the definitions of ConvB and Conv0B as given in [10].
Let B� be the system of all sequences in B and let α be a subset of B� × B. If

(〈xn〉, x) ∈ α, then we write xn →α x. If 〈xn〉 ∈ B�, a ∈ B and xn = a for each
n ∈ �, then we put 〈xn〉 = const a.
2.1. Definition. A subset α of B� × B is said to be a convergence in B if the

following conditions are satisfied:
(i) If xn →α x and 〈yn〉 is a subsequence of 〈xn〉, then yn →α x.
(ii) If 〈xn〉 ∈ B�, x ∈ B and if for each subsequence 〈yn〉 of 〈xn〉 there is a subse-
quence 〈zn〉 of 〈yn〉 such that zn →α x, then xn →α x.

(iii) If a ∈ B and 〈xn〉 = const a, then xn →α a.
(iv) If xn →α x and xn →α y, then x = y.
(v) If xn →α x and yn →α y, then xn∨yn →α x∨y, xn∧yn →α x∧y and x′n →α x′.
(vi) If xn � yn � zn is valid for each n ∈ � and xn →α x, zn →α x, then yn →α x.

The system of all convergences on B is denoted by ConvB.

2.2. Definition. Let α ∈ ConvB. We put α0 = {〈xn〉 ∈ B� : xn →α 0},
Conv0B = {α0 : α ∈ ConvB}.
Both the systems ConvB and Conv0B are partially ordered by the set-theoretical

inclusion.
For each α ∈ ConvB we put f(α) = α0.

2.3. Lemma ([15]). The mapping f is an isomorphism of the partially ordered
set ConvB onto the partially ordered set Conv0B.

We denote by d the set of all (〈xn〉, x) ∈ B� × B having the property that there
exists m ∈ � such that xn = x for each m ∈ � with n � m. Then d is the least
element of ConvB and d0 is the least element of Conv0B. We say that d is a discrete
convergence.

2.4. Proposition (cf. [10]). Conv0B is a ∧-semilattice and each interval of
Conv0B is a complete lattice.

2.5. Proposition (cf. [15]). Let [µ1, µ2] be an interval of Conv0B and β ∈
[µ1, µ2], ∅ �= {αi}i∈I ⊆ [µ1, µ2]. Then

(∨

i∈I

αi

)
∧ β =

∨

i∈I

(αi ∧ β).
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3. The system ConvB(2)

Assume that S, α(S) and ConvB(2) are as in Section 1.

3.1. Lemma. α(S) ∈ ConvB.

�����. Put α = α(S). Consider the conditions (i)–(vi) from 2.1. It is obvious
that the conditions (i) and (iii)–(vi) are satisfied. Suppose that the assumption of (ii)
are valid. By way of contradiction, assume that (〈xn〉, x) does not belong to α. Thus
there exists ϕ ∈ S such that for each n ∈ � there is m(n) ∈ � with m(n) � n and
ϕ(xm(n)) �= ϕ(x). Put yn = xm(n) for each n ∈ �. If 〈zn〉 is a subsequence of 〈yn〉,
then for each n ∈ � we have ϕ(zn) �= ϕ(x), whence the relation zn →α x fails to
hold. We arrived at a contradiction. �

3.2. Corollary. ConvB(2) ⊆ ConvB.

If {αi}i∈I ⊆ ConvB(2) and if sup{αi}i∈I exists in ConvB(2), then we denote it

by
s∨

i∈I

αi; the meaning of
s∧

i∈I

αi is analogous. (The symbols ∧ and ∨ will be applied
for the partially ordered sets ConvB and ConvB(2).)
Let us denote by S0 the system of all maximal filters of the Boolean algebra B.

Let p ∈ S0. For each x ∈ B we put ϕp(x) = 1 if x ∈ p, and ϕp(x) = 0 otherwise.
Let S01 be the system of all mappings ϕp defined in this way. Then S01 satisfies the
assumptions for S in Section 1 and thus α(S01) ∈ ConvB(2). Hence ConvB(2) �= ∅.
The collection of all systems S which satisfy the assumptions from Section 1 will

be denoted by C(B).
From the definition of α(S) we obtain immediately:

3.3. Lemma. Let S1, S2 ∈ C(B), S1 ⊆ S2. Then α(S1) � α(S2).

3.4. Lemma. Let ∅ �= {Si}i∈I ⊆ C(B). Put S =
⋃
i∈I

Si. Then

(i) S ∈ C(B);

(ii) α(S) =
s∧

i∈I

α(Si) =
∧
i∈I

α(Si).

�����. The assertion (i) is a consequence of the definition of C(B). In view
of 3.3 we have α(S) � α(Si) for each i ∈ I. Hence α(S) ⊆ ⋂

i∈I

α(Si).

Let (〈xn〉, x) ∈
⋂
i∈I

α(Si). Thus xn →α(Si) x for each i ∈ I. According to the

definition of S we obtain xn →α(S) x, i.e., (〈xn〉, x) ∈ α(S). Therefore

α(S) =
⋂

i∈I

α(Si).
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Thus in view of the definition of the operation ∧ in ConvB we obtain

α(S) =
∧

i∈I

α(Si).

Then from 3.2 we conclude

α(S) =
s∧

i∈I

α(Si).

�

The set S01 is the largest element of the system C(B) (partially ordered by the
set-theoretical inclusion). Hence by applying 3.3 we get

3.5. Lemma. α(S01) is the least element of ConvB(2).

3.6. Proposition. Each interval of ConvB(2) is a complete lattice.

�����. Let α, β ∈ ConvB(2), α � β. Suppose that {αi}i∈I is a nonempty
subset of ConvB(2) such that α � αi � β for each i ∈ I. Let {βj}j∈J be the
set of all upper bounds of the set {αi}i∈I with βj � β. In view of 3.4 there exists
β0 ∈ ConvB(2) such that

β0 =
s∧

j∈J

βj .

Then we have α � β0 � β and

β0 =
s∨

i∈I

αi.

The proof is finished by applying 3.4. �

From 3.5 and 3.6 we obtain

3.7. Corollary. ConvB(2) is a ∧-semilattice.
In general, Conv(2) does not have even maximal elements. The well-known

Boolean algebra B0 generated by semi-open intervals (see § 8E in [22]) provides
a counterexample.

3.8. Example. Let B0 be the least field of subsets of the unit interval 0 � x < 1
containing all intervals 0 � x < a, 0 < a � 1, i.e. the class of all finite unions of
left-closed right-open subintervals of this interval. The Stone space of B0 is the set X
obtained from the closed unit interval 0 � x � 1 by splitting every interior point x

into two parts, x− and x+. We consider X as an ordered set with the natural order:

0 < x− < x+ < y− < y+ < 1 whenever 0 < x < y < 1.
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The set X with the topology determined by this order is compact and totally dis-
connected. The Boolean algebra B0 is isomorphic to the field F of all open-closed
subsets of X (associate, with every interval a � x < b, the set composed of a+, b−

and all x−, x+ where a < x < b), therefore X is the Stone space of B0; points of X
can be considered homomorphisms of B0 onto the two-element Boolean algebra 2.
For D ⊂ [0, 1] denote D− = {d− ; d ∈ D}, where 0+ = 0 and 1− = 1.

Straightforward proofs of the next two lemmas are omitted.

3.9. Lemma. Let S ⊂ X . The following are equivalent:
(i) S ∈ C(B0);
(ii) There exists a dense subset D ⊂ [0, 1] such that S ⊂ D− ∪ D+ and for each

d ∈ D we have S ∩ {d−, d+} �= ∅.

3.10. Lemma. Let S ∈ C(B0) and d ∈ [0, 1]. Then (S \ {d+}) ∈ C(B0) and
(S \ {d−}) ∈ C(B0).

3.11. Lemma. Let S1, S2 ∈ C(B0), S1 �= S2. Then α(X1) �= α(S2).

�����. Assume that d+ ∈ S1 \ S2. Then intervals [d, d + 1/n] converge to ∅
under α(S2) but do not converge to under α(S1). Similarly, if d− ∈ S1 \ S2, then
intervals [d − 1/n, d) converge to ∅ under α(S2), but do not converge to ∅ under
α(S1). �

3.12. Proposition. ConvB0(2) does not contain any maximal element.

�����. The assertion follows from Lemma 3.9 and Lemma 3.10. �

3.13. Proposition. card(ConvB0(2)) = 2c.

�����. On the one hand, since α0(S) ⊂ B�

0 , S ∈ C(B0), card(ConvB0(2))
cannot exceed 2c. On the other hand, Q ∩ [0, 1] is a dense subset of [0, 1] and for
each M ⊂ ([0, 1] \Q) the set (Q∩ [0, 1])∪M is dense, too. According to Lemma 3.9
and Lemma 3.11, for each set M1 = (Q ∩ [0, 1]) ∪M we have α(M1) ∈ ConvB0(2)
and α(M1) �= α(M ′

1) whenever M �=M ′. Thus card(ConvB0(2)) = 2c. �

For the notion of complete distributivity cf., e.g., [22].
In the remaining part of this section we assume that B is complete and completely

distributive. Then each nonzero element of B can be uniquely represented as a join
of a subset of A, where A is the set of all atoms of B.
For each a ∈ A and each x ∈ B we put ϕa(x) = 1 if x � a, and ϕa(x) = 0

otherwise. Let SA = {ϕa : a ∈ A}. It is easy to verify that SA satisfies the conditions
from Section 1; hence we have
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3.14. Lemma. The set α(SA) belongs to ConvB(2).

3.15. Lemma. Let a ∈ A and S ∈ C(B). Then ϕa ∈ S.

�����. By way of contradiction, suppose that ϕa does not belong to S. Let
ϕ ∈ S. Put Fϕ = {x ∈ B : ϕ(x) = 1}. Thus Fϕ is a maximal filter in B. If a ∈ Fϕ,
then Fϕ = {y ∈ B : y � a}, whence ϕ = ϕa, which is a contradiction. Thus a /∈ Fϕ

and hence ϕ(a) = 0 for each ϕ ∈ S. Put 〈xn〉 = const a. We obtain xn →α(S) 0,
which is impossible. �

3.16. Lemma. α(SA) is the greatest element of ConvB(2).

�����. In view of 3.8 we have α(SA) ∈ ConvB(2). Let α ∈ ConvB(2). There
exists S ∈ C(B) with α = α(S). According to 3.9, SA ⊆ S. Hence 3.3 yields that
α(SA) � α(S). �

3.17. Proposition. Assume that B is complete and completely distributive.
Then ConvB(2) is a complete lattice.

�����. It suffices to apply 3.10, 3.5 and 3.6. �

4. Disjoint sequences

A sequence 〈xn〉 in B is called disjoint if xn(1) ∧xn(2) = 0 whenever n(1) and n(2)
are distinct positive integers. We denote by D(B) the system of all disjoint sequences
〈xn〉 in B such that xn > 0 for each n ∈ �. It is easy to verify that D(B) �= ∅ if and
only if B is infinite.

The following two lemmas are consequences of [10], Section 5.

4.1. Lemma. Let 〈xn〉 ∈ D(B). Then there exists α ∈ ConvB such that

(i) xn →α 0;

(ii) if β ∈ ConvB and xn →β 0, then β � α.

Under the notation as in 4.1, α is said to be generated by the sequence 〈xn〉.

4.2. Lemma. Let 〈xn〉, 〈yn〉 ∈ D(B). Suppose that α is generated by 〈xn〉 and β

is generated by 〈yn〉. Further assume that xn(1) ∧ yn(2) = 0 whenever n(1), n(2) ∈ �.
Then α ∧ β = d. In particular, the relation xn →β 0 fails to be valid.

4.3. Lemma. Let 〈xn〉 ∈ D(B) and α ∈ ConvB(2). Then xn →α 0.
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�����. By way of contradiction, assume that the relation xn →α 0 does not
hold. Since α ∈ ConvB(2) there exists S ∈ C(B) such that α = α(S). Hence there
is ϕ ∈ S such that for each n ∈ � there is m(n) ∈ � with m(n) � n and

ϕ(xn) �= ϕ(0) = 0.

Choose n1 ∈ � and put m1 = m(n1). Further choose n2 ∈ � with n2 > m1 and
denote m2 = m(n2). Then m2 > m1 and

ϕ(xm1 ) = ϕ(xm2) = 1.

Thus ϕ(xm1 ∧ xm2) = 1. Since 〈xn〉 ∈ D(B) we have xm1 ∧ xm2 = 0, thus ϕ(0) = 1,
which is a contradiction. �

Now, 4.1, 4.3 and 3.5 yield

4.4. Lemma. Let 〈xn〉 ∈ D(B) and let α ∈ S(B) be generated by 〈xn〉. Then
α(S01 ) � α.

It is obvious that if α is as in 4.4, then α = d. Thus from 4.4 we obtain as a
corollary

4.5. Proposition. Let the Boolean algebra B be an infinite Boolean alge-
bra. Then the last element of ConvB does not coincide with the last element of
ConvB(2).

Again, suppose that the Boolean algebra B is infinite. Hence there exists 〈xn〉 ∈
D(B). There are subsets �j (j ∈ �) of � such that
(i) each �j is infinite;
(ii) if j(1) �= j(2), then �j(1) ∩ �j(2) = ∅.
Hence for each j ∈ �, 〈xn〉n∈�j is a subsequence of 〈xn〉. If n(1) ∈ �j(1) , n(2) ∈ �j(2)

and j(1) �= j(2), then xn(1) ∧ xn(2) = 0.
For each j ∈ � let αj be the element of ConvB which is generated by the sequence

〈xn〉n∈�j . The condition (ii) and 4.2 yield that whenever j(1) and j(2) are distinct
elements of �, then

(1) αj(1) ∧ αj(2) = d.

For each nonempty subset M of � we put

αM =
∨

j∈M

αj .
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The existence of αM is implied by 4.4, by the existence of the least element in ConvB

and by the fact that each interval of ConvB is a complete lattice.
Let j(0) ∈ �, j(0) /∈ M . Consider the interval [α, α(S01 )] of ConvB. In view

of 2.3, 2.5 and (1) we get

(2) αj(0) ∧ αM = d.

Hence if M(1) and M(2) are distinct subsets of �, then (2) yields

(3) αM(1) �= αM(2).

Moreover, in view of 4.4, for eachM with ∅ �=M ⊆ � we have α(M) � α(S01 ). Since
the number of distinct sets M with the given properties is equal to c and at most
one αM belongs to ConvB(2), we obtain

4.6. Proposition. Let B be an infinite Boolean algebra. Then

card(ConvB \ ConvB(2)) � c.

5. Convergence Boolean algebras

5.1. Definition. Let B be a Boolean algebra and let α ∈ ConvB. Then (B, α)
is said to be a convergence Boolean algebra. If α ∈ ConvB(2), then (B, α) is said to
be 2-generated.

Denote by B the category whose objects are convergence Boolean algebras and
whose morphisms are sequentially continuous Boolean homomorphisms. Denote by
hom((B1, α1), (B2, α2)) the set of all morphisms from (B1, α1) into (B2, α2). Denote
by B(2) the full subcategory of B consisting of 2-generated convergence Boolean
algebras. Convergence Boolean subalgebras are defined in the obvious way.
Let {(Bt, αt) ; t ∈ T } be a set of convergence Boolean algebras. Recall that the

direct product B =
∏

t∈T Bt and the usual (coordinatewise) product convergence
α =

∏
t∈T αt, together with the projections πt of B into Bt, t ∈ T , are the categorical

products of {Bt ; t ∈ T } and {αt ; t ∈ T }, respectively. It is easy to verify that (B, α)
is the categorical product of {(Bt, αt) ; t ∈ T }: for each (B′, α′) in B and for each
set {ϕt ; t ∈ T } of morphisms from (B′, α′) into (Bt, αt), t ∈ T , there exists a unique
morphism ϕ from (B′, α′) into (B, α) such that ϕt = πt ◦ ϕ for all t ∈ T .
Finally, observe that if ϕ is a morphism from (B1, α1) into (B2, α2) and B2 is the

smallest sequentially closed subset in (B2, α2) containing the image ϕ(B1), then ϕ

269



is an epimorphism in B. This follows from the fact that (in sequential convergence
spaces with unique sequential limits) if two sequentially continuous mappings agree
on a topologically dense subset, then they agree on the whole domain (cf. Lemma 5
in [19]).

5.2. Example. Let X �= ∅ be a set and let B be a reduced field of subsets
of X . Then X ∈ C(B) and α(X) is the usual convergence of subsets of X (restricted
to B). In general, not every morphism from (B, α(X)) onto 2 is generated by a point
x ∈ X . Indeed, if cardX = ω1 and B consists of all finite and all co-finite subsets,
then the set of all infinite elements of B forms a free ultrafilter and the induced
homomorphism of B onto 2 is sequentially continuous.

5.3. Lemma. Let (B, α) be a nondiscrete convergence Boolean algebra and let ϕ

be a Boolean homomorphism of B onto 2. The following are equivalent.
(i) ϕ fails to be a sequentially continuous homomorphism from (B, α) onto 2;
(ii) There exists a sequence 〈yn〉 of elements of B such that yn →α 0 and ϕ(y) = 1
for infinitely many n ∈ �.

�����. (i) implies (ii). Since α is nondiscrete, there exists a one-to-one sequence
〈zn〉 of elements of B and z ∈ B such that zn →α z and ϕ(zn) �→ ϕ(z). Then also
zc

n →α zc, zn ∧ zc →α 0, zc
n ∧ z →α 0. Put yn = zn ∧ zc if ϕ(z) = 0 and yn = zc

n ∧ z

otherwise, n ∈ �. Clearly, then (ii) holds true. Since (ii) always implies (i), the proof
is complete. �

5.4. Proposition. Let B be a Boolean algebra and let S ∈ C(B). Let ϕ be
a homomorphism of B onto 2 and let F = {b ∈ B ; ϕ(b) = 1} be the ultrafilter
induced by ϕ. The following are equivalent.
(i) ϕ ∈ hom((B, α(S)),2);
(ii) For each sequence 〈xn〉 of elements ofF , there exists χ ∈ S such that χ(xn) = 1
for infinitely many n ∈ �.

�����. (i) implies (ii). Let 〈xn〉 be a sequence of elements of F . Assume
(i) and, contrariwise, suppose that for each χ ∈ S we have χ(xn) = 0 for infinitely

many n ∈ �. Put yn =
n∧

k=1
xk. Then, for each χ ∈ S, necessarily χ(yn) = 0 for all

but finitely many n ∈ �. Hence yn →α(S) 0. Since all yn belong to F , we have a
contradiction with the sequential continuity of ϕ.
(ii) implies (i). Assume (ii) and, contrariwise, suppose that ϕ fails to be sequen-

tially continuous. According to 5.3 Lemma, there exists a sequence 〈yn〉 of elements
of B such that yn →α(S) 0 and ϕ(yn) = 1 for infinitely many n ∈ �. Let 〈xn〉
be a subsequence of 〈yn〉 such that ϕ(xn) = 1 for all n ∈ �. Since xn →α(S) 0,
i.e. χ(xm)→ χ(0) for all χ ∈ S, we have a contradiction with (ii). �
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5.5. Remark. It is easy to see that condition (ii) in 5.4. Proposition can be
replaced by the following one:
(iii) For each sequence 〈xn〉 of element of F , there exists χ ∈ S such that χ(xn) = 1

for all n ∈ �.

Indeed, (ii) implies (iii). Assume (ii). Let 〈xn〉 be a sequence of elements of
F . Put yn =

n∧
k=1

xk. Then 〈yn〉 is a nonincreasing sequence of elements of F and

yn � xk whenever n � k. According to (ii), there exists χ ∈ S such that χ(yn) = 1
for all but finitely many n ∈ �. Clearly, χ(yn) = χ(xn) for all n ∈ � and hence (iii)
holds true. Since (iii) implies (ii), the assertion follows.
Let B be a Boolean algebra. Consider the following relation on C(B) : S ∼ S′

whenever α(S) = α(S′). A straightforward proof of the next proposition is omitted.

5.6. Proposition.
(i) ∼ is an equivalence relation;
(ii) For each S ∈ C(B), hom((B, α(S)),2) is the largest element of the equivalence
class [S] containing S.

5.7. Remark. Let B be a field of subsets of X �= ∅. If each sequentially
continuous homomorphism of B into 2 induces a fixed ultrafilter on B, then B

is said to be s-perfect. The importance of s-perfect fields of subsets is given by
the fact that if B is s-perfect, then each sequentially continuous homomorphism ϕ

from B into a field B′ of subsets of X ′ is induced by a mapping f of X ′ into X ,
i.e. ϕ(F ) = {y ∈ X ′ ; f(y) ∈ F} for all F ∈ B. Further, s-perfectness is preserved
by the products and the formation of generated σ-field, and yields an interpretation
of sequentially continuous homomorphisms as random variables (cf. [5], [7]).

6. Embedding of convergence Boolean algebras

In this section we generalize the notion of a sequential envelope of J. Novák (see
[19], [20]) to 2-generated convergence Boolean algebras. Note that the construction
can be further generalized to convergence rings carrying the initial convergence with
respect to a given complete ring ([6]).

6.1. Definition. Let (B, α) be a 2-generated convergence Boolean algebra.
If (B, α) is a convergence subalgebra of a 2-generated convergence Boolean alge-
bra (B, α) and each ϕ ∈ hom((B, α),2) can be extended to ϕ ∈ hom((B, α),2),
then (B, α) is said to be 2-embedded in (B, α). If B is sequentially closed in each
2-generated convergence Boolean algebra in which it is 2-embedded, then (B, α) is
said to be absolutely sequentially closed (with respect to hom((B, α)2).
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Denote byA B(2) the subcategory ofB(2) consisting of all absolutely sequentially
closed convergence Boolean algebras. The next two propositions are a straightfor-
ward categorical bookkeeping and their proofs are omitted.

6.2. Proposition. The category B(2) is closed with respect to products and
subobjects.

6.3. Proposition. A convergence Boolean algebra is 2-generated iff it is isomor-
phic to a subobject of a power 2T , T �= ∅.

6.4. Proposition. A B(2) is an epireflective subcategory of B(2).

�����. Let (B, α) be a 2-generated convergence Boolean algebra. First, we
shall construct a 2-generated convergence Boolean albebra (B, α) such that:

(e1) (B, α) is absolutely sequentially closed;

(e2) (B, α) is a 2-embedded subalgebra of (B, α);
(e3) B is the smallest sequentially closed subset in (B, α) containing B.

Second, we shall prove that (B, α) is the desired epireflection: for each sequentially
continuous Boolean homomorphism from (B, α) into an absolutely sequentially closed
convergence Boolean algebra (B′, α′) there exists a unique sequentially continuous
Boolean homomorphism ϕ from (B, α) into (B′, α′) such that the restriction of ϕ

to B is equal to ϕ (in symbols ϕ � B = ϕ); then, since B is topologically dense in
(B, α), the embedding of (B, α) into (B, α) is an epimorphism.

1. Consider the evaluation mapping ev of (B, α) into 2hom((B,α),2) defined by
ev(x) = (ϕ(x); ϕ ∈ hom((B, α),2), x ∈ B). Clearly, it is an isomorphism into; to
avoid complicated notation, we identify (B, α) with its image under ev and denote
by (B, α) the smallest sequentially closed subspace of 2hom((Bα),2) containing ev(B).
According to 6.2 Proposition and 6.3 Proposition, (B, α) is 2-generated. From the
construction of (B, α) it follows directly that (e2) and (e3) are satisfied. Now, let
(B, α) be 2-embedded in a 2-generated convergence Boolean algebra (B, α) and let
〈xn〉 be a sequence in (B, α) converging in (B, α) to some element x ∈ B. Since
for each morphism ϕ from (B, α) into 2 its restriction ϕ � B is a morphism from
(B, α) into 2 and ϕ � B belongs to hom((B, α),2), the sequence 〈xn〉 converges in
2hom((B,α),2). Thus x ∈ B and (B, α) is sequentially closed in (B, α). Consequently
(B, α) is absolutely sequentially closed and (e1) is satisfied, too.
2. Let ϕ be a mapping from (B, α) into an absolutely sequentially closed

2-generated convergence Boolean algebra (B′, α′). Identify (B′, α′) with its iso-
morphic image under the evaluation map into 2hom((B

′,α′),2). Since (B′, α′) is
2-embedded in 2hom((B

′,α′),2), it is a sequentially closed subalgebra. Denote by 2t

the t-th factor and πt the t-th projection of 2hom((B
′,α′),2), t ∈ T . Since each πt ◦ϕ is
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a morphism from (B, α) into 2t and (B, α) is 2-embedded in (B, α), for each t ∈ T ,
there exists a morphism πt ◦ ϕ from (B, α) into 2t such that πt ◦ ϕ � B = πt ◦ ϕ.
But 2hom((B

′,α′),2) is the categorical product (see Section 5) and hence there ex-
ists a uniquely determined morphism ϕ from (B, α) into 2hom((B

′,α′),2) such that
πt ◦ ϕ = πt ◦ ϕ. Clearly ϕ � B = ϕ and ϕ(B) = B′. This completes the proof. �

6.5. Proposition. Let (B, α) be a 2-generated convergence Boolean algebra.
The following are equivalent:

(i) (B, α) is absolutely sequentially closed;

(ii) In (B, α) the following implication holds true: if a sequence 〈xn〉 of elements
of B does not converge under α, then there exists ϕ ∈ hom((B, α),2) such that
the sequence 〈ϕ(xn)〉 does not converge in 2.

�����. (i) implies (ii). Assume (i) and let 〈xn〉 be a sequence in (B, α) which
does not converge. Contrariwise, suppose that for each ϕ ∈ hom((B, α),2) the
sequence 〈ϕ(xn)〉 converges in 2. Since (B, α) is 2-generated, the evaluation map ev

is an isomorphism of (B, α) onto a 2-embedded subalgebra of 2hom((B,α),2). The
sequence 〈ev(xn)〉 converges in 2hom((B,α),2) and it follows from (i) that the limit
belongs to ev(B). This is a contradiction.

(ii) implies (i). Assume (ii). Contrariwise, suppose that (i) does not hold. Then
(B, α) can be embedded in a 2-generated convergence Boolean algebra (B, α) such
that there exists a sequence 〈xn〉 of elements of B converging in (B, α) to a point
x ∈ B \ B. This is a contradiction. Indeed, according to (ii) there exists ϕ ∈
hom((B, α),2) such that the sequence 〈ϕ(xn)〉 does not converge in 2 and hence ϕ

cannot be continuously extended over (B, α). �

6.6. Proposition. The category A B(2) is closed with respect to products and
sequentially closed subobjects.

�����. Both assertions easily follow from 6.5 Proposition. We leave out the
details. �

6.7. Proposition. A 2-generated convergence Boolean algebra is absolutely
sequentially closed iff it is isomorphic to a sequentially closed subobject of a power
2T , T �= ∅.

�����. The assertion follows from 6.4 Proposition, 6.5 Proposition and 6.6
Proposition. �
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