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STRONGLY MIXING SEQUENCES OF MEASURE PRESERVING

TRANSFORMATIONS

Ehrhard Behrends, Jörg Schmeling, Berlin

(Received August 6, 1998)

Abstract. We call a sequence (Tn) of measure preserving transformations strongly mixing
if P (T−1n A∩B) tends to P (A)P (B) for arbitrary measurable A, B. We investigate whether

one can pass to a suitable subsequence (Tnk) such that
1
K

K∑
k=1

f(Tnk) −→
∫

f dP almost

surely for all (or “many”) integrable f .

Keywords: ergodic transformation, strongly mixing, Birkhoff ergodic theorem, Komlós
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1. Introduction

Let (Ω,A, P ) be a Polish probability space and (Tn) a sequence of measure pre-
serving transformations. This sequence will be called strongly mixing if

lim
n→∞

P (Tn
−1A ∩B) = P (A)P (B)

for arbitrary measurable sets A, B.
If Tn are of the special form T n for a fixed transformation T then classical ergodic

theory may be applied in order to investigate various mixing properties (see [6]
for a good account of the relevant results). Here we have in mind working in the

more general setting of arbitrary sequences of transformations, in particular we are
interested in the density of orbits and the counterparts of ergodic theorems. One

major point of our investigations is to what extent the classical Birkhoff theorem
holds. It will turn out that by choosing appropriate subsequences of transformations
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we can derive an individual ergodic theorem for some class of L1-functions. It is not

to be expected that this kind of results holds for general L1-functions (see Section 5
for discussions). Moreover, even if all the transformations are powers of a given
transformation there are general examples where the Birkhoff theorem fails in L1

for arbitrary subsequences (see [4]). We discuss in Section 5 how large the class of
functions can be in order to get an individual ergodic theorem for subsequences.

Condition (1.1) is not the weakest mixing property. Usually one starts with er-
godicity which means that the right-hand-side limit in (1.1) is attained only in the

Cesàro mean: lim
n→∞

1
n

∞∑
k=1
(Tk

−1A∩B) = P (A)P (B). We call such sequences of trans-

formations ergodic. Although some of the following results can be derived under the
latter condition we prefer (1.1). The reason is that the ergodicity condition is not

invariant under taking subsequences while (1.1) is. In what follows we will sometimes
use the equivalent condition:

(1.2) lim
n→∞

∫

Ω
f(Tnx)g(x)P (dx) =

∫

Ω
f(x)P (dx)

∫

Ω
g(x)P (dx)

for all L1-functions f and g such that g · (f ◦Tn) is in L1 for sufficiently large n. The

last condition is fulfilled whenever f ∈ L1, g ∈ L∞ or both f, g ∈ L2.

2. Examples of strongly mixing sequences

The first examples are strongly mixing dynamical systems, i.e. Tn = T n for

T : Ω→ Ω is a strongly mixing map. In this case all classical ergodic theorems
hold.

More interesting are subsequences of (T n)n. These are treated in [4].
Let ϕ : � → � be an unbounded monotone increasing function. Then the se-

quence Tn = Sϕ(n) is mixing provided S is so. We note that for strictly monotone
increasing sequences we are in the case of subsequences. We also can allow ϕ(n) to

be eventually monotone increasing or even to have the property that the preimage
of any compact subset of � is compact. This leads to special rearrangements of the

previous sequences.
It is not hard to check that sequences of the form Tn : [0, 1) → [0, 1), defined by

Tn = anxmod(1) where (an) is an unbounded monotone increasing subsequence of
the natural (or even real) numbers is strongly mixing.

Let Ψt : M → M , t ∈ � be a strongly mixing flow with respect to some invariant
measure. Then for any unbounded increasing sequence of real numbers t1, . . . , tn, . . .

the sequence tn of time maps Tn := Ψtn : M → M is strongly mixing.
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3. Almost all orbits are dense

Lemma 3.1. Let (Tn) be strongly mixing. If A is measurable such that P (A) > 0

then P (
⋃

n�n0
T−1n (A)) = 1 for every n0.

�����. Denote by B the complement of
⋃

n�n0
T−1n (A). Clearly we have that

P (T−1n (A) ∩ B) = 0 for all n � n0. But P (T−1n (A) ∩ B) tend to P (B)P (A), hence

P (B) = 0. �

This lemma shows that mixing transformations are sweeping out in the measure
sense. It copies the classical lemma for ergodic systems (see [6], Theorem 1.5) and

shows that the assertion does not depend on the fact that it is a classical ergodic
system, i.e. the consecutive powers of a single transformation. The next proposition

shows that there is also a topological variant of this result in the general case. We
want to remark that for both results the weaker notion of ergodicity is sufficient.

Proposition 3.2. Let (M, d) be a compact metric space, and P a Borel measure

such that P (U) > 0 whenever U is an open nonvoid subset. Then, for every strongly

mixing sequence (Tn), the orbit {Tn(x) : n = 1, . . .} is dense for almost every x.

�����. Let U1, U2, . . . be a basis of the topology. Then, as is easy to see, an
orbit {Tn(x) : n = 1, . . .} is dense iff x lies in

⋂
r,n0

⋃
n�n0

T−1n (Ur). By the preceding

lemma
⋃

n�n0
T−1n (Ur) have full measure for all r, n0 so that we are done. �

4. Mean values on the orbit approximate the integral

Let (Tn) be a strongly mixing sequence. We will use the following notation:

For any scalar-valued measurable function f and any x the arithmetic mean
(f(T1(x)) + . . . + f(Tn(x)))/n will be abbreviated by Sn(f, x). (Sometimes we

will pass to a subsequence (Tnk
) of (Tn). Then Sn(f, x) are meant to be defined

with respect to this subsequence.)

In this section we will be concerned with the problem to what extent Sn(f, x) tend
to

∫
f dP .

Lemma 4.1. For all f ∈ L1 and almost all x one has lim inf Sn(f, x) �
∫

f dP �
lim supSn(f, x).

�����. For integers n0, k let An0,k be the set

{
x : Sn(f, x) �

∫
f dP − 1/k for all n � n0

}
;
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denote by g the characteristic function of this set. Then, whenever n � n0, one has

∫
g(x)Sn(f, x)P (dx) =

∫

An0,k

Sn(f, x)P (dx) �
(∫

f dP − 1/k

)
P (An0,k).

On the other hand, as n goes to infinity the integrals
∫

g(x)Sn(f, x)P (dx) tend to∫
g dP

∫
f dP = P (An0,k)

∫
f dP by formula (1.2) so that necessarily P (An0,k) = 0.

Thus

P

({
x : lim supSn(f, x) <

∫
f dP

})
= P

( ⋂

n0,k

An0,k

)
= 0.

Similarly it is shown that lim inf Sn(f, x) �
∫

f dP for almost all x. �

In general it is not to be expected that the preceding lemma could be sharpened

in that Sn(f, x) would converge to
∫

f dP .

Consider any mixing sequence T̃n on any nontrivial Ω and consider a new sequence

T1, T2, . . . defined by T̃1, T̃2, T̃2, T̃2, T̃3, T̃3, . . ., (1 time T̃1, 3 times T̃2, 12 times T̃3, . . .

(T̃k occurs 3rk times, where rk are defined by r1 := 1, rk+1 := 3(r1 + . . . + rk)).

The new sequence surely is also strongly mixing, but the construction ensures that
the sequence (Sn(f, x)) oscillates; for example, if f is the characteristic function of

a set A with P (A), P (Ω \ A) > 0, then Sn(f, x) will be � 2/3 and � 1/3 infinitely
often for almost all x.

Let (bn) be a bounded sequence of real numbers. Then it is easy to see that
for any b lying between the lim inf and the lim sup of the Cesàro means there is a

subsequence which is Cesàro convergent to b. One might suspect that this elementary
argument would yield for any bounded f a subsequence of the original (Tn) such that

Sn(f, x) for this subsequence converge almost everywhere to
∫

f dP . However, since
one might have to take into account uncountably many x it is not obvious whether

one may pass from numbers to functions.
Nevertheless, it is possible to prove a variant of Birkhoff’s theorem:

Theorem 4.2. Let (Tn) be strongly mixing and F = {f1, f2, . . .} a countable
subset of L1. Then there is a subsequence (Tnk

) such that the associated Sn(f, .)
tend to

∫
f dP almost everywhere for all f ∈ F .

�����. This follows from the Komlós theorem ([3]): Whenever (gm) is a uni-
formly bounded sequence in L1, there are an L1-function g and a subsequence (gmk

)

such that every subsequence of this subsequence is pointwise Cesàro convergent al-
most everywhere to g.

To derive our result apply the Komlós theorem to the sequence (f1 ◦ Tn)n; a
suitable subsequence (f2 ◦ Tnk

) will have the property that all subsequences are
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Cesàro convergent almost everywhere. Now consider (f2◦Tnk
)k and choose a suitable

subsequence again. It should be clear now how to proceed and that a standard
diagonal construction leads to a subsequence of (Tn)n—which we will denote by
(Tnk
)k again—such that (fr ◦ Tnk

) are Cesàro convergent almost everywhere for all

fr. It now only remains to note that the respective limit necessarily is
∫

fr dP by
the preceding lemma.

Under additional conditions on f1, . . . one can give a proof which does not depend
on the Komlós theorem. To indicate the idea let us assume that there is only one

function f in F and that this function is bounded. Then it is possible to mimic
the idea of the proof of the strong law of large numbers as it is presented in [1].

One chooses a subsequence (Tnk
) such that (f ◦ Tnk

) is “nearly“ an iid sequence
of random variables. Using

∫
g(f ◦ Tn) dP −→

∫
fg dP for bounded f, g it can be

achieved that
∫
|f ◦ Tn1 + . . . f ◦ Tnk

|4 dP � Ck2 for a suitable subsequence, and
then Sn(f, x) −→

∫
f dP follows by a Borel-Cantelli argument.

It is standard to pass from one f to countably many f , however, it seems to be
no way to treat the case of arbitrary L1-functions in this way. �

Corollary 4.3. Let P be a Borel probability measure on a compact metric space

(M, d) and (Tn) a strongly mixing sequence. Then there is a subsequence (Tnk
)k such

that (Sn(f, x)) tends to
∫

f dP for almost all x and every continuous function f .

�����. One only has to combine the preceding theorem with the remark
that CM is separable with respect to the supremum norm and the observation that

uniform limits of functions f with “(Sn(f, x) tends to
∫

f dP for almost all x” also
have this property. �

5. Further discussions

In the previous section we have seen that by passing to a subsequence the Birkhoff
theorem holds for continuous functions. A natural question is whether this can be

generalized to all of L1 as in the classical ergodic theorem. Unfortunately we cannot
fill up L1 with the closure of a countable set in the supremum norm and push our

arguments through. Moreover, in a series of papers Bourgain and others have shown
that if infmn+1/mn > 1 then for any ergodic transformation (and in particular for

any mixing transformation) S there is a function f ∈ L1∩L∞ such that for Tn = Smn

the sequence (Sn(f, x))n does not converge almost everywhere; see [2] or [4]. So the

question arises to what extent the class of continuous functions can be enlarged that
the individual ergodic theorem holds within this class.
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First we want to improve the statement of Lemma 4.1 for special functions.

Proposition 5.1. Let (Ω,A, P ) be a Polish space and (Tn)n a mixing sequence

of transformations. Let U be an open set, χU its indicator function and (Tnk
)k the

subsequence from Corollary 4.3. Then

lim inf
1
K

K∑

k=1

χU (Tnk
x) = P (U)

for P , a.e. x ∈ Ω.

�����. For given ε > 0 we always can find a continuous function f with

f
∣∣
Ω\U = 0, 0 � f � χU and P (U) −

∫
f dP < ε. In view of Corollary 4.3 we have

lim 1
K

K∑
k=1

f(Tnk
x) =

∫
f dP . Now Lemma 4.1 implies the statement since ε was

arbitrary. �

Similarly we have

Proposition 5.2. Let (Ω,A, P ) be a Polish space and (Tn)n a mixing sequence
of transformations. Let F be a closed set, χF its indicator function and (nk)k the

subsequence from Corollary 4.3. Then for P , a.e. x ∈ Ω

lim sup
1
K

K∑

k=1

χF (Tnk
x) = P (F ).

In the remainder of this section we want to stress that one can enlarge the set

of functions for which there is a universal subsequence such that the Cesàro means
along this subsequence converge for all functions in this set to the integral. However,

this subsequence becomes sparser as we extend the set of functions.

Let C = {C1, C2, . . .} be a countable collection of measurable sets and (pk) an
increasing sequence of natural numbers. We denote by V = V(C, (pk)) the following

class of sets. V ∈ V iff there is a sequence of sets A1, A2, . . . with the properties

• Ak ∈ {C1, C2, . . . , Cpk
} := Ck,

• Ak ⊂ Ak−1,

• V =
⋂

Ak,

• P (Ak) < P (V )(1 + 1/k2).

A set V ∈ V is called (C, (pk))-approximable.

We can prove the following theorem.
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Theorem 5.3. Let C and (pk) be given as in the previous definition. Let (Tn)n
be strongly mixing. Then there is a subsequence (nk)k of natural numbers such that
for V ∈ V(C, (pk)) we have

lim
K→∞

1
K

K∑

k=1

χV (Tnk
x) = P (V )

for almost all x ∈ Ω.

Before proving this theorem we recall the following result of Philipp (see [5], p. 66):

Theorem 5.4 (Philipp, Schweiger). Let (Ω,A, P ) be a probability space and
(En)n a sequence of measurable sets. For x ∈ Ω we define A(N, x) :=

∑
n�N

χEn(x)

and ϕ(N) :=
∑

n�N

P (En). Suppose there exists a convergent series
∑

αk with αk � 0

such that

P (En ∩ En+m) � P (En)P (En+m) +
(
P (En) + P (En+m)

)
αm + P (En+m)αn.

Then for ε > 0 and for almost all x

A(N ;x) = ϕ(N) +O
(
ϕ
1
2 (N) log

3
2+ε ϕ(N

)

holds true.

This theorem has the following immediate corollary:

Corollary 5.5. Let (Tn) be a sequence of measure-preserving transformations

and A a measurable set. If there is a summable sequence αm with

P (T−1n A ∩ T−1n+mA) � P (A)2 + αm + αn

then

lim
K→∞

K∑

k=1

χA(Tnk
x) = P (A)

for almost all x ∈ Ω.

����� of Theorem 5.3. Let C, (pk) be given. We construct the subsequence

(nk) inductively. First we are going to construct a subsquence
(
n
(1)
k

)
such that the

assumptions of Corollary 5.5 hold for the sequence (T
n
(1)
k

)k and all sets C1, . . . , Cp1 .
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Let 0 < γ < 1
2 . In view of the strong mixing property we first choose a subsequence(

m
(1)
k

)
of naturals such that P

(
A ∩ T−1

m
(1)
k

A
)

� P (A)2 + γk for all A ∈ C1. Now we

choose a subsequence
(
m
(2)
k

)
⊂

(
m
(1)
k

)
with

P
(
T−1

m
(1)
1

A ∩ T−1
m
(2)
k

A
)

� P (A)2 + γk+1

for all A ∈ C1. We continue this process by induction. Finally we set n
(1)
k = m

(k)
k .

By the properties of the construction we have

(5.1) P
(
T−1

n
(1)
k

A ∩ T−1
n
(1)
k+m

A
)

� P (A)2 + γk+m

for all A ∈ C1 and m > 0.
Let us inductively choose subsequences

(
n
(l)
k

)
⊂

(
n
(l−1)
k

)
such that (5.1) holds for

the sequence
(
n
(l)
k

)
and all sets A ∈ Cl. Again applying the diagonalization procedure

we produce a sequence (nk) :=
(
n
(k)
k

)
with the property that

P (T−1nk
A ∩ T−1nk+m

A) � P (A)2 + γk+m

provided A ∈ Cl, k � l, m > 0.

Let V ∈ V(C, (pk)). Choose Ak ∈ Ck such that P (Ak) � (1 + 1/k2)P (V ) and
V ⊂ Ak. Hence,

P (T−1nk
V ∩ T−1nk+m

V ) � P (T−1nk
Ak ∩ T−1nk+m

Ak)(5.3)

� P (Ak)2 + γk+m(5.4)

�
(
1 +

1
k2

)2
P (V )2 + γk+m(5.5)

for m > 0. If we set αm = 3/m2 > γk+m we have
∑

αm < ∞ and the assumptions
of Corollary 5.5 are fulfilled. Hence, the assertions follow immediately. �

Corollary 5.6. Let V , (pk), Tnk
be as in Theorem 5.3 and let f be a finite linear

combination of characteristic functions of sets from V (or even a uniform limit of
such functions). Then the sums 1/K

K∑
k=1

f(Tnk
) tend almost everywhere to

∫
f dP .

Here we have an interesting phenomenon: It is not to be expected that the result
holds for every L1-function; this fails already for arbitrary lacunary subsequences

(see [4]). On the other hand, the hierarchy of sets V grows with the growth rate of
(pn). The above theorem tells us that we can find sparser and sparser subsequences

to have an ergodic theorem for the classes V . It seems that sparse sequences are at
the same time contraproductive and helpful.
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6. Other subsequence averaging

We can also raise the question what happens if we take the entire sequence (Tn)
but evaluate the Cesàro mean at special places only. There is no way of getting an

almost sure convergence result in general. Here we have the following example which
is a modification of the example above.

Example. Let Σ2 := {0, 1}� be the space of all one-sided infinite sequences of 0’s
and 1’s endowed with the Tichonov product topology generating the Borel sets. Let

σ be the shift to the left and P the Bernoulli measure assigning to the symbols 0
and 1 equal probability 1/2. We set, for m ∈ �, r(m) := sup{r : r! < m}. The
strongly mixing sequence of transformations is defined as Tn := σr(n) (note that σ

itself is mixing). For x = x1x2 . . . ∈ Σ2 we define f : Σ2 → � via f(x) = x1. We

claim that no subsequence of (Sn(f, x)) converges almost everywhere. Let us assume
the contrary, i.e. there is a sequence Nk such that (SNk

(f, x))k converges almost

everywhere to a function g. Let 132 > ε > 0 be fixed. Then we can find a set Γ ∈ Σ2
with P (Γ) > 1 − ε and a number k0 = k0(ε) such that |SNk

(f, x) − SNl
(f, x)| < ε

for all k, l > k0. By the definition of (Tn) we have for all sufficiently large n that

Sn!(f, x) < ε provided xn = 0 or Sn!(f, x) > 1 − ε provided xn = 1, respectively.
Hence for sufficiently large k we have SNk

(f, x) < ε whenever xr(Nk) = xr(Nk)+1 = 0

or SNk
(f, x) > 1 − ε whenever xr(Nk) = xr(Nk)+1 = 1, respectively. We consider

sufficiently large numbers k, l with k0 < k < l such that r(Nk) + 1 < r(Nl). Then

the set B := {x : xr(Nk) = xr(Nk)+1 = 0 and xr(Nl) = xr(Nl)+1 = 1} consists of
points x with |SNk

(f, x)−SNl
(f, x)| > 1− 2ε > ε implying B ∩Γ = ∅. On the other

hand, P (B) = 1
16 and hence P (B ∩ Γ) > 1

16 − ε > 0, a contradiction.

References

[1] P. Billingsley: Probability and Measure. John Wiley & Sons, New York, 1995.
[2] J. Bourgain: Almost sure convergence and bounded entropy. Israel J. Math. 63 (1988),
79–97.

[3] J. Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar
18 (1967), 217–229.

[4] J.M. Rosenblatt and M. Wierdl: Pointwise ergodic theorems via harmonic analy-
sis. Ergodic theory and its connections with harmonic analysis (K.M. Petersen and
I.A. Salama, eds.). London Math. Soc. Lecture Note Series 205, Cambridge Univ. Press,
1995.

[5] F. Schweiger: Ergodic theory of fibred systems and metric number theory. Oxford Sci-
ence Publications, 1995.

[6] P. Walters: An Introduction to Ergodic Theory. Springer, 1982.

Author’s address: I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 2–6,
D-14 195 Berlin, Germany, e-mails: behrends@math.fu-berlin.de; shmeling@math.
fu-berlin.de.

385


		webmaster@dml.cz
	2020-07-03T13:06:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




