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1. Introduction

The theory of measurable multifunctions has shown to be useful in many math-

ematical fields such as Control Theory [1], Convex Analysis [6], Abstract Evolution
Equations [15], etc.

It is the purpose of this paper to provide some results about the weak compactness
of measurable selections of a measurable multifunction, and to use them to show a

Radon-Nikodym Theorem for multimeasures.

2. Preliminaries

In this section we state some notation and definitions that we are using in the
paper.

For a Banach space X , its dual will be denoted by X∗.
We will also denote by Pf (X), Pfc(X), Pk(X), Pkc(X), Pωk(X) and Pωkc(X) the

sets of nonempty subsets of X that are closed, closed convex, compact, compact
convex, weakly compact, and weakly compact convex, respectively.
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For a subset A of X we set

|A| = sup
a∈A

‖a‖;

cl(A) = the norm closure of A;

c0(A) = the closed convex hull of A;

It has been standard to define measurable multifunctions as follows:
Given a separable Banach space X and a measurable space (Ω,Σ), a multifunction

F : Ω→ Pf (X) is called measurable if for each z ∈ X the function

f(ω) = d(z, F (ω)) = inf
y∈F (ω)

‖z − y‖

is measurable; by Castaing Representation ([6]), a closed valued multifunction F :

Ω → X is measurable if and only if there is a sequence fn : Ω → X of measurable
functions such that F (ω) = cl{fn(ω)} for each ω ∈ Ω.
Interested in dealing with integration in non separable Banach spaces, the authors

of [3], inspired by Castaing Representation, defined µ-measurability of multifunctions

in arbitrary Banach spaces in the following way: Given a complete finite measure
space (Ω,Σ, µ) and a Banach space X , a multifunction F : Ω → Pf (X) is called µ-

measurable, if there is a µ-null set N ∈ Σ and a sequence of µ-measurable functions
fn : Ω→ X such that

F (ω) = cl {fn(ω)} for all ω ∈ Ω \N.

This definition allows us to deal with considerable generality in all our results.
Given a measurable multifunction F : Ω→ Pf (X), we denote by Sp

F the set

Sp
F = {f : Ω→ X : f ∈ Lp

X(µ); f(ω) ∈ F (ω) µ-a.e.} ,

and for E ∈ Σ we denote
∫

E

F dµ =

{∫

E

f dµ : f ∈ S1F

}
.

We say that a measurable multifunction F is integrably bounded if |F (.)| ∈ L1(µ).
We recall that a subset K in L1X(µ) is uniformly integrable if for each ε > 0, there

is δ > 0 such that µ(E) < δ implies
∫

E ‖f‖ dµ < ε ∀f ∈ K. A sequence Fn of
integrably bounded multifunctions is uniformly integrable if the sequence {|Fn(.)|}
is uniformly integrable. Following [19, 20], for {An, A} ⊂ Pf (X), we say that A′ns

weakly converges to A (An
ω→ A) if, σ(x∗, An) → σ(x∗, A) for each x∗ ∈ X∗ where
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σ(x∗, B) = sup {〈x∗, x〉 : x ∈ B} for any non-empty subset B of X . A sequence of

measurable multifunctions {Fn}∞n=1 is said to be weakly convergent to F in L1X(µ)
(Fn

ω→ F ), if
∫

Ω
σ(x∗(ω), Fn(ω)) dµ(ω)→

∫

Ω
σ(x∗(ω), F (ω)) dµ(ω)

for each x∗ ∈ (L1X(µ))∗.
A multimeasure is a function M : Σ→ P (X) satisfying
(i) M(∅) = {0};
(ii) if E1, E2 ∈ Σ with E1 ∩ E2 = ∅, then M(E1 ∪ E2) =M(E1) +M(E2);
(iii) if {En}∞n=1 is a sequence in Σ with Ei ∩ Ej = ∅ ∀i �= j then

M

( ∞⋃

n=1

En

)
=

∞∑

n=1

M(En)

= {x ∈ X : for each n ∈ �, there is xn ∈ M(En)

such that
∑

xnunconditionally converges to x}.

The multimeasure M is called to have bounded variation if

‖M‖ = sup
n∑

i=1

‖M(Ai)‖

is finite where the sup is taken over all finite partition of Ω.
For a fixed measurable space (Ω,Σ), ca(X) will denote the Banach space of all

X valued countably additive, bounded variation vector measures endowed with the

norm of total variation.

3. Weak compactness criteria for Sp
F in Lp

X(µ)

The following result can be found in [3].

Theorem 3.1. Let F : Ω → Pfc(X) be an integrably bounded multifunction.
Then S1F is weakly compact in L1X if and only if for almost every F (ω) is weakly

compact ω ∈ Ω.
A small refinement of the above theorem yields the following one.

Theorem 3.2. If 1 � p < ∞ and F : Ω→ Pf (X) is a measurable multifunction,
then the following statements are equivalent:

(a) Sp
F is relatively weakly compact in Lp

X(µ).
(b) Sp is bounded in Lp

X(µ) and the multifunction G : Ω → Pfc(X) defined by

G(ω) = c0F (ω) takes weakly compact values µ-a.e.
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�����. (a ⇒ b). Suppose p = 1. If S1F is relatively weakly compact in

L1X(µ) then it is bounded, and by [13] (Theorem 3.2) F is integrably bounded.
Furthermore, given a sequence {fn} ⊆ S1F , there is a sequence gn ∈ c0 {fk : k � n}
([8], Theorem 2.1) such that gn(ω) is norm convergent in X µ-a.e. This implies

c0F (ω) weakly compact µ-a.e.

(b⇒ a). If S1F is bounded and c0F (ω) is weakly compact µ-a.e., being F measur-
able, there is a null set N0 ∈ Σ and a sequence fn : Ω→ X of measurable functions

such that µ(N0) = 0 and F (ω) = cl(fn(ω)) ∀ω ∈ Ω \ N0. Applying the Pettis
measurability theorem [9], for each n ∈ � there is Nn ∈ Σ with µ(Nn) = 0 and

cl(fn(Ω \Nn)) is separable.

If we put N =
∞⋃

n=0
Nn we have that µ(N) = 0 and F (Ω \N) is separable. Let Y

be the separable Banach space generated by F (Ω \N). Then if we set, as in [3],

H : Ω→ Pf (Y ),

H(ω) =

{
F (ω) if ω ∈ Ω \N,

{0} if ω ∈ N,

H is a measurable multifunction taking values in a separable Banach space. Applying
Theorem 1.5 of [13], we have that c0H is a measurable multifunction. Since G(ω) =

c0F (ω) = c0H(ω) µ-a.e., we conclude that G is a measurable multifunction taking
values in a separable Banach space. It is easy to see that G is integrably bounded

and G(ω) ∈ Pωkc(X) µ-a.e. So by Theorem 3.1, S1c0F is weakly compact in L1X(µ)
and consequently S1F is relatively weakly compact.

Let 1 < p < ∞. Since Sp
F is relatively weakly compact in Lp

X(µ) and the injection

i : Lp
X(µ)→ L1X(µ) is continuous, the set Sp

F is relatively weakly compact in L1X(µ).

If we put M = Sp
F , we have that M is decomposable, i.e. if f, g ∈ M and A ∈ Σ,

then fXA+ gXΩ\A ∈ Σ. Then, according to [13] Theorem 3.1, there is a measurable
multifunction G : Ω → Pf (X) such that M = S1G. Since S1G is weakly compact
in L1X(µ), we see that c0G(ω) is weakly compact µ-a.e. Since S1G = Sp

G ⊃ Sp
F ,

Corollary 1.2 from [13] implies the conclusion.

For the converse, suppose c0F (ω) is weakly compact for almost every ω ∈ Ω and
Sp

F is bounded in Lp
X(µ); then Sp

F is bounded in L1X(µ). It is not hard to see that

Sp
F ⊂ Sp

c0F
= S1c0F .

By Theorem 3.1, S1c0F is weakly compact in L1X(µ), which implies that Sp
F is

relatively weakly compact in L1X(µ). Applying corollary 3.4 of [8], we conclude that
Sp

F is relatively weakly compact in Lp
X(µ). �
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Corollary 3.1. If F (ω) is convex and weakly compact µ-a.e. with F a measurable

integrably bounded multifunction, then for 1 � p < ∞, Sp
F is weakly compact in

Lp
X(µ) if and only if it is bounded.

�����. The condition is necessary for Sp
F to be relatively weakly compact.

On the other hand, let {fn} be a sequence in Sp
F converging to f in the weak topol-

ogy of Lp
X(µ). By Mazur Theorem there is a sequence relabeled as {fn} converging

to f in the strong topology of L1X(µ). So there is a subsequence{fnk
} of {fn} such

that fnk(ω)−→f(ω) for almost every ω ∈ Ω. This implies f(ω) ∈ F (ω) µ-a.e., and f is

measurable. Therefore f ∈ Sp
F . �

Corollary 3.2. Let X be a Banach space and 1 � p < ∞. For every measurable
and integrably bounded multifunction F : Ω→ Pfc(X), S

p
F is weakly compact if and

only if X is reflexive.

�����. It is a consequence of the well known fact that a Banach space X

is reflexive if and only if bounded sets and relatively weakly compact ones are the

same. �

Remark 3.1. According to Theorem 3.2 above, Theorems 5.2 and 5.5 of [16] hold
for any Banach space X and any p ∈ [1,+∞). On the other hand, Theorem 5.4 of
[16] is false since c0 does not contain any isomorphic copy of �1, and the multifunction
F : [0, 1] → Pfc(c0), defined by F (t) ≡ Bc0 = {x ∈ c0 : ‖x‖c0 � 1}, is µ-measurable

and integrably bounded with respect to the Lebesgue measure on [0,1]; but S1F is
not weakly compact in L1c0(µ).

If we want Theorem 5.4 of [16] to be true we should add the hypothesis X is weakly

sequentially complete, since according to Rosenthal �1 dichotomy a Banach space X

with no copy of �1 is reflexive if and only if it is sequentially weakly complete and in

such a case our Corollary 3.2 can be applied.

Remark 3.2. The weak compactness of S1F plays a key role in the existence of

a mild solution of evolution inclusions ([17]) with the hypothesis F : Ω→ Pωkc(X).
In [15], in an attempt of giving a different approach in the context of reflexive Ba-

nach spaces, the weak compactness was replaced by closedness and boundedness.
According to Corollary 3.2, this is a particular case of [17].
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4. Weak limits of sequences of measurable multifunctions

In this section we generalize a result due to Castaing [4] and Papageorgiou [19].

Theorem 4.1. Let X be a Banach space with X∗ having the Radon-Nikodym

property. Let {Fn} be a uniformly integrable sequence of measurable multifunctions
Fn : Ω→ Pωkc(X) satisfying the following conditions:
(i) For every A ∈ Σ, the set

HA =
∞⋃

n=1

∫

A

Fn dµ

is relatively weakly compact.

(ii) Any bounded variation vector measure m : Σ → X verifying m(A) ∈ c0(HA)
for all A ∈ Σ admits a density in L1X(µ). Then there exists F : Ω → Pωkc(X)
integrably bounded and a subsequence {Fnk} of {Fn} such that Fnk → F in

L1X(µ).

�����. Since Fn : Ω→ Pωkc(X) for each n ∈ � is a measurable multifunction,

we have that for each n ∈ � there is a setNn ∈ Σ such that µ(Nn) = 0 and Fn(Ω\Nn)

is separable. If N =
∞⋃

n=1
Nn then µ(N) = 0 and the closed subspace Y generated by

∞⋃
n=1

Fn(Ω \N) is separable. Now we define

Gn : Ω→ Pωkc(Y )

by

Gn(ω) =

{
Fn(ω); ω ∈ Ω \N

{0} ; ω ∈ N.

The sequence Gn is a sequence of measurable multifunctions satisfying

∞⋃

n=1

∫

A

Gn dµ = HA;

since X∗ has the Radon-Nikodym property, by [23], every separable subspace of X
has a separable dual. So Y ∗ is separable. Applying Theorem 5.1 of [4] we find a

measurable multifunction

F : Ω→ Pωkc(Y ) ⊂ Pωkc(X)

and a subsequence Gnk of Gn such that Gnk
ω→ F in L1X(µ). Since for each n ∈ �;

Gn = Fn µ-a.e., we conclude that Fnk → F in L1X(µ).
An operator theoretical application may be interesting. �
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Theorem 4.2. Let X and Y be Banach spaces and T : X → Y a weakly compact

operator. If Fn : Ω → Pωkc(X) is a sequence of µ measurable multifunctions which
is uniformly integrable and bounded in L1X(µ), then there is a subsequence {Fnk} of
{Fn} and G : Ω→ Pωkc(Y ) such that TFnk

ω→ G in L1X(µ).

�����. Since T : X → Y is a weakly compact operator, the factorization scheme

of [7] provides a reflexive Banach space Z and a pair of bounded linear operators
T1 : X → Z and T2 : Z → Y such that T = T2 ◦ T1. If we concentrate ourselves

on T1Fn : Ω → Pωkc(Z), we find that {T1Fn}∞n=1 is a sequence of bounded and
uniformly integrable multifunctions on L1X(µ).

Hence
∞⋃

n=1
{
∫

A
T1Fn dµ} is bounded in Z for each A ∈ Σ and, by reflexivity, rel-

atively weakly compact. Since both Z and Z∗ have the Radon-Nikodym property,
Theorem 4.1 implies the existence of a measurable multifunction F : Ω → Pωkc(Z)

and a subsequence {Fnk} of {Fn} such that
∫

A

σ(T1Fnk, z∗) dµ →
∫

A

(F, z∗) dµ

for each z∗ ∈ Z∗.

Now, given y∗ ∈ Y ∗, y∗T2 ∈ Z∗, we have

σ(TFnk, y∗) = σ(T1Fnk, y∗T2)

and

σ(T2F, y∗) = σ(F, y∗T2).

So the conclusion follows with G = T2F . �

We recall that, by applying the above factorization scheme, Papageorgiou [16] has

got the following result for separable Banach spaces. Since this result easily extends
to arbitary Banach spaces, we state it without the separability assumption:

Theorem 4.3. Let Fn : Ω→ Pfc(X) be a sequence of measurable multifunctions
and W ∈ Pωkc(X) such that Fn(ω) ⊆ W µ-a.e. for all n ∈ N . Then there is

F : Ω→ Pωkc(X) and a subsequence {Fnk} of {Fn} such that Fnk
ω→ F in L1X(µ).
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5. Multimeasures and the Radon-Nikodym property

Definition 1. Let M : Σ → Pωkc(X) be a multimeasure, and µ : Σ → [0,∞) a
positive measure. M is called µ-representable if there is a µ-measurable multifunction

F : Ω→ Pωkc(X), integrably bounded and such that

M(A) =
∫

A

F dµ ∀A ∈ Σ.

In this case we say that M is µ-representable by F .

We say that M is absolutely continuous with respect to µ(M � µ) if µ(E) = 0

implies M(E) = {0}.

Proposition 5.1. Let M : Σ → Pωkc(X) be a multifunction µ-representable

by F . Then

(a) M(Σ) =
⋃

A∈Σ
M(A) is separable;

(b) F is essentially unique in the sense that if G is another multifunction represent-

ing M then F = G µ.c.s.

�����. a) If there is a µ-measurable multifunction F : Ω → Pωkc(X) such

that F is integrably bounded and
∫

A F dµ = M(A) ∀A ∈ Σ, then by definition
there is N ∈ Σ such that µ(N) = 0 and

⋃
ω∈Ω\N

F (ω) is separable. Let Y be the

separable subspace generated by
⋃

ω∈Ω\N
F (ω). Then for each selector f of F we have

∫
A

f dµ ∈ Y , which implies that
⋃

A∈Σ
M(A) is separable.

b) By (a), we can suppose X separable. Now we apply Theorem III.35 of [6] to

get the conclusion. �

Theorem 5.1. Let X be a Banach space. The following statements are equiva-

lent:

(a) Both X and X∗ have the Radon-Nikodym property.

(b) For every complete finite measure space (Ω,Σ, µ) and any µ continuous bounded

variation multimeasure M : Σ → Pωkc(X) with M(Σ) separable, there is a

µ-measurable integrably bounded multifunction F : Ω → Pωkc(X) such that
M(A) =

∫
A

F dµ ∀A ∈ Σ.
If µ is non-atomic, (a) and (b) are equivalent to

(c) For every probability space (Ω,Σ, µ) and every µ-continuous bounded variation

multimeasure M : Σ → Pωk(X) with M(Σ) separable, there is an integrably
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bounded multifunction F : Ω→ Pωk(X) such that

M(A) =
∫

A

F dµ, ∀A ∈ Σ.

�����. (a ⇒ b). Since M(Σ) is separable, there is no loss of generality in
assuming X separable. Since X∗ has the Radon-Nikodym property, it is separable

and the proof follows as either in [5] or [12].
(b ⇒ a). If X does not have the Radon-Nikodym property, then there is a sep-

arable subspace Y of X which lacks this a property. So there is a m : Σ → Y

vector measure bounded variation and m � µ, which is not µ-representable where

Ω = [0, 1] Σ is the Borel σ-algebra and µ is the Lebesgue measure. Therefore the
Radon-Nikodym property on X is a sufficient condition.

Suppose X∗ lacks the Radon-Nikodym property. By the proposition in [11], if
Ω = {−1, 1}� is the Cantor group and µ the normalized Haar measure on Ω, there

is a subset H ⊆ L1X(µ) such that
(i) H is uniformly bounded;

(ii) {
∫
A f dµ}f∈H is relatively weakly compact for each A ∈ Σ;

(iii) H is not relatively weakly compact in L1X(µ).

Now we define

G =

{
f =

n∑

i=1

giXAi; gi ∈ H, Ai ∈ Σ;Ai ∩Aj = ∅ ∀i �= j&
n⋃

i=1

Ai = Ω

}
.

Since G is a bounded decomposable subset of L1X(µ), so is G. So there is a µ-
measurable integrably bounded multifunction F ′ : Ω → Pf (X) such that S1F ′ = G.

Take F = c0F
′. Then F is integrably bounded and by the summation technique used

in the proof of Theorem II.3.8 of [9] we get that M(A) =
∫

A
F dµ ⊂ c0(

∫
A

f dµ)f∈H

and by Krein-Smulyan M(A) =
{∫

A F dµ
}
is relatively weakly compact for each

A ∈ Σ. Since F is closed convex valued, so is M . In conclusion, M(.) =
∫
(.) F dµ

is a weakly compact convex multimeasure. Since H ⊆ S1F , this set is not relatively
weakly compact and by Theorem 3.2, F (ω) is not weakly compact µ-a.e.

(a ⇒ c). Take M : Σ → Pωk(X) with M � µ and M(Σ) separable. Since X

has the Radon-Nikodym property, by [24], clM(A) is convex for each A ∈ Σ. Thus
M(A) is convex and weakly compact for each A ∈ Σ. Therefore, we have reduced
the problem to the implication a⇒ b.
(c⇒ a). If M : Σ→ Pωk(X) is a multimeasure such that ∀A ∈ Σ,

M(A) =
∫

A

F dµ
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for some F : Ω → Pωk(X), integrably bounded, then by corollary I of [18], clM(A)

is convex for each A ∈ Σ. So

M(A) = c0

(∫

A

F dµ

)
=

∫

A

c0F dµ

and by the implication b⇒ a, the proof is complete. �

Remark 5.1. The equivalence (a) ⇔ (b) is found in [14] (Theorem 5.3) with a
different proof.

If SM = {m : Σ → X ;m ∈ ca(X), m(A) ∈ M(A)∀A ∈ Σ} with M a compact
valued multimeasure then the following holds.

Theorem 5.2. For a Banach space X , the following statements are equivalent:

(a) X has the Radon-Nikodym property.

(b) If M : Σ→ Pk(X) is a µ-continuous bounded variation multimeasure such that

SM is compact in ca(X) then there is an integrably bounded multifunction
F : Ω→ Pkc(X) such that

M(A) =
∫

A

F dµ.

�����. Suppose X has the Radon-Nikodym property. Then by [24] Theo-
rem 2.7, M(Σ) is relatively compact in X . Therefore M(Σ) is separable.

For each m ∈ SM there is fm ∈ L1X(µ) such that

m(A) =
∫

A

fm dµ ∀A ∈ Σ

and SM is isomorphic to {fm}m∈SM ⊆ L1X(µ). Furthermore, by [10] we have that

for each A ∈ Σ,
M(A) =

{∫

A

fm dµ

}

m∈SM

.

Since {fm}m∈SM is a decomposable compact subset of L
1
X(µ) we have that {fm}m∈SM

is also separable in L1X(µ); hence we can suppose X separable. So by [13], there is
an integrably bounded multifunction F : Ω → Pfc(X) such that S1F = {fm}m∈SM .
Therefore

M(A) =
∫

A

F dµ for each A ∈ Σ

with S1F compact in L1X(µ). This implies F (ω) is weakly compact µ-a.e. and by [2]
Proposition 7, F (ω) is compact µ-a.e.

Conversely, if (b) holds, it holds for any single vector measure, which is the defin-
ition of the Radon Nikodym property. �
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Since the unit ball of L∞([0, 1]) is not compact in L1[0, 1], the multimeasure M

can be represented by a compact valued multifunction without SM being a compact
subset of ca(X), as is shown in the next theorem.

Theorem 5.3. Let X be a Banach space. The following assertions are equivalent:
(a) For every F : [0, 1] → Pωkc(X) µ-measurable respect with to the Lebesgue

measure, with |F | ∈ L∞(µ), M(A) =
∫

A F dµ is compact for each A ∈ Σ.
(b) X is finite dimensional.

�����. (b ⇒ a). If X is finite dimensional, then for each A ∈ Σ,
∫

A
F dµ ⊂

B(0, M), where M = sup ess |F |. This implies M(A) is compact.

(a ⇒ b). Suppose X is infinite dimensional. Then there is a convex separable
subset W in BX such that W is not compact, which implies the existence of a

sequence {xk} ⊂ W without any convergent subsequence. Put F : [0, 1]→ Pωkc(X)
such that F (ω) ≡ W (ω ∈ [0, 1]). Then for each k ∈ �, fk ≡ xk is a measurable

selection of F and, if µ is the Lebesgue measure on [0, 1], then for any t > 0,
{
∫ t

0 fk dµ} is not compact in X , which implies that M : [0, 1] → Pωkc(X) is not

compact valued. �
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