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Abstract. As a first step in the search for curvature homogeneous unit tangent sphere
bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent
sphere bundle with constant scalar curvature. We give complete classifications for low
dimensions and for conformally flat manifolds. Further, we determine when the unit tangent
sphere bundle is Einstein or Ricci-parallel.
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1. Introduction

A Riemannian manifold (M, g) is curvature homogeneous ([23]) if and only if, for
each pair of points p and q in M , there exists a linear isometry F : TpM → TqM

such that F ∗Rq = Rp, where R is the Riemann curvature tensor of (M, g). This
means, intuitively speaking, that the curvature is the “same” at all points. Clearly,

(locally) homogeneous Riemannian manifolds are curvature homogeneous, but the
converse is not true. We refer to [7, Chapter 12] for an extensive and up-to-date

survey about curvature homogeneous manifolds and for many non-trivial examples,
i.e., curvature homogeneous spaces which are not locally homogeneous.

Most, if not all, of these examples, were found or constructed by ad hoc methods.
In the search for new ones, we propose to take a different road. Starting from a

given Riemannian manifold (M, g), we consider spaces naturally associated to it and
investigate under which conditions these are curvature homogeneous. This plan was
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first adopted in [27]. We intend to deal with the tangent bundle and the unit tangent

sphere bundle, equipped with the natural Sasaki metrics.

The tangent bundle (TM, Tg) turns out to be uninteresting. Indeed, in [21],
E. Musso and F. Tricerri show that (TM, Tg) has constant scalar curvature if and

only if the base manifold (M, g) is flat. Hence, (TM, Tg) is curvature homogeneous
(even locally homogeneous) only in this specific case.

The unit tangent sphere bundle looks more interesting. In this article, we study
as a first step under which conditions (T1M, gS) has constant scalar curvature. In

contrast to the case of the tangent bundle, we find many non-trivial examples. We
give a complete classification for low dimensions (dimM = 2 or 3) and for conformally

flat spaces. These results serve as the basis for the upcoming paper [9] devoted to
curvature homogeneous unit tangent sphere bundles as such.

In the last two sections, we study some stronger restrictions on the curvature
and determine explicitly which unit tangent sphere bundles (T1M, g) are Einstein

or Ricci-parallel. As a consequence, we find a new proof of Blair’s theorem about
locally symmetric unit tangent sphere bundles ([5]).

2. Curvature expressions

We recall the conventions and notations of [8] and collect the formulas we need.
We refer to that paper for a more elaborate exposition.

Let (M, g) be a smooth, n-dimensional (n � 2), connected Riemannian manifold
and ∇ its Levi Civita connection. The Riemann curvature tensor R is defined by

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z for all vector fields X , Y and Z on M .
The tangent bundle of (M, g), denoted by TM , consists of pairs (x, u) where x is a

point inM and u a tangent vector toM at x. The mapping π : TM → M : (x, u) �→
x is the natural projection from TM onto M .

It is well-known that the tangent space to TM at (x, u) splits into the direct sum of
the vertical subspace V TM(x,u) = kerπ∗|(x,u) and the horizontal subspace HTM(x,u)

with respect to ∇:
T(x,u)TM = V TM(x,u) ⊕HTM(x,u).

For X ∈ TxM , there exists a unique vector Xh at the point (x, u) ∈ TM such that
Xh ∈ HTM(x,u) and π∗(Xh) = X . Xh is called the horizontal lift of X to (x, u).

There is also a unique vector Xv at the point (x, u) such that Xv ∈ V TM(x,u)

and Xv(df) = Xf for all functions f on M . Xv is called the vertical lift of X

to (x, u). The map X �→ Xh, respectively X �→ Xv, is an isomorphism between
TxM and HTM(x,u), respectively TxM and V TM(x,u). Similarly, one lifts vector
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fields on M to horizontal or vertical vector fields on TM . The expressions in local

coordinates for these lifts are given in [8].

The tangent bundle TM of a Riemannian manifold (M, g) can be endowed in a

natural way with a Riemannian metric Tg, the so-called Sasaki metric, depending
only on the Riemannian structure g of the base manifoldM . It is uniquely determined

by

Tg(Xh, Y h) = Tg(Xv, Y v) = g(X, Y ) ◦ π, T g(Xh, Y v) = 0

for all vector fields X and Y on M .

In this paper, we consider the hypersurface T1M , the unit tangent sphere bundle,

consisting of the unit tangent vectors to (M, g). T1M is given implicitly by the
equation gx(u, u) = 1. A unit normal vector N to T1M at (x, u) ∈ T1M is given by

the vertical lift of u to (x, u): N|(x,u) = uv.

As the vertical lift of a vector (field) is not tangent to T1M in general, we define
the tangential lift of X ∈ TxM to (x, u) ∈ T1M by

Xt
(x,u) = (X − g(X, u)u)v(x,u).

The tangent space to T1M at (x, u) is spanned by vectors of the form Xh and Xt

where X ∈ TxM . When working at a fixed point (x, u) ∈ T1M , we will use X for

X − g(X, u)u in order to keep the notation as simple as possible.

We endow T1M with the Riemannian metric gS induced from the Sasaki metric Tg

on TM . It is given explicitly by

gS|(x,u)(X
t, Y t) = gx(X, Y ),

gS|(x,u)(X
t, Y h) = 0,

gS|(x,u)(X
h, Y h) = gx(X, Y ).

The Levi Civita connection ∇ associated to this metric is given at (x, u) by

∇XtY t = −g(Y, u)Xt,

∇XtY h =
1
2
(R(u, X)Y )h,(1)

∇XhY t = (∇XY )t +
1
2
(R(u, Y )X)h,

∇XhY h = (∇XY )h − 1
2
(R(X, Y )u)t

for all vector fields X and Y on M . (See [8].)
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Also the Riemann curvature tensor R associated to gS was calculated in [8] (see

also [28]). In its (0, 4)-tensor form, R is given by

R|(x,u)(X
t, Y t, Zt, V t) = − gx(X, Z)gx(Y , V ) + gx(Y , Z)gx(X, V ),

R|(x,u)(X
t, Y t, Zt, V h) = 0,

R|(x,u)(X
h, Y t, Zt, V h) = − 1

2
gx(R(Y , Z)X, V )

+
1
4
gx(R(u, Z)X, R(u, Y )V ),

R|(x,u)(X
h, Y t, Zh, V h) =

1
2
gx((∇XR)(u, Y )Z, V ),

R|(x,u)(X
h, Y h, Zt, V t) = gx(R(X, Y )Z, V )

+
1
4
gx(R(u, Z)X, R(u, V )Y )

− 1
4
gx(R(u, V )X, R(u, Z)Y ),

R|(x,u)(X
h, Y h, Zh, V h) = gx(R(X, Y )Z, V )

+
1
2
gx(R(X, Y )u, R(Z, V )u)

+
1
4
gx(R(X, Z)u, R(Y, V )u)

− 1
4
gx(R(X, V )u, R(Y, Z)u).

Next, we determine the Ricci tensor � of (T1M, gS) at the point (x, u) ∈ T1M .
For this purpose, let E1, . . . , En−1, En = u be an orthonormal basis of TxM . Then

Et
1, . . . , E

t
n−1, E

h
1 , . . . , E

h
n is an orthonormal basis of T(x,u)T1M and � is defined by

�(A, B) =
n−1∑

i=1

R(Et
i , A, B, Et

i ) +
n∑

i=1

R(Eh
i , A, B, Eh

i ).

We obtain

�|(x,u)(X
t, Y t) = (n− 2)gx(X, Y ) +

1
4

n∑

i=1

gx(R(u, X)Ei, R(u, Y )Ei),

�|(x,u)(X
t, Y h) =

1
2

(
(∇u�)x(X, Y )− (∇X�)x(u, Y )

)
,(2)

�|(x,u)(X
h, Y h) = �x(X, Y )− 1

2

n∑

i=1

gx(R(u, Ei)X, R(u, Ei)Y ).
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Another metric contraction gives the scalar curvature τ :

τ |(x,u) =
n−1∑

i=1

�|(x,u)(E
t
i , E

t
i ) +

n∑

i=1

�|(x,u)(E
h
i , Eh

i )

= τx + (n− 1)(n− 2)− ξx(u, u)/4

where, as in [2] and [11], ξ(u, v) =
n∑

i,j=1
g(R(u, Ei)Ej , R(v, Ei)Ej).

We note that the natural projection π1 : (T1M, gS) → (M, g) : (x, u) �→ x is a
Riemannian submersion with totally geodesic fibres. Hence, one can also use the

standard formulas in [3, pp. 243–244] to obtain the above expressions for the curva-
ture. O’Neill’s integrability tensor A is given in this case by

AXhY t =
1
2
(R(u, Y )X)h,

AXhY h = −1
2
(R(X, Y )u)t

as follows from the expressions (1) for the covariant derivative, while the shape

tensor T is zero.
Finally, we also need the first covariant derivative of the Ricci tensor. A straight-

forward calculation, using the expressions (2) above and the formulas (1) for the
covariant derivative ∇, gives

(∇Zt�)|(x,u)(X
t, Y t) =

1
4

n∑

i=1

(
gx(R(Z, X)Ei, R(u, Y )Ei)(3)

+ gx(R(u, X)Ei, R(Z, Y )Ei)
)
,

(∇Zt�)|(x,u)(X
t, Y h) =

1
2

(
(∇Z�)x(X, Y )− (∇X�)x(Z, Y )

)

− 1
4

(
(∇u�)x(X, R(u, Z)Y )

− (∇X�)x(u, R(u, Z)Y )
)
,

(∇Zt�)|(x,u)(X
h, Y h) = − 1

2

(
�x(X, R(u, Z)Y ) + �x(R(u, Z)X, Y )

)

− 1
2

n∑

i=1

(
gx(R(Z, Ei)X, R(u, Ei)Y )

+ gx(R(u, Ei)X, R(Z, Ei)Y )
)

+
1
4

n∑

i=1

(
gx(R(u, Ei)R(u, Z)X, R(u, Ei)Y )

+ gx(R(u, Ei)X, R(u, Ei)R(u, Z)Y )
)
,
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(∇Zh�)|(x,u)(X
t, Y t) =

1
4

n∑

i=1

(
gx((∇ZR)(u, X)Ei, R(u, Y )Ei)

+ gx(R(u, X)Ei, (∇ZR)(u, Y )Ei)
)

− 1
4

(
(∇u�)x(R(u, X)Z, Y )

+ (∇u�)x(X, R(u, Y )Z)

− (∇X�)x(R(u, Y )Z, u)

− (∇Y �)x(R(u, X)Z, u)
)
,

(∇Zh�)|(x,u)(X
t, Y h) =

1
2

(
(∇2Zu�)x(X, Y )− (∇2ZX�)x(u, Y )

)

+
1
2
(n− 2)gx(X, R(Z, Y )u)− 1

2
�x(R(u, X)Z, Y )

+
1
4

n∑

i=1

gx(R(u, Ei)R(u, X)Z, R(u, Ei)Y )

+
1
8

n∑

i=1

gx(R(u, X)Ei, R(u, R(Z, Y )u)Ei),

(∇Zh�)|(x,u)(X
h, Y h) = (∇Z�)x(X, Y )

− 1
2

n∑

i=1

(
gx((∇ZR)(u, Ei)X, R(u, Ei)Y )

+ gx(R(u, Ei)X, (∇ZR)(u, Ei)Y )
)

+
1
4

(
(∇u�)x(R(Z, X)u, Y )

+ (∇u�)x(X, R(Z, Y )u)

− (∇R(Z,X)u�)x(u, Y )

− (∇R(Z,Y )u�)x(u, X)
)
.

In the rest of this paper, especially in calculations, we will often use the Einstein
summation convention, which says that every index appearing twice in a formula is to

be summed over. The indices refer to elements of an orthonormal basis {E1, . . . , En}.

Remark 1. The unit tangent sphere bundle T1M can be equipped with a natural
contact metric structure (ξ, η, ϕ, gcm) (see [4], [8]). Obviously, the characteristic

vector field ξ has nothing to do with the (0, 2)-tensor ξ mentioned previously. The
metric gcm is up to a homothetic change with factor 1/4 equal to gS . In particular, all

the results in this paper hold also for the unit tangent sphere bundle T1M endowed
with the metric gcm (up to an occasional factor 1/4).
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3. Constant scalar curvature

In the previous section, we calculated the scalar curvature

τ |(x,u) = τx + (n− 1)(n− 2)− ξx(u, u)/4.

Suppose next that τ is constant along T1M . In particular, for fixed x ∈ M , τ |(x,u)

does not depend on the choice of unit vector u. This implies that ξx is proportional

to the metric gx, and the proportionality constant is necessarily equal to |R|2x/n.
Moreover, τ should be independent of the point x ∈ M . This proves

Theorem 3.1. The unit tangent sphere bundle (T1M, gS) has constant scalar
curvature τ if and only if on (M, g) it holds

ξ =
|R|2
n

g,(4)

4nτ − |R|2 = constant.(5)

Remark 2. The algebraic condition (4) has appeared in the literature before
(see, e.g., [2], [11], [15]), but without a clear geometric meaning. In [3, p. 134], an
analytic interpretation is given of this condition for the case of a compact manifold:

an Einstein metric (or, more generally, a metric with parallel Ricci tensor) is critical
for the functional SR(g) =

∫
M
|Rg|2d vol restricted to those metrics g such that

vol(M) = 1 if and only if ξ = |R|2
n g. Based on the above theorem, we can now give a

nice geometric interpretation of condition (4) for Riemannian manifolds (M, g) such

that (5) holds: such manifolds satisfy (4) if and only if their unit tangent sphere
bundle (T1M, gS) has constant scalar curvature. Clearly, (5) holds for curvature

homogeneous manifolds. Hence, in view of our quest for curvature homogeneous
manifolds, a classification of all curvature homogeneous spaces (and, in particular,

locally homogeneous spaces) satisfying ξ = (|R|2/n) g would be very desirable.

The case of (locally) reducible manifolds is now easy to deal with:

Corollary 3.2. The unit tangent sphere bundle (T1M, gS) of a (local) product
manifold (M, g) = (Mn1

1 , g1)× (Mn2
2 , g2) has constant scalar curvature if and only if

the unit tangent sphere bundles of both (M1, g1) and (M2, g2) have constant scalar
curvature and, additionally,

(6)
|R1|2
n1

=
|R2|2
n2

.
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�����. Suppose that (T1M, gS) has constant scalar curvature τ . Condition (4)

implies that ξi =
|Ri|2

ni
gi for i = 1, 2, and that (6) holds. In particular, |R1|2 and |R2|2

are constant. (5) reads 4(n1 + n2)(τ1 + τ2) − |R1|2 − |R2|2 = constant, so also τ1
and τ2 are constant. Hence, the tangent unit sphere bundles of (M1, g1) and (M2, g2)

have constant scalar curvature. The converse is immediate. �

Remark 3. Corollary 3.2 can be used for the construction of examples. Suppose
that (M1, g1) and (M2, g2) are such that their unit tangent sphere bundles have
constant scalar curvature and that τi and |Ri|2, i = 1, 2, are separately constant.

If either one of these spaces is flat, so must the other be in order that (T1(M1 ×
M2), (g1 × g2)S) have constant scalar curvature. Otherwise, we make a homothetic

change of the metric g1 on M1 to a new metric g̃1 = cg1 with factor c = n2|R1|2
n1|R2|2 >

0. Then, (6) is satisfied for the Riemannian manifolds (M1, g̃1) and (M2, g2), and

(M, g) = (M1 ×M2, g̃1 × g2) has a unit tangent sphere bundle with constant scalar
curvature.

When looking for further examples, the following Schur-like theorem is useful.

Lemma 3.3. Let (Mn, g) be a Riemannian manifold of dimension n �= 4 such that
its Ricci tensor is a Codazzi tensor (i.e., (∇X�)(Y, Z) = (∇Y �)(X, Z)). If ξ = λg,

then λ = |R|2/n is constant and (T1M, gS) has constant scalar curvature τ .

�����. Derive the equality RijkmRijk� = λδm� with respect to Em and sum

overm = 1, . . . , n. Using the second Bianchi identity and the equality nλ = (Rijkm)2,
we derive

8
∑

i,j,k

∇i�jkRijk� = (n− 4)∇�λ,

or the equivalent formula

8
∑

i,j,k

(∇i�jk −∇j�ik)Rijk� = 2(n− 4)∇�λ

for all 	 = 1, . . . , n. Hence λ = |R|2/n is constant under the hypotheses of the
lemma. As is well-known (see, e.g., [13]), a Riemannian manifold with Codazzi Ricci

tensor has constant scalar curvature. So, both (4) and (5) are satisfied and the last
statement of the lemma follows. �

We are now ready to give some classes of Riemannian manifolds whose unit tangent
sphere bundles have constant scalar curvature for the metric gS.

0. Spaces of constant curvature.
1. Irreducible symmetric spaces and, more generally, isotropy irreducible homoge-

neous spaces: irreducibility ensures that ξ, an invariant (0,2)-tensor, is propor-
tional to the metric; homogeneity takes care of condition (5).
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Furthermore, for reducible symmetric spaces (M, g) = (M1, g1)×. . .×(Mk, gk)

with irreducible components (Mi, gi), we have from the above and condition (4)
that (T1M, g) has constant scalar curvature τ if and only if |R1|2/n1 = . . . =
|Rk|2/nk.

2. Super-Einstein spaces ([15]): these are Einstein manifolds (M, g) satisfying ad-
ditionally the condition (4). By Lemma 3.3, we find that |R|2 is constant if the
dimension is different from four. For a four-dimensional super-Einstein space
we require the constancy of |R|2.

3. Harmonic spaces: because every harmonic space is super-Einstein (see, e.g., [2],

[11]). In particular it follows that the unit tangent sphere bundle of any Damek-
Ricci space has constant scalar curvature. For the definition of Damek-Ricci

spaces, their geometric properties and further references, see [1].

4. Sasakian space forms with constant ϕ-sectional curvature c = ±1: this follows
from a straightforward computation expressing condition (4), where we use the

curvature formulas given in [4, p. 97]. For every odd dimension, we single out
two Sasakian space forms in this way: one of these (c = 1) is locally isometric

to a sphere of radius 1 and has a locally homogeneous unit tangent sphere
bundle; the unit tangent sphere bundle of the other is not even Ricci-curvature

homogeneous. (See [9].)

A Riemannian manifold (M, g) is called a semi-symmetric space ([7]) if its curva-
ture tensor R is, at each point, the same as that of some symmetric space. These

spaces are characterized by the curvature property R(X, Y ) · R = 0 for all vector
fields X and Y on M , where R(X, Y ) acts as a derivation on tensors. For such

spaces, we have

Proposition 3.4. Let (M, g) be a semi-symmetric space. If (T1M, gS) has con-

stant scalar curvature τ , then (M, g) is locally symmetric.

�����. The local structure theorem for semi-symmetric spaces by Z. Szabó ([25])

states that, around the points of a dense open subset, a semi-symmetric space is a
local product of symmetric spaces, two-dimensional manifolds, six types of cones

and Riemannian manifolds foliated by Euclidean leaves of conullity two. If the semi-
symmetric space has a unit tangent sphere bundle with constant scalar curvature,

then the same is true for all the factors in this local decomposition by Corollary 3.2.

Next, we note that the nullity distribution for the semi-symmetric spaces of cone
type or of foliated type is non-empty. Condition (4) then implies readily that these

spaces must be flat if their unit tangent sphere bundles are to have constant scalar
curvature. On the other hand, we will show in Proposition 4.1 that a surface whose
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unit tangent sphere bundle has constant scalar curvature must itself have constant

curvature and, hence, is locally symmetric. �

Next, we consider Einstein spaces. We have immediately the following results.

Proposition 3.5. Let (M4, g) be a four-dimensional Einstein space. Then
(T1M, gS) has constant scalar curvature if and only if |R|2 is constant.

�����. This follows at once from the observation that a four-dimensional Ein-

stein space always satisfies the property ξ = (|R|2/n) g (see [2]). �

From the definition of a super-Einstein space above, we get

Proposition 3.6. An Einstein space (M, g) is super-Einstein if and only if
(T1M, gS) has constant scalar curvature.

Remark 4. As stated in [2, p. 165], it would be worthwhile to find more exam-
ples, besides the ones mentioned in 1 and 3 above, of super-Einstein metrics.

Next, suppose (M, g) to be 2-stein, i.e., the manifold is Einstein and
∑
i,j

R2uiuj is

constant for all unit vectors u at a given point x. This condition implies (4) ([2]).
Hence with Lemma 3.3 above, we find

Proposition 3.7. Let (Mn, g), n > 4, be a 2-stein space. Then (T1M, gS) has

constant scalar curvature.

A Riemannian manifold is pointwise Osserman if the eigenvalues of Ru = R( ·, u)u
are independent of the choice of unit vector u at a given point x. If the eigenvalues

are global constants, i.e., also independent of x, the space is said to be globally
Osserman. See [12] for more information.

If a manifold (Mn, g) is pointwise Osserman, it is also 2-stein ([12]) and hence
super-Einstein for n �= 4. If we suppose moreover that n �= 2, then both τ and |R|2
are constant. So, we have

Corollary 3.8. Let (Mn, g) be a pointwise Osserman space and n �= 2, 4. Then
(T1M, gS) has constant scalar curvature.

In dimension four, 2-stein is equivalent to pointwise Osserman ([12]) and we get

Corollary 3.9. Let (M4, g) be a four-dimensional pointwise Osserman space.
Then (T1M, gS) has constant scalar curvature if and only if |R|2 is constant.
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Still in dimension four, an orientable Einstein manifold is 2-stein if and only if it

is self-dual or anti-self-dual ([22]). Hence,

Corollary 3.10. Let (M4, g) be an orientable four-dimensional Einstein manifold
which is self-dual or anti-self-dual. Then (T1M, gS) has constant scalar curvature if

and only if |R|2 is constant.

Finally, the global Osserman property implies the 2-stein condition and the con-
stancy of |R|2. So for all dimensions we get

Corollary 3.11. Let (M, g) be a globally Osserman space. Then (T1M, gS) has

constant scalar curvature.

4. Classification in dimension two and three

We now determine all two- and three-dimensional Riemannian manifolds (M, g)
whose unit tangent sphere bundles have constant scalar curvature τ . We begin with

Proposition 4.1. (T1M2, gS) has constant scalar curvature τ if and only if

(M2, g) has constant curvature.

�����. The curvature tensor of a two-dimensional Riemannian manifold is given

in the form R(X, Y )Z = κ (g(Y, Z)X − g(X, Z)Y ). One easily checks that (4) is
satisfied. On the other hand, (5) reduces to

4κ− κ2 = constant.

So κ must be constant. �

The scalar curvature τ is given explicitly as τ = κ (4− κ)/2.

Next, we have

Proposition 4.2. (T1M3, gS) has constant scalar curvature τ if and only if

(M3, g) has constant curvature or (M3, g) is a curvature homogeneous space with
constant Ricci roots �1 = �2 = 0 �= �3.

�����. In dimension three, the Riemann curvature tensor R can be expressed

completely through the Ricci curvature � and the scalar curvature τ (see, e.g., [3]):

(7) R = � ∧© g − τ

4
g ∧© g
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where ∧© is the Kulkarni-Nomizu product of symmetric 2-tensors defined as follows:

(h ∧© k)(X, Y, Z, V ) = h(X, Z)k(Y, V ) + h(Y, V )k(X, Z)

− h(X, V )k(Y, Z)− h(Y, Z)k(X, V ).

A straightforward calculation using (7) gives

|R|2 = 4|�|2 − τ2,

ξ(X, Y ) = (2|�|2 − τ2)g(X, Y ) + 2τ�(X, Y )− 2
∑

i

�(X, Ei)�(Y, Ei).

Condition (4) then reduces to

(8)
1
3
(|�|2 − τ2) g(X, Y ) =

∑

i

�(X, Ei)�(Y, Ei)− τ�(X, Y ).

Note that both sides are linear in X and Y . So, it is enough to check equality (8)

for an orthonormal basis. Take an orthonormal basis {E1, E2, E3} consisting of
eigenvectors of the Ricci tensor �, i.e., �(Ei, Ej) = �iδij . We find

(9) �2i − τ�i −
1
3
(|�|2 − τ2) = 0.

So, at x ∈ M , �i(x) is a root of a quadratic equation. Hence, there can be at most

two different Ricci roots and there is a root with multiplicity at least two. Put
�1(x) = �2(x) = λ, �3(x) = µ. Then τ(x) = 2λ+ µ, |�|2(x) = 2λ2 + µ2 and (9) gives

λ (µ− λ) = 0.

So, either all Ricci roots are the same at x, or two of them are zero and one is
non-zero.

Now, let U be the dense open subset of M on which the multiplicity of the Ricci
roots is locally constant. If on a connected component of U there is only one root

with multiplicity three, then this component has constant curvature; if we have a
zero root with multiplicity two, then the non-zero root must be constant on the

connected component by condition (5). In particular: the Ricci roots are always
locally constant, hence globally constant and U =M . �

In the case when (M3, g) has constant curvature κ, we have τ = 2 + 6κ − κ2.

When (M3, g) has two Ricci roots equal to zero (�1 = �2 = 0 �= �3), we have
τ = 2 + �3 − �23/4.
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Remark 5. Three-dimensional curvature homogeneous spaces have been studied
extensively ([10], [18], [19] and [7, Chapter 6] for further references). The class of
spaces with constant Ricci roots �1 = �2 = 0 and �3 �= 0 contains both homogeneous
([20]) and non-homogeneous ones ([18]). O. Kowalski has given explicit examples

of three-dimensional curvature homogeneous spaces with two zero Ricci roots and
negative third Ricci root ([18, Example 5.8]). As a simple example, �3 with the

metric

ds2 = e−2λzdx2 +
(
eλzdy + x(e−λz − λ2y2eλz)dx

)2
+

(
dz + 2λxy dx

)2

has Ricci roots �1 = �2 = 0, �3 = −2λ2. Moreover, this example is not locally
homogeneous.

Remark 6. Three-dimensional curvature homogeneous spaces with two zero
Ricci roots and one non-zero constant Ricci root are also non-trivial examples of

so-called O-spaces. These are Riemannian manifolds (M, g) defined as follows: let
c(t) be a circle in (M, g), i.e., ∇ċċ = k n and ∇ċn = −k ċ for some k ∈ �0 , and

consider the associated curvature operator Rc(X) := R(ċ, n)X . (M, g) is an O-
space if, for every circle c, Rc has constant eigenvalues along this circle. See [16] for

classification results and for more details.

5. Conformally flat manifolds

The classification of three-dimensional Riemannian manifolds whose unit tangent
sphere bundle has constant scalar curvature was possible because we could express

the Riemann curvature R using only the Ricci curvature � and the scalar curvature τ .
The same is true for conformally flat manifolds. So, suppose that (Mn, g), n � 4, is
conformally flat. Its curvature tensor R is given by

R =
1

n− 2 � ∧© g − τ

2(n− 1)(n− 2) g ∧© g.

A routine calculation gives

|R|2 = 4
n− 2 |�|

2 − 2
(n− 1)(n− 2) τ2,

ξ(X, Y ) =
2

(n− 2)2
(
(|�|2 − τ2

n− 1)g(X, Y )

+
2

n− 1τ�(X, Y ) + (n− 4)
∑

i

�(X, Ei)�(Y, Ei)
)
,
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and condition (4) reduces to

1
n

(
(n− 4)|�|2 + 2

n− 1τ
2
)
g(X, Y )(10)

=
2

n− 1 τ�(X, Y ) + (n− 4)
∑

i

�(X, Ei)�(Y, Ei).

As before, we take an orthonormal basis {E1, . . . , En} consisting of eigenvectors of �,
i.e., �(Ei, Ej) = �iδij . The equation (10) simplifies to

(11) (n− 4)�2i +
2τ

n− 1 �i −
1
n

(
(n− 4)|�|2 + 2

n− 1 τ2
)
= 0.

First, we consider the four-dimensional situation, n = 4. In that case, (11) reads

τ (4�i − τ) = 0. Let U1 be the open subset of M where τ �= 0. Then �i = τ/4 for all
i = 1, . . . , n, and � = (τ/4) g. Hence, (U1, g) is a space of constant curvature and τ is

constant. Denote by U2 the set of points x ∈ M such that τ is identically zero on
some neighbourhood of x. On the open set U2 we have τ = 0. Condition (5) simply

says that |�|2 is constant on U2. But U1 ∪U2 is an open and dense subset of M and
τ is locally constant on this set. So the scalar curvature is globally constant and we

have

Proposition 5.1. Let (M4, g) be conformally flat. Then (T1M, gS) has constant
scalar curvature if and only if (M4, g) has constant curvature or its scalar curvature τ

is zero and |�|2 is constant.

When (M4, g) has constant curvature κ, τ is given by τ = 3 (4+8κ−κ2)/2. When

τ = 0 and |�|2 is constant, τ = 6− (|�|2/8).
Examples of this last class of spaces are the Riemannian products M = M2(c) ×

M2(−c), whereM2(c) is a two-dimensional space of constant curvature c (cf. Proposi-
tion 5.2). It would be worthwhile to classify explicitly the four-dimensional Riemann-

ian manifolds with τ = 0 and |�|2 constant.
Returning to the general situation, n > 4, (11) says that all Ricci roots are solu-

tions of a quadratic equation. So, at each x ∈ M , there are at most two distinct Ricci

roots, say λ with multiplicity k and µ with multiplicity n−k. Then τ = kλ+(n−k)µ,
|�|2 = kλ2 + (n− k)µ2 and (11) gives

(12) (µ− λ)
(
(n2 − 5n+ 4 + 2k)λ+ (n2 − 3n+ 4− 2k)µ

)
= 0.

As in the previous section, it follows from condition (5) that the Ricci roots are
constants and (Mn, g) is curvature homogeneous.
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In [26], H. Takagi gives an explicit classification of conformally flat locally homoge-

neous spaces of arbitrary dimension. He shows that such a space is locally isometric
to one of the following locally symmetric spaces:

1. a space of constant curvature;

2. the Riemannian product of a space of non-zero constant curvature κ and a space
of constant curvature −κ;

3. the Riemannian product of a space of non-zero constant curvature κ and a

one-dimensional space.

As his proof uses only curvature homogeneity, this classification is also valid for

conformally flat curvature homogeneous spaces. (See also [17].) We check which of
the above three classes in the classification are possible in our present situation.

1. A space of constant curvature corresponds to the solution λ = µ in (12).

2. Suppose (Mn, g) is locally a product of the form Mn = Mk(κ) × Mn−k(−κ),

where Mk(κ) is a k-dimensional space of constant curvature κ, κ �= 0. Then
from (12) it follows n = 2k.

3. Suppose (Mn, g) is locally a product of the form Mn = Mn−1(κ) × �, κ �= 0.
Then (12) gives the contradiction (n− 1)(n− 2) = 0.

We have proved

Proposition 5.2. Let (Mn, g), n > 4, be conformally flat. Then (T1M, gS) has
constant scalar curvature if and only if either (M, g) has constant curvature, or if n is

even, say n = 2k, and (Mn, g) is locally isometric to the product Mk(κ)×Mk(−κ),
κ �= 0.

In the case when (Mn, g) has constant curvature κ, we have τ = (n−1)
(
2(n− 2)+

2nκ − κ2
)
/2. When (M2k, g) is locally isometric to Mk(κ) × Mk(−κ), we have

τ = (n− 2)((n− 1)− κ2/4).

Remark 7. In this section we have only considered conformally flat manifolds
of dimension greater than or equal to four. One could ask the question which of
the three-dimensional conformally flat manifolds has a unit tangent sphere bundle

with constant scalar curvature. Combining Proposition 4.2 with Takagi’s result on
conformally flat curvature homogeneous spaces mentioned above, we see easily that

only the three-dimensional spaces of constant curvature qualify.
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6. Einstein unit tangent sphere bundles

The previous sections dealt with unit tangent sphere bundles having constant
scalar curvature. In the rest of this paper, we consider some further subclasses.

First, we investigate for which Riemannian manifolds their unit tangent sphere
bundle with the metric gS is Einstein, i.e., � = α gS for some constant α.

Theorem 6.1. (T1M, gS) is an Einstein manifold if and only if (M, g) is locally

isometric either to a two-dimensional Euclidean space or to a two-dimensional sphere

of radius 1.

�����. From the expressions (2) for the Ricci tensor it follows that (T1M, gS) is

Einstein if and only if

RuXijRuY ij = 4(α− n+ 2)
(
g(X, Y )− g(X, u)g(Y, u)

)
,(13)

(∇u�)(X, Y ) = (∇X�)(u, Y ),(14)

RuiXjRuiY j = 2�(X, Y )− 2αg(X, Y )(15)

for some constant α, all unit vectors u and all vectors X and Y tangent to M .

In (13) and (15) we put X = Y = Ek and sum for k = 1, . . . , n to obtain

ξ(u, u) = 4(α− n+ 2)(n− 1),(16)

ξ(u, u) = 2τ − 2nα.(17)

As an Einstein manifold of dimension greater than or equal to three has constant

scalar curvature, we know from (4) that ξ(u, u) = |R|2/n. Eliminating α from these
two equations, we obtain the identity

(18) (3n− 2)|R|2 = −4n2(n− 1)(n− 2) + 4n(n− 1)τ.

Next, put X = Y = u in (15) and integrate over u ∈ Sn−1(1) in TxM (see the
formulas in [11]). This gives

(19)
1

n(n+ 2)

(3
2
|R|2 + |�|2

)
=
2τ
n
− 2α.

We eliminate α from (17) and (19) to find a second identity:

(20) (n− 4)|R|2 + 2n|�|2 = 0.

For n � 4, |�|2 = 0 and hence also τ = 0. But then (18) gives a contradiction.
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For n = 3, (20) reads |R|2 = 6|�|2. On the other hand, we always have |R|2 =
4|�|2 − τ2 for a three-dimensional manifold. Hence, τ = |�|2 = |R|2 = 0 and again
(18) cannot hold.
For n = 2, R = (κ/2) g ∧©g and |R|2 = 4κ2, |�|2 = 2κ2, τ = 2κ. The only solutions

to (18) and (20) are κ = 0 and κ = 1.
Conversely, if (M, g) is locally isometric to a two-dimensional Euclidean space,

then (T1M, gS) is locally flat. If (M, g) is locally isometric to a two-dimensional
sphere of radius 1, then (T1M, gS) has constant curvature 1/4 ([8]). In both cases

the unit tangent sphere bundle is an Einstein manifold. �

7. Ricci-parallel unit tangent sphere bundles

Next, we consider the case when the unit tangent sphere bundle (T1M, gS) is
Ricci-parallel, i.e., ∇� = 0. Reverting to index notation and adopting the Einstein
summation convention, we have the following necessary and sufficient conditions,

coming from (3):

RZXijRuY ij +RuXijRZY ij = 0, X, Y, Z ⊥ u,(21)

2(∇Z�XY −∇X�Y Z)−RuZY i(∇u�Xi −∇X�ui) = 0, X, Z ⊥ u,(22)

RuZXjRuijkRuiY k +RuZY jRuijkRuiXk(23)

− 2(RuZY i�Xi +RuZXi�Y i)

− 2(RZiXjRuiY j +RuiXjRZiY j) = 0, Z ⊥ u,

∇ZRuXijRuY ij +RuXij∇ZRuY ij(24)

−RuXZi(∇u�iY −∇Y �iu)−RuY Zi(∇u�iX −∇X�iu) = 0,

4(n− 2)RZY uX − 4RuXZi�iY(25)

+ 4(∇2Zu�XY −∇2ZX�uY )

+ 2RuXZjRuijkRuiY k +RZY ujRujikRuXik = 0,

4∇Z�XY − 2∇ZRuiXjRuiY j − 2RuiXj∇ZRuiY j(26)

+RZXui(∇u�iY −∇i�uY ) +RZY ui(∇u�iX −∇i�uX) = 0.

Here, u is an arbitrary unit vector, X , Y and Z are arbitrary vectors and the in-

dices i, j, k stand for vectors of an orthonormal basis {E1, . . . , En}.

Lemma 7.1. Both τ and |R|2 are constant on the manifold (M, g).

�����. As (T1M, gS) has constant scalar curvature, we know that the linear

combination 4nτ − |R|2 is constant and that ξ(X, Y ) = RXijkRY ijk =
|R|2

n g(X, Y ).
We use this last fact implicitly in all the calculations in this section.
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We only need condition (22) to prove the lemma. We note beforehand that by the

second Bianchi identity we have

∇X�Y Z −∇Y �XZ = ∇iRXY Zi.

Using this, we rewrite (22) in the form

2(∇Z�XY −∇X�Y Z)−RuZY i∇jRuXij

− 2g(u, Z)(∇u�XY −∇X�uY )− 2g(u, X)(∇Z�uY −∇u�Y Z) = 0

which holds for all vectors X , Y and Z tangent to M . Integrating this formula

over u ∈ Sn−1(1) (using again the formulas in [11]), we find

(27) 2(n− 2)(∇Z�XY −∇X�Y Z)−RkZY i∇jRkXij = 0.

First, put X = Z = E� and sum over 	 = 1, . . . , n. This gives Rk�Y i∇jRk�ij = 0
or, after some reworking (using the second Bianchi identity),

(28) (n− 4)∇Y |R|2 = 0.

Next, we take X = Y = E� in (27) and sum over 	 = 1, . . . , n to obtain

(29) (n− 2)∇Zτ −RkZ�i∇jRk�ij = 0.

We rewrite the last term on the left hand side: start by differentiating the equality

RkZ�iRk�ij = −(|R|2/2n) g(Z, j) with respect to Ej and sum over j = 1, . . . , n.
Then use (4), the first of the identities (30) below and the second Bianchi identity

to find RkZ�i∇jRk�ij = ((n − 4)/8n)∇Z|R|2. By (28), this is zero. So, we have
(n− 4)∇Y |R|2 = (n− 2)∇Zτ = 0 and the lemma follows for all dimensions from the

constancy of 4nτ − |R|2. �

Next, we derive identities between curvature invariants of order two, four and six
from the conditions (23) and (25). The ones of order six that show up are 〈�, Ṙ〉,
〈�⊗ �, R〉, Ř and Ř. With our sign convention for R, they have the expressions

〈�, Ṙ〉 = �ijRipqrRjpqr ,

〈�⊗ �, R〉 = −�ij�k�Rikj�,

Ř = −Rijk�Rk�pqRpqij ,

Ř = −Rikj�Rkp�qRpiqj .
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We also need the identities (see [14] for more details)

RijkpRikjq =
1
2
ξpq,

Rijk�Rk�pqRpiqj = −
1
2
Ř,

Rijk�Rkp�qRpiqj = −
1
4
Ř,(30)

Rijk�Rjp�qRpkqi = −Ř+
1
4
Ř,

�ijRikpqRjpkq =
1
2
〈�, Ṙ〉.

We do not go into detail as concerns the computations and only indicate how we

obtain the identities between the curvature invariants.

First, we rewrite (23) in a form which is valid for all vectors Z:

RuZXjRuijkRuiY k + RuZY jRuijkRuiXk

− 2(RuZY i�Xi +RuZXi�Y i)− 2(RZiXjRuiY j +RuiXjRZiY j)

+ 4g(u, Z)RuiXjRuiY j = 0.

Then we take X = u and integrate over u ∈ Sn−1(1) in TxM . Next, we put Y =

Z = Eq and sum over q = 1, . . . , n. In this way we find

(31) 〈�⊗ �, R〉+ Ř− 1
2
Ř+

1
2
〈�, Ṙ〉 − 2n|�|2 − (n− 4)|R|2 = 0.

In (25), we first take Y = u and integrate, followed by a summation over X =
Z = Eq to obtain

(32) 4(n+ 2)(n− 2)τ − 4(n+ 2)|�|2 + 4〈�, Ṙ〉+ 2〈�⊗ �, R〉+ 3
2
Ř = 0.

Also in (25), we take Z = u and integrate, followed by a summation over X =

Y = Eq. We get

(33) −4(n+ 2)(n− 2)τ + 4(n+ 2)|�|2 − 3〈�, Ṙ〉+ 2Ř− 5
2
Ř = 0.

If we now sum equations (32) and (33) and subtract (31) twice, we have the simple

relation

(34) (n− 4)|R|2 + 2n|�|2 = 0.
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If n > 4, the only solutions to (34) are |R|2 = |�|2 = 0 and the manifold (M, g) is

flat. But then (T1M, gS) is locally isometric to �n×Sn−1, which is locally symmetric,
hence Ricci-parallel.

If n = 4, |�|2 = 0 by (34), hence also τ = 0. (M, g) is Ricci-flat. In particular, we

can use a Singer-Thorpe orthonormal basis {E1, . . . , E4} such that

R1212 = R3434 = λ1, R1234 = µ1,

R1313 = R2424 = λ2, R1342 = µ2,

R2323 = R1414 = λ3, R1423 = µ3,

Rijkl = 0 otherwise.

(See [2] and [24].) As the Ricci tensor � vanishes in the present case, we have

λ1 + λ2 + λ3 = 0. By the first Bianchi identity, also µ1 + µ2 + µ3 = 0 holds.
Take u = cos θ E1 + sin θ E2 and express condition (21) for arbitrary X , Y and Z

perpendicular to u. The algebraic equations one obtains for λi and µi, together with
the analogues corresponding to similar choices of u, have only the zero solution. So

again, only the flat space is a solution.

If n = 3, it always holds |R|2 = 4|�|2 − τ2. Combined with (34), we see that the
flat space is the only solution also in this dimension.

Finally, if n = 2, an easy calculation shows that the spaces of constant curvature
zero or one are the only solutions to the equations (31)–(33). Conversely, their unit

tangent sphere bundles also have constant curvature, hence are Ricci-parallel.

We have proved

Theorem 7.2. (T1M, gS) has parallel Ricci curvature tensor if and only if

(M, g) is either flat or is a surface of constant curvature 1.

Corollary 7.3. ([5]) (T1M, gS) is locally symmetric if and only if (M, g) is either
flat or is a surface of constant curvature 1.

Remark 8. Blair’s proof of this last result uses the natural contact metric struc-
ture of (T1M, gS) in an essential way. Our proof is more basic in that it uses only
curvature information.

Remark 9. Our formulas may also be used to determine for which Riemannian
manifolds (M, g) the corresponding unit tangent sphere bundle (T1M, gS) is confor-

mally flat. As in [6], we find that this is the case if and only if (M, g) is a surface of
constant curvature 0 or 1.

542



References

[1] J. Berndt, F. Tricerri and L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci
harmonic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New
York, 1995.

[2] A.L. Besse: Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93,
Springer-Verlag, Berlin, Heidelberg, New York, 1978.

[3] A.L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag,
Berlin, Heidelberg, New York, 1987.

[4] D.E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509,
Springer-Verlag, Berlin, Heidelberg, New York, 1976.

[5] D.E. Blair: When is the tangent sphere bundle locally symmetric? Geometry and
Topology. World Scientific, Singapore, 1989, pp. 15–30.

[6] D.E. Blair and T. Koufogiorgos: When is the tangent sphere bundle conformally flat?
J. Geom. 49 (1994), 55–66.

[7] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian manifolds of conullity two. World
Scientific, Singapore, 1996.

[8] E. Boeckx and L. Vanhecke: Characteristic reflections on unit tangent sphere bundles.
Houston J. Math. 23 (1997), 427–448.

[9] E. Boeckx and L. Vanhecke: Curvature homogeneous unit tangent sphere bundles. Publ.
Math. Debrecen 53 (1998), 389–413.

[10] P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci cur-
vatures �1 = �2 �= �3. J. Math. Phys. 37 (1996), 4062–4075.

[11] B.-Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres. J. Reine Angew.
Math. 325 (1981), 28–67.

[12] P. Gilkey, A. Swann and L. Vanhecke: Isoparametric geodesic spheres and a conjecture
of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford 46 (1995), 299–320.

[13] A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978),
259–280.

[14] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small
geodesic balls. Acta Math. 142 (1979), 157–198.

[15] A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds. Proc.
Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364.

[16] S. Ivanov and I. Petrova: Riemannian manifolds in which certain curvature operator has
constant eigenvalues along each circle. Ann. Global Anal. Geom. 15 (1997), 157–171.

[17] O. Kowalski: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolin. 30
(1989), 85–88.

[18] O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci
curvatures �1 = �2 �= �3. Nagoya Math. J. 132 (1993), 1–36.

[19] O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying
R(X,Y ) · R = 0. Czechoslovak Math. J. 46 (1996), 427–474.

[20] J. W. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976),
293–329.

[21] E. Musso and F. Tricerri: Riemannian metrics on tangent bundles. Ann. Mat. Pura
Appl. 150 (1988), 1–20.

[22] K. Sekigawa and L. Vanhecke: Volume preserving geodesic symmetries on four-
dimensional Kähler manifolds. Differential Geometry Peñiscola, 1985, Proceedings
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