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Abstract. The Fourier expansion in eigenfunctions of a positive operator is studied with
the help of abstract functions of this operator. The rate of convergence is estimated in
terms of its eigenvalues, especially for uniform and absolute convergence. Some particular
results are obtained for elliptic operators and hyperbolic equations.
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1. Introduction

Operator methods for studying series convergence are based on the following simple

idea. Let E,F be two Banach spaces and T a linear operator T : E → F . If u =
∑
ui

(convergence in E) then Tu =
∑
Tui (convergence in F ). Assume, in addition, that

this operator T can be split into a product T = T1T2 where T1 : E → F and T2 is
bounded in E. Then the second operator T2 can be used to establish some extra

properties of the series
∑
Tui such as the rate of convergence.

As an example of such splitting, we may take a representation T = ϕ(T )ψ(T )

when ϕ(t)ψ(t) = t (t > 0). The operators ϕ(T ), ψ(T ) can be defined via a suitable
operator calculus such as the Riesz calculus for self-adjoint operators in a Hilbert

space or the calculus from [1] for positive operators in a Banach space. It makes
sense to stress that these calculi are defined only for one space E and do not give

the answer what functions ϕ(T ) act from E to another given space F—this is an
additional and not simple problem.

561



Although the main results below are valid for a large set of functions ϕ(t), just

this problem causes restrictions of this set in applications. That is why we con-
sider in Section 3 only positive concave functions ϕ(t) (note that the particular case
ϕ(t) = tτ and the corresponding splitting T = T τT 1−τ were studied and used in the

monograph [2], Section 22).
The Fourier series with respect to the eigenfunctions of an operator T is not a

natural object to study if this operator is not symmetric, and should be replaced
by the biorthogonal expansion (see, e.g. [2], Section 9.4). We do not consider such

series here and confine ourselves only to the class of symmetric positive operators,
always starting from some Hilbert space where the convergence of Fourier series is

well known.
It will be convenient for us to put T = A−1 for some unbounded operator A with a

dense domainD(A) in a Hilbert spaceH , where the operator A−1 itself is assumed to
be bounded and compact. Thus it must be selfadjoint and its eigenfunctions e1, e2, . . .

form an orthonormal basis in H . The corresponding eigenvalues λi = ‖A−1ei‖ will
be arranged in the descending order and tend to zero. For any u ∈ H we have

representations

(1) u =
∞∑

i=1

(u, ei)ei, A−1u =
∞∑

i=1

λi(u, ei)ei,

and may define the operator ϕ(A−1) for any bounded function ϕ(t) as

(2) ϕ(A−1)u =
∞∑

i=1

ϕ(λi)(u, ei)ei.

Functions of the operatorA itself can be defined either as the inverse operator ϕ(A) =

[ϕ̃(A−1)]−1 for ϕ̃(t) = 1/ϕ(1/t) or via the series

(3) ϕ(A)u =
∞∑

i=1

ϕ(1/λi)(u, ei)ei,

which converges only for u from some subset ofH forming the domainD(ϕ(A)). This
operator calculus is classical and well-studied but only inside the Hilbert space H .
The following assertions will be useful for the exit to other spaces.

Let ϕ(t) : �+ → �
+ be a concave (and thus necessarily increasing) function.

Proposition 1.1 (see [3]). If A−1 : L2 → Lp, p > 2, then ϕ(A−1) : L2 → LΦ,

where LΦ is the Orlicz space generated by the function Φ(u) inverse to the function
t1/2ϕ(t1/p−1/2).
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Proposition 1.2 (see [1]). Let ϕ(t) have a representation

(4) ϕ

(
1
t

)
=

∫ ∞

0

dσ(s)
t+ s

, σ(s) ↑,
∫ ∞

0

dσ(s)
1 + s

<∞.

Then

(5) ϕ(A−1) =
∫ ∞

0
(A+ sI)−1 dσ(s).

Proposition 1.3. Let ϕ(0) = ϕ′(∞) = 0. Then

(6) ϕ

(
1
t

)
∼

∫ ∞

0

dϕ′(1/s)
t+ s

.

�����. An integration by parts gives immediately that

∫ ∞

0

dϕ′(1/s)
t+ s

=
∫ ∞

0

ϕ′(1/s) ds
(t+ s)2

.

Since the derivative of a concave function is decreasing, we obtain further that for
each t > 0

∫ ∞

0

ϕ′(1/s) ds
(t+ s)2

�
∫ ∞

0

ϕ′(1/(t+ s)) ds
(t+ s)2

=
∫ 1/t

0
ϕ′(τ) dτ = ϕ

(
1
t

)
.

On the other hand ϕ′(t) � 0, thus

∫ ∞

0

ϕ′(1/s) ds
(t+ s)2

�
∫ ∞

t

ϕ′(1/s) ds
4s2

=
1
4
ϕ

(
1
t

)
,

and the required equivalence is proved. �

The last two propositions show that, even for selfadjoint operators in a Hilbert

space, we may use all properties of the calculus from [1], where just the equality (5)
is taken as a definition of operator functions. This equality is especially useful for
a second order elliptic operator A because its resolvent (A + sI)−1 has well-known

properties (see, e.g. [4]).
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2. General part

In this section we give the main results which enable us to estimate the rate of
convergence of Fourier series and, consequently, of the Fourier method. Here we do

not need the above-mentioned restrictions on the set of functions. For simplicity we
denote below any unessential constant by the same letter M .

Theorem 2.1. Let the eigenfunctions ei(x) of a positive selfadjoint operator A
form a basis in a Hilbert space H and let the positive functions α(t), β(t) be such

that the function κ(t) = (α(t)β(1/t))−1 is monotone increasing. Suppose that the
operator α(A−1) acts from H to some other Banach space E and that a function

u(x) ∈ D(β(A)). Then u ∈ E and can be expanded as a Fourier series u =∑
(u, ei)ei

which converges in E. The rate of convergence can be characterized by the estimate

(7)

∥∥∥∥u−
n∑

i=1

(u, ei)ei

∥∥∥∥
E

= o(κ(λn)).

�����. First we remark that each ei(x) is an eigenfunction of the operator
α(A−1) and thus ei(x) ∈ E. Hence the partial sums of the Fourier series with

respect to {ei} for any u ∈ H always belong to E. And if u ∈ D(β(A)), it also
belongs to E, since it can be represented as

u = β−1(A)v = α(A−1)κ(A−1)v

for some v ∈ H , and κ(A−1) is a bounded operator in H .
So we may consider

∥∥∥∥u−
n∑

i=1

(u, ei)ei

∥∥∥∥
E

=

∥∥∥∥β−1(A)v −
n∑

i=1

(β−1(A)v, ei)ei

∥∥∥∥
E

.

Here

(β−1(A)v, ei)ei = (κ(A
−1)v, α(A−1)ei)ei = (κ(A

−1)v, ei)α(λi)ei

= (κ(A−1)v, ei)α(A−1)ei,

hence
∥∥∥∥u−

n∑

i=1

(u, ei)ei

∥∥∥∥
E

=

∥∥∥∥α(A−1)
[
κ(A−1)v −

n∑

i=1

(κ(A−1)v, ei)ei

]∥∥∥∥
E

(8)

� M

∥∥∥∥κ(A−1)v −
n∑

i=1

(κ(A−1)v, ei)ei

∥∥∥∥
H

,
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and it remains only to estimate the rate of convergence in H of the Fourier series for

the function κ(A−1)v. We have

∥∥∥∥κ(A−1)v −
n∑

i=1

(κ(A−1)v, ei)ei

∥∥∥∥
H

=

∥∥∥∥
∞∑

i=n+1

(κ(A−1)v, ei)ei

∥∥∥∥
H

(9)

=

∥∥∥∥
∞∑

i=n+1

(v, κ(A−1)ei)ei

∥∥∥∥
H

=

∥∥∥∥
∞∑

i=n+1

κ(λi)(v, ei)ei

∥∥∥∥
H

� κ(λn+1)

∥∥∥∥
∞∑

i=n+1

(v, ei)ei

∥∥∥∥
H

= o(κ(λn))

due to the convergence of the Fourier series for each function v ∈ H . �

Varying the space E gives a possibility to obtain different kinds of convergence:

mean convergence (with some exponent p), uniform convergence, or convergence
together with the differentiated series. This convergence inherits also the properties

of the basis {ei} in the space H such as permutability etc. If, for example, we
consider the case E = C, the convergence will be not only uniform but also absolute

(in usual pointwise sense).
Consider now an abstract hyperbolic equation

(10)
d2u(t)
dt2

+Au(t) = f(t), u(0) = u0, u′t(0) = v0

where A is a positive selfadjoint operator in H and t varies on [0, T ]. The simplest

example is A = −∆ on some bounded domain Ω ⊂ �
N with zero boundary condi-

tions, which gives us the classical oscillation equation. In any case, the solution of

the equation (10) can be written in an operator form

(11) u(t) = cos(A1/2t)u0+A−1/2 sin(A1/2t)v0+A−1/2
∫ t

0
sin(A1/2t−A1/2s)f(s) ds.

If ei, i = 1, 2, . . . are as in Theorem 2.1, the Fourier method for this equation consists
in constructing successive approximations

un(x) = Pnu =
n∑

i=1

(u, ei)ei

which must converge to the exact solution.

Theorem 2.2. Let α(s), β(s), κ(s) be as in Theorem 2.1 and let γ(s) = β(s)/
√
s,

g(t) = γ(A)f(t). Suppose that

u0 ∈ D(β(A)), v0 ∈ D(γ(A)), f(t) ∈ D(γ(A))
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for all t ∈ [0, T ] and that the function g(t) is bounded in H . Then the successive
approximations of the Fourier method un(t)→ u(t) in E uniformly on [0, T ] and the
rate of convergence is characterized by the estimate

(12) sup
0�t�T

‖u(t)− un(t)‖E = O(κ(λn)).

�����. Set Qn = I − Pn. In fact, we have to estimate ‖Qnu‖E. The operators
Qn commute with all functions of the operator A, so the formula (11) implies that

‖Qnu‖E � ‖ cos(A1/2t)Qnu0‖E + ‖A−1/2 sin(A1/2t)Qnv0‖E(13)

+
∫ t

0
‖ sin(A1/2t−A1/2s)β−1(A)Qng(s)‖E ds.

The elements u1 = β(A)u0 and v1 = A−1/2β(A)v0 belong to H and the operators
cos(A1/2t) and sin(A1/2t) have the norms in H not exceeding 1 for all t, hence,

analogously to (8) and (9), we can easily show that

‖ cos(A1/2t)Qnu0‖E = ‖β−1(A) cos(A1/2t)Qnu1‖E = o(κ(λn))

and

‖A−1/2 sin(A1/2t)Qnv0‖E = ‖β−1(A) sin(A1/2t)Qnv1‖E = o(κ(λn))

uniformly on [0, T ]. For any t ∈ [0, T ] we also have

‖β−1(A)Qng(t)‖E � ‖α(A−1)‖H→E‖κ(A−1)Qng(t)‖H � M‖g(t)‖Hκ(λn+1),

and the integral in (13) can be estimated independently of t:

∫ t

0
‖ sin(A1/2t−A1/2s)β−1(A)Qng(s)‖E ds � MT sup

0�t�T
‖g(t)‖Hκ(λn+1).

It remains only to substitute these estimates into (13). �

Remark. Both theorems can be also adapted to the case when the function
(α(t)β(1/t))−1 is not monotone increasing. It is sufficient to take for κ(t) any in-

creasing majorant of this function—for example,

κ(t) = sup
s�t
(α(s)β(1/s))−1.
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There are certain problems in which a Fourier series undergoes some additional

operations (differentiation, special integral transforms etc.) and the rate of its con-
vergence is considered only thereafter. One way to investigate such problems is to
add these operations to the definition of the norm in the space E, but such spaces

could get too complicated for searching for a function α(t) satisfying the condition
α(A−1) : H → E. Another way is to assume the subordination of these operations

to some functions of the operator A−1.

Theorem 2.4. Let a linear operator B be defined on the domain D(α̃(A)), where
α̃(t) = 1/α(1/t), and satisfy the inequality

(14) ‖Bα(A−1)v‖E � M‖v‖H for all v ∈ H.

Let u ∈ D(β(A)) and let κ(t) be the same as in Theorems 2.1 and 2.2. Then one may
apply to the first series from (1), term by term, the operator B and the resulting
series

(15) Bu =
∞∑

i=1

(u, ei)Bei

converges in E with the rate which can be estimated as

∥∥∥∥Bu−
n∑

i=1

(u, ei)Bei

∥∥∥∥
E

= o(κ(λn)).

�����. The proof is analogous to that of Theorem 2.1. Note, as before, that

the series (15) admits any permutations of its terms and so, if E = C, we again
obtain a uniform and absolute convergence. In order to obtain the inequality (14)
we can use the so-called inverse moment inequalities, for example, a result from [1].

It states that the inequality (14) holds if the operator B is closed and

‖Bv‖E � ‖v‖Hδ(‖Av‖H/‖v‖H)

for all v ∈ D(A) and some function δ(t) such that
∫ 1

0
α(t)δ

(
1
t

)
dt
t
<∞.

�
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3. Special part

In this section we give some applications of the main results. We consider the

usual second order hyperbolic equations in L2(Ω) for some bounded set Ω ⊂ �
N with

sufficiently smooth boundary ∂Ω. This means that we take in (9) as A a positive

selfadjoint second order elliptic operator with some admissible boundary conditions
on ∂Ω. We will be interested in absolute and uniform convergence on Ω of the

Fourier method which can be obtained if we take E = C(Ω). For the application of
Theorem 2.2 to our case, we must solve the following problems:
1) Under what conditions on the function α(t) does the corresponding operator

α(A−1) act continuously from L2(Ω) to C(Ω)?
2) Under what conditions on the function β(t) does a given function u = u(x),

x ∈ Ω, belong to the domain D(β(A))?
In the discussion below we consider functions α(t), β(t), having the form tmϕ(t)

for some m � 0 and some positive concave function ϕ(t). Note that in the solution
of the first problem we may take the space L∞ instead of the space C, because all

eigenfunctions ei(x) of elliptic operators are continuous on Ω.

Theorem 3.1. Let A be a second order positive elliptic operator with sufficiently
smooth coefficients, boundary and boundary conditions (cf. [5]), and let α(t) =

tN/4ψ(t) with some positive concave function ψ(t). Then the condition

(16)
∫ 1

0
(ψ(t)N/(N−1) dt

t
<∞

ensures that α(A−1) : L2 → C.

�����. Set m = N/4 − 1/2, ϕ(t) = t1/2ψ(t), then α(A−1) = A−mϕ(A−1). As

shown in [2], Section 16.5, the operator A−m : L2 → LN . At the same time for any
ε > 0, the operator A−N/4A−ε : L2 → C. So we need not consider functions ψ(t)

which are increasing faster then tε and, without loss of generality, we may assume
that the function ϕ(t) is also concave. Moreover, due to (6), we may assume that

the operator ϕ(A−1) has a representation (5) and can use Lemma 1 from [5] stating
that ϕ(A−1) : Λ→ L∞, where Λ is the so-called Lorentz space with the fundamental

function ϕ(t2/N ) (a full description of such spaces and their properties can be found
e.g. in [6]). If we show that LN ⊂ Λ, the proof of the theorem will be finished.
The conditions for such embeddings are given in [7]; in our case, it is sufficient that
ϕ(t2/N )/t ∈ LN/(N−1)[0, 1]. But
∫ 1

0
(ϕ(t2/N )/t)N/(N−1) dt =

∫ 1

0

(
t1/Nϕ(t2/N )

)N/(N−1) dt
t
=
N

2

∫ 1

0
(ψ(t))N/(N−1) dt

t
,

and (16) is proved. �
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It is possible to compare the results obtained with previous results from [2], al-

lowing to take ψ(t) = tε with arbitrary ε > 0. The condition (16) allows us to
take

ψ(t) =

(
1

ln(e/t)

)1−1/N+ε

, ε > 0,

which increases essentially slower than any power.

The conditions of Theorem 3.1 can be generalized to studying the convergence of a

Fourier series after its differentiation term by term. Let Dl be a differential operator
of order |l|. It is known (see e.g. [2], Section 16), that Dl is subordinate in L2 to

the power A|l|/2 of any positive second order elliptic operator if the inverse operator
A−1 is bounded in L2. Thus we may study the convergence of the series

Dlu =
∞∑

i=1

(u, ei)Dlei,

applying the result of Theorem 2.4. The condition on the function α(t) will be

α(t) = tN/4+|l|/2ψ(t)

for any ψ(t) satisfying (16).

The second problem, that is, the description of the domains D(β(A)), is less

studied and more difficult than to find α(t). Even for the fractional power tτ , the
domain D(Aτ ) can be easily described only for τ = 1/2, when it coincides with the

Sobolev space W 1
2 ; otherwise we only have the embedding D(A

τ ) ⊂ W 2τ
2 which is

useless for our purpose. So the following results on functions β(t) will be useful

also when these functions have a power form. Note that for equivalent functions
β1(t) ∼ β2(t), the corresponding domains D(β1(A)) and D(β2(A)) are the same,

thus we may assume that all our positive concave functions ϕ(t) have the form (4)
with σ(s) = ϕ′(1/s).

We give here two methods of checking that a given function u(x) ∈ D(β(A)) in
L2(Ω). The first of them is suitable for any positive operator A in an arbitrary

Hilbert space H and uses a result from [1] dealing with the Peetre K-functional. For
a Banach couple (E,F ) and every u ∈ E + F , this functional is defined as

K(t, u, E, F ) = inf
u=u0+u1

(‖u0‖E + t‖u1‖F ).

In our case we take E = H and F = D(A) equipping the last space with the norm
‖u‖D(A) = ‖Au‖H .
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Let ϕ(t) be as above. As shown in [1], one has an embedding D(ϕ(A)) ⊃ Hϕ,

where Hϕ is a subspace of H with the norm

‖u‖Hϕ =
∫ ∞

0

1
t
K(t, u,H,D(A)) dϕ′

(
1
t

)
.

Hence for a function β(t) = tmϕ(t) with some integer m, the inclusion u ∈ D(β(A))
is ensured by the inclusion Amu ∈ Hϕ which can be written as

(17)
∫ 1

0

1
t
K(t, Amu,H,D(A)) dϕ′

(
1
t

)
<∞, u ∈ D(Am).

Indeed, the corresponding integral from 1 to ∞ is necessarily finite, since K(t, v,H,
D(A)) is constant for t > 1/‖A−1‖ and any v ∈ H .
The condition (17) is rather abstract and gets usable only if the K-functional can

be expressed more explicitly. Such a situation occurs for a positive elliptic operator

of order 2k in L2, since its domain D(A) coincides there withW 2k
2 . TheK-functional

for the couple (L2,W 2k
2 ) was found by J. Peetre [8]:

K(t, v, L2,W
2k
2 ) ∼= ω(2k)2 (t1/2k, v) + t‖v‖L2,

where ω(n)2 (t, v) means the n-th modulus of continuity in L2 of the function v(x):

ω
(n)
2 (t, v) = sup

|h|�t

∥∥∥v(x+ nh)−
(
n

1

)
v(x + (n− 1)h) + . . .

∥∥∥
L2
.

The second summand t‖v‖L2 may be ignored, since its contribution to the integral

in (17) is always finite. Summarizing, we arrive at the following assertion.

Theorem 3.2. Let A be a selfadjoint positive elliptic operator of order 2k acting
in L2. Let β(t) = tmϕ(t) with some positive concave function ϕ(t). Then for any
u ∈ D(Am), the inequality

(18)
∫ 1

0

1
t
ω
(2k)
2 (t1/2k, Amu) dϕ′

(
1
t

)
<∞

ensures the inclusion u ∈ D(β(A)).

Another way to describe D(β(A)) can be suggested especially for the second order
elliptic operators in L2. In this case we may use the integral representation of

operators ϕ(A−1) from [5]:

ϕ(A−1)u(x) =
∫

Ω
Gϕ(x, y)u(y) dy,
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with kernels satisfying for N � 3 an inequality

(19) 0 � Gϕ(x, y) � M |x− y|2−Nϕ′(|x− y|2).

Theorem 3.3. Let A be a second order positive elliptic operator in L2(Ω) as in
Theorem 3.1, where Ω ⊂ �

N , N � 3. Assume the existence of a minimal integer
m � 1 such that the function v = Amu is integrable, but does not belong to L2 on Ω.

If a concave function ϕ(t) satisfies the inequality

(20)
∫

Ω

[∫

Ω

|v(y)|ϕ′(|x − y|2)
|x− y|N−2 dy

]2
dx <∞,

then u ∈ D(β(A)) for β(t) = tmϕ(1/t).

�����. The condition (20) entails that ϕ(A−1)Amu ∈ L2 and consequently
u ∈ D(Amϕ(A−1)) = D(β(A)). �

The conditions of the last theorem seem to be easier for checking, because we need
not deal with the hardly computable modulus of continuity. The operator Am, used

in both theorems, does not make any additional difficulties, being a mere iteration of
the implicitly given operator A. The case N = 2 is always known as peculiar. It was

also considered in [5], where it was proved that the estimate (19) remains valid if the
function ϕ(t) is not “very close” to t. Otherwise, Gϕ(x, y) � Mη(|x− y|) where

η(t) =
∫ a

t2
ϕ′(s)

ds
s

with arbitrary a � (2 diamΩ)2. The reader can easily adapt Theorem 3.3 to this
case.

The same technique can be used for checking the last condition of Theorem 2.2,

the boundedness of the function g(t) in L2. To compute Amf(t) for a given A and
f(t) is not a difficult task when m is an integer, and then we need once again to

examine the inequality (20) with Amf(t) as v. The only additional problem which
we have here is to show that the integral in (20) can be estimated independently of

t ∈ [0, T ].
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