
Czechoslovak Mathematical Journal

Jan Seidler
Ivo Vrkoč septuagenarian

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 4, 673–678

Persistent URL: http://dml.cz/dmlcz/127678

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127678
http://dml.cz


Czechoslovak Mathematical Journal, 51 (126) (2001), 673–678

IVO VRKOČ SEPTUAGENARIAN

Jan Seidler, Praha

Ten years ago we recorded in this journal [FKM] Ivo Vrkoč’s sixtieth birthday

(born June 10, 1931). With some exaggeration we may say that nothing substantial
has changed: Ivo Vrkoč’s life remains devoted to mathematics and his office in the

institute remains the most likely place he may be found any day of the week. Albeit
he retired from the Mathematical Institute of the Academy of Sciences in January

1997, he has still been tied with it by the grant projects he participates in.

Simultaneously, I. Vrkoč was with the Institute of Entomology of the Academy of
Sciences in České Budějovice in southern Bohemia in the years 1998–2000. In this

way he might resume his cooperation with his former Ph.D. student Vlastimil Křivan,
with whom he had already published two joint papers on differential inclusions ([57]

being the second of them). Their recent research was motivated by mathematical
ecology and problems of biodiversity and resulted in three papers [65], [69] and [70].

The fact that Ivo Vrkoč was able to start successfully a study of a problem so
new for him, as animal distribution in heterogeneous environment is, cannot surprise

anybody who knows him well. He has never been much interested in developing
systematically abstract theories, he enjoys solving concrete problems requiring more

a new bright insight than a huge preliminary knowledge. Much of his work stemmed
from his discussions with colleagues and from problems posed by them. The unusu-

ally wide range of problems he addressed in his papers is closely connected with this
basic attitude of his.

Therefore, it is not easy to describe in few words the results Ivo Vrkoč has ob-
tained in the last ten years. We would like to treat now in some detail three of

the topics that have attracted his attention, but first let us at least mention the
other ones. Besides the work inspired by biology, I. Vrkoč continued his long-lasting

collaboration with the physicist Jan Fischer and they coauthored two papers [63],
[64] on operator-product expansions in quantum chromodynamics. Continuous de-

pendence of solutions to stochastic partial differential equations on coefficients and
the related averaging theorems were studied in the papers [56] and [59], which com-
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plemented a series of papers on the same problem I. Vrkoč published in the eighties

(cf. [FKM]).
The paper [58] is formally devoted to ordinary differential equations in Hilbert

spaces, but its importance becomes clear only if we realize its close relation to ergodic

theory of stochastic partial differential equations. Let us consider a Markov process
(X, Px) in �d defined by a stochastic differential equation

(1) dxt = b(xt) dt+ σ(xt) dwt

driven by a Wiener process w. A standard procedure, based on an argument due
to N. N. Bogolyubov and N.M. Krylov, may be used to show that there exists an

invariant probability measure for X if the process X is Feller and the equation (1)
admits at least one solution bounded in probability. Since the proof uses relative

compactness of balls in �d it cannot be extended immediately to stochastic PDEs
(modelled as stochastic equations in an infinite dimensional state space). A suit-
able generalization in this direction was obtained by G. Da Prato, D. Gątarek and

J. Zabczyk in [DGZ]. It was the first sufficiently general theorem on invariant mea-
sures for stochastic PDEs with non-additive noise; however, we recall here their result

only in the very particular deterministic case: Let H be a separable Hilbert space,
A : dom(A) −→ H an infinitesimal generator of a strongly continuous semigroup

(eAt) on H and f : H −→ H a Lipschitz mapping. Then the dynamical system
defined by an equation

(2)
dx
dt
= Ax+ f(x)

in H has an invariant probability measure, provided there is a bounded solution

to (2) and the semigroup (eAt) is compact. It is quite natural to ask whether this
assertion remains true if the compactness hypothesis on (eAt) is relaxed. I. Vrkoč

in [58] showed that in the case A = 0 everything may go wrong. In any infinite
dimensional Hilbert space H there exists a bounded Lipschitz continuous function

f : H −→ H such that f(0) �= 0, nonetheless, all solutions to the equation

(3)
dx
dt
= f(x)

converge weakly to 0 as t →∞. It follows that every solution to (3) has an empty Ω-

set, consequently, there is no (nontrivial) finite Borel Radon measure invariant for (3).
If H is separable, (3) has an additional interesting property: there exists a sequence

of finite dimensional Galerkin approximations to (3), each of this approximations has
an invariant probability measure, these invariant measures converge weakly, but the
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limit measure is of course not invariant. The function f with the above properties

is constructed explicitly in [58], the construction using only elementary tools being,
however, quite complicated from the technical point of view.
To sketch the results contained in the paper [60] we have to introduce basic

definitions concerning the Kurzweil (or Kurzweil-Henstock) integral. We say that
D = {(αi), (τi)} is a (tagged) partition of an interval [a, b] ⊆ � if a = α0 < α1 <

. . . < αk = b and τi ∈ [αi−1, αi], i = 1, . . . , k. Given a strictly positive function
δ : [a, b] −→ ]0,∞[ (henceforward, we shall call any such function a gauge) we say
that the partition D is δ-fine provided that

[αi−1, αi] ⊆ ]τi − δ(τi), τi + δ(τi)[, i = 1, . . . , k.

For a real function f : [a, b] −→ � and a tagged partition D = {(αi), (τi)} we set

S(f, D) =
k∑

i=1

f(τi)(αi − αi−1)

and we call the function f Kurzweil integrable if I ∈ � may be found satisfying: for
any ε > 0 there is a gauge δ such that

|I − S(f, D)| < ε

whenever D is a δ-fine partition of [a, b]. We put

I = (K )-
∫ b

a

f(x) dx,

the Kurzweil integral of f . It is known that the Kurzweil integral is equivalent to
the Perron one, its distinctive feature being its similarity to the classical Riemann’s
approach to integration (it suffices to replace the gauge δ in the above definition by a

constant δ > 0 to obtain the Riemann integral). A basic problem of any integration
theory is to establish good convergence theorems: if fn are integrable and fn → f

pointwise on [a, b], find hypotheses implying that f is integrable and

(4) (K )-
∫ b

a

fn(x) dx−−−−→
n→∞

(K )-
∫ b

a

f(x) dx

holds true. The definition of the Kurzweil integral indicates that to prove (4) it
is necessary to interchange two limit passages: the convergence of fn’s to f and

the convergence of the integral sums S(fn, D) to the integral of fn. Usually, to
interchange two limit processes some type of uniform convergence for one of them

675



is needed. Indeed, if fn → f uniformly on [a, b] then (4) holds, unfortunately,

such a theorem is of a little use. On the other hand, it was noted by D. Preiss
and Š. Schwabik that if the functions fn are supposed to be uniformly Kurzweil
integrable, one gets a strong convergence theorem yielding also the dominated and

monotone convergence theorems (see [Ku], Kapitel 5). More precisely: we say that a
set H of Kurzweil integrable functions is equiintegrable if for any ε > 0 there exists

a gauge δ such that ∣∣∣∣(K )-
∫ b

a

f(x) dx− S(f, D)

∣∣∣∣ < ε

for all f ∈ H and all δ-fine partitions D. Assume that fn are Kurzweil integrable

functions, fn → f pointwise on [a, b] and the set {fn; n � 1} is equiintegrable. Then
f is Kurzweil integrable and (4) holds.

In the paper [60], the necessity of the equiintegrability assumption is thoroughly
studied. In particular, it is proven that if a sequence {fn} of nonnegative Kurzweil
integrable functions satisfies fn → 0 pointwise on [a, b] and

(K )-
∫ b

a

fn(x) dx−−−−→
n→∞

0

then {fn} is equiintegrable. It follows that if gn are absolutely Kurzweil integrable

functions (i.e., Lebesgue integrable) and gn → g in L1([a, b]) then {gn}n�1 is again
equiintegrable. Therefore, equiintegrability plays essentially the same rôle in the

theory of the Kurzweil integral as Vitali’s notion of uniform integrability plays in
that of the Lebesgue one.

Finally, we would like to mention briefly the papers [66]–[68], concerning nonlinear
periodic boundary value problems of the form

(5) ü = f(t, u, u̇), u(a) = u(b), u̇(a) = w(u̇(b)),

where w : � −→ � is a continuous nondecreasing function and f : [a, b]× �
2 −→ �

satisfies the Carathéodory conditions. Since the work of G. Scorza Dragoni in the

early thirties of the last century it has been known that existence of solutions to (5)
may be investigated by means of upper and lower functions. Let us recall that a pair

of smooth functions (σ, �) is a lower function (or a lower solution) of (5) if

(6) σ̇(t) = �(t), �̇(t) � f(t, σ(t), �(t)), t ∈ [a, b];

an upper function is defined analogously. Recently, I. Rach̊unková and M. Tvrdý

succeeded in showing (see [RT]) that the Leray-Schauder degree theory may be used
to study existence and multiplicity of (Carathéodory) solutions to (5) under the
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hypothesis that suitable nonsmooth upper and lower functions exist. Namely, they

consider lower functions (σ, �) such that σ is absolutely continuous, � is a function
of bounded variation whose singular part is nondecreasing and (6) holds almost
everywhere on [a, b].

Ivo Vrkoč got acquainted with this theory through a series of lectures Irena
Rach̊unková and Milan Tvrdý delivered in Prague and he immediately joined this line

of research. In the paper [66], accompanying [RT], two seemingly very different def-
initions of lower and upper functions are proven to be equivalent. In the papers [67]

and [68], the general theory is applied to particular cases of the problem (5), equa-
tions with rather singular right hand sides f being treated. To state here any of

the theorems established in [67] or [68] would require too many preliminaries, so
we are forced to content ourselves with quoting an examples covered by the theory

developed in [67]. Let g : ]0,∞[ −→ � be a continuous function and e : [0, 1] −→ �

an integrable function. Suppose that

∫ 1

0
e(s) ds+ lim sup

x→∞
g(x) < 0

and

e(t) + g(x) + �
2x � η for some η > 0, almost every t ∈ [0, 1] and every x � η/�2,

then the problem

ü− g(u) = e(t), u(0) = u(1), u̇(0) = u̇(1)

has a positive solution u satisfying u � η/�2 on [0, 1]. In particular, let us consider
a function g given by

g(x) = kx− 1
xλ

, k > 0, λ > 0.

The quoted result yields existence of a solution even in the case of a weak sin-

gularity (i.e. λ ∈ ]0, 1[) and for the critical value k = �
2 of the parameter k; these

cases not having been covered by previously known theorems (due to A.C. Lazer

and S. Solemini, J. Mawhin and others).
Ivo Vrkoč is a very modest man, indifferent towards worldly success. His aim in

mathematics has always been to achieve deep understanding, not to produce a stream
of papers. He did not publish all his results, only those he found really interesting

and enjoyable. But he has been always prepared to help his colleagues and friends
and many of us have profited considerably from his nice ideas and his skill in finding
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surprising examples and counterexamples. Both his publications and his influence

on his colleagues and students turn Ivo Vrkoč into one of the main figures of the
Czechoslovak mathematics of the second half of the twentieth century.

Acknowledements. I am indebted to J. Fischer, V. Křivan, B. Maslowski,
Š. Schwabik and M. Tvrdý for very useful discussions concerning this paper.
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