
Czechoslovak Mathematical Journal

Hans-Jürgen Engelbert
A note on one-dimensional stochastic equations

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 4, 701–712

Persistent URL: http://dml.cz/dmlcz/127681

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127681
http://dml.cz


Czechoslovak Mathematical Journal, 51 (126) (2001), 701–712
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Dedicated to Ivo Vrkoč on the occasion of his 70th birthday

Abstract. We consider the stochastic equation

Xt = x0 +
∫ t

0
b(u, Xu) dBu, t � 0,

where B is a one-dimensional Brownian motion, x0 ∈ � is the initial value, and b : [0,∞)×
� → � is a time-dependent diffusion coefficient. While the existence of solutions is well-
studied for only measurable diffusion coefficients b, beyond the homogeneous case there is
no general result on the uniqueness in law of the solution. The purpose of the present note
is to give conditions on b ensuring the existence as well as the uniqueness in law of the
solution.

Keywords: one-dimensional stochastic equations, time-dependent diffusion coefficients,
Brownian motion, existence of solutions, uniqueness in law, continuous local martingales,
representation property
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1. Introduction

We consider the one-dimensional stochastic equation

Xt = x0 +
∫ t

0
b(u, Xu) dBu, t � 0,

where B is a one-dimensional Brownian motion, x0 ∈ � is the initial value, and
b : [0,∞)× � → � is a measurable diffusion coefficient.
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In the homogeneous case, i.e., if b : � → � does not depend on the time parameter,

existence and uniqueness in law of the solution of Eq. (1.1) are well-understood. We
recall the main results (cf. [7], [9]). Let

Eb =

{
x ∈ � :

∫ x+ε

x−ε

b−2(y) dy = +∞, ∀ε > 0

}
, Nb = {x ∈ � : b(x) = 0}.

(Everywhere in this paper, we make the convention 0−1 = +∞ and also 0·(+∞) = 0.)
Then, for all x0 ∈ �, there exists a solution to Eq. (1.1) starting from x0 if and only
if Eb ⊆ Nb. If this existence condition is satisfied then, for every x0 ∈ �, the solution

starting from x0 is unique in law if and only if Eb = Nb.

In the general case of time- and state-dependent diffusion coefficients, T. Senf [14],
[15] has shown that, for every x0 ∈ �, there exists a (possibly, exploding) solution to

Eq. (1.1) starting from x0 if b2 as well as b−2 are locally integrable on [0,+∞)× �.
Moreover, every solution to Eq. (1.1) does not explode if only, for every N � 1,

(1.2) BN =
{

x ∈ � : sup
0�t�N

b2(t, x) < +∞
}

has strictly positive Lebesgue measure.

However, in the nonhomogeneous case there seems to be no general result con-
cerning the uniqueness in law of the solution. Of course, if b is (locally) Lipschitz
continuous in the state variable x uniformly in the time t � N (N � 1), then the
classical result is pathwise uniqueness and hence uniqueness in law of the solution.
This is also extended to coefficients b satisfying a (certain generalized) Hölder con-

dition with exponent 12 . But what can be said about diffusion coefficients b which
are only measurable at least in the state variable x?

In the present note, we will give a partial answer to this question assuming that

the square b−2 of the reciprocal of the diffusion coefficient b satisfies a certain local
Lipschitz condition in the time variable t where the Lipschitz constants may depend

on the state variable x in such a way that they form a locally integrable function.
As a result, we will obtain some existence and uniqueness statements which could be

of interest in special situations. This will be illustrated by an example which gave
rise to looking for a more general result.
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2. Existence and uniqueness

Unless otherwise noted, it will always be assumed that the diffusion coefficient b

satisfies the following two conditions:

(C.1) For every N � 1, there exists a locally integrable function LN : � → [0,+∞]
such that

|b−2(s, x)− b−2(t, x)| � LN (x)|t− s|, s, t ∈ [0, N ].

(C.2) For every N � 1, there exists a measurable function hN : � → [0,+∞) such
that h−1N is locally integrable and

hN (x) � b2(t, x) for all (t, x) ∈ [0, N ]× �.

Note that in condition (C.1), the function LN may have the value +∞ on an

exceptional set of Lebesgue measure zero. Conditon (C.1) means that the function
b−2 is locally Lipschitz continuous in t for Lebesgue almost all x ∈ �, with a local

Lipschitz constant LN (x) depending on x ∈ � and having a moderate growth.
Condition (C.2) is formulated in accordance with condition (E2) of [4], as part of

the existence condition (E(x0)) used there. However, in the light of (C.1) it takes a
quite simple form: Indeed, as can easily be verified, conditions (C.1) and (C.2) are

equivalent to conditions (C.1) and (C.2′) where

(C.2′) The function b−2(0, ·) : � −→ � is locally integrable.

In the homogeneous case, this is just a necessary and sufficient condition for the

existence of a nontrivial solution (X, �) to Eq. (1.1) for every starting point x0 ∈ �

(cf. [8]). (We recall that a solution (X, �) to Eq. (1.1) is called trivial if P(Xt =

x0, ∀t � 0) = 1.) Thus condition (C.2′) can hardly be missed in the general case.
By 〈X〉 we denote the square variation process of a continuous local martingale

(X, �). If (X, �) is a (nonexploding) solution of Eq. (1.1) starting from x0 ∈ � then,
obviously,

(2.1) A∗
t := 〈X〉t =

∫ t

0
b2(s, Xs) ds, t � 0.

We define the right inverse T ∗ of the increasing process A∗ by

(2.2) T ∗t = inf{s � 0: A∗
s > t}, t � 0.

We also set

(2.3) U∞ = inf{s � 0: A∗
s = A∗

∞}
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where, of course, A∗
∞ = sup

t�0
A∗

t . We consider the time changed process (W
∗, � ∗ )

with

(2.4) W ∗
t = XT∗t − x0, G ∗

t = FT∗t , t � 0.

It is well-known that (W ∗, � ∗ ) is a Brownian motion stopped at A∗
∞. Enlarging the

probability space, without loss of generality we can, and always will, assume that

(W ∗, � ∗ ) is extended to a full Brownian motion, again denoted by (W ∗, � ∗ ).

Let us introduce the following notions (cf. [4], Definition 5.1; [5], Definition 4.4).

Definition 2.1. Let (X, �) be a solution to Eq. (1.1).

(i) (X, �) is called basic if

∫ U∞

0
1{b=0}(s, Xs) ds = 0 P-a.s.

(ii) (X, �) is said to be nonabsorbing if U∞ = +∞ P-a.s.

The main purpose of the present note is to give a proof of the following theorem.
While the result on the existence is borrowed from [4], the emphasis lies on the

uniqueness in law.

Theorem 2.2. Let conditions (C.1) and (C.2) be satisfied. Then, for every initial
state x0 ∈ �, there exists a (nonexploding) nonabsorbing and basic solution (X, �)

of Eq. (1.1). Moreover, the nonabsorbing and basic solution (X, �) of Eq. (1.1) is
unique in law.

Next we give the following slight modification of Theorem 2.2. For this we state

(C.3) For every (t, x) ∈ [0,+∞)× �, b(t, x) �= 0.
Obviously, under (C.3) every solution (X, �) to Eq. (1.1) is nonabsorbing and

basic. From Theorem 2.2 we therefore obtain

Theorem 2.3. Suppose that conditons (C.1)–(C.3) are satisfied. Then, for every
starting point x0 ∈ �, there exists a solution (X, �) of Eq. (1.1). This solution is

unique in law.

As an illustration we give the following example.

Example 2.4. For arbitrary α ∈ �, let

b(t, x) = f(x) + exp(−αt) g(x), (t, x) ∈ [0,+∞)× �,
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where f and g are Borel functions on �. We assume that the following conditions

are satisfied:

a) g−2 is locally integrable.

b) If g(x) �= 0, then sgn(f(x)) = sgn(g(x)), x ∈ �, where we put

sgn(z) =
z

|z| .

By Nf and Ng we denote the set of zeros of f and g, respectively. Obviously, Ng

has Lebesgue measure zero. For any x ∈ N c
g we have

(2.5) b−2(t, x) = (|f(x)|+ exp(−αt) |g(x)|)−2

and hence

∂b−2(t, x)
∂t

= 2α|g(x)| exp(−αt)(|f(x)| + exp(−αt)|g(x)|)−3.

This gives

sup
0�t�N

∣∣∣∣
∂b−2(t, x)

∂t

∣∣∣∣ � 2|α| exp(2|α|N)g−2(x)

and, setting LN(x) equal to the right hand side for x ∈ N c
g and equal to +∞

otherwise, we observe that (C.1) is satisfied. From (2.5) it follows immediately that

(C.2′) (and hence (C.2)) hold true. If we additionally assume that

c) Nf ∩Ng = ∅
holds then (C.3) is also satisfied. Now Theorem 2.3 immediately implies that, for

every starting point x0 ∈ �, there exists a solution to Eq. (1.1) which is, moreover,
unique in law.

However, if Nf ∩Ng �= ∅ then the uniqueness in law fails. Indeed, in this case we
can only assert that there exists a unique nonabsorbing and basic solution X starting
from x0. But if x0 ∈ Nf ∩ Ng then there also is the trivial solution staying forever

at x0, the law of which is, obviously, different from that of X . More generally, if
x0 ∈ � is arbitrary and if the nonabsorbing and basic solution X starting from x0

reaches Nf ∩ Ng in finite time with strictly positive probability then the process
obtained by stopping X at the first time it reaches Nf ∩ Ng is again a solution to

Eq. (1.1) which has a law different from that of X .

As a particular example, we consider functions f and g defined by

f(x) = |x|β sgn(x), g(x) = sgn(x), x ∈ �,
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where β ∈ �. Then we have Nf ∩ Ng = {0}. Let (X, �) be an arbitrary solution to

Eq. (1.1) starting from x0 �= 0. Below it will be proved that the following property
is satisfied:

(R) The point 0 will be reached by X with probability 1 (resp., 0) if and only if
β < 1 (resp., 1 � β).

Let β < 1 and consider a nonabsorbing and basic solution starting from x0 �= 0.
Then the process obtained by stopping X at the first time it reaches 0 is again

a solution, but with a different law. Clearly, both solutions are basic and hence
nontrivial. The first solution is nonabsorbing, but the second absorbing.

On the other hand, if 1 � β then every solution X starting from x0 �= 0 does not
reach 0 P-a.s. and consequently, is nonabsorbing and basic. Hence, if 1 � β then

the solution starting from x0 �= 0 is unique in law.

Remark 2.5. Using the theorem of Girsanov, the results can be extended to
stochastic equations of type

Xt = x0 +
∫ t

0
a(u, Xu) du+

∫ t

0
b(u, Xu) dBu, t � 0,

with drift and diffusion coefficients a and b. The simplest condition is to require

that, additionally to the conditions used above, the ratio a/b be bounded.

Remark 2.6. The results also remain true if the driving Brownian motion B

is replaced by a symmetric α-stable process S. In this case, the function b−2 in

condition (C.1) must be replaced by |b|−α. Moreover, condition (C.2) has to be
substituted by condition (E2) which is part of the existence condition (E(x0)) stated
in Theorem 5.3 of [4], for every x0 ∈ �.

3. Proofs of the results

����� of Existence. The existence of a (possibly, exploding) nonabsorbing and
basic solution to Eq. (1.1) immediately follows from [4], Theorem 5.3. Moreover,

Theorem 5.4 in [4] shows that every solution (X, �) to Eq. (1.1) does not explode if
λ(BN ) > 0 for all N � 1, where λ is the Lebesgue measure on � and BN is defined

by (1.2), which is guaranteed by (C.1). We notice that [4] deals with stochastic
equations driven by symmetric α-stable processes where the parameter α is from

(0, 2]. Of course, this includes the case of a Brownian motion (with variance function
2t) for α = 2. We also notice that in [4] for this existence and nonexplosion result,

instead of condition (C.1), only an, obviously, weaker condition is used, namely, that
b2(·, x) is continuous for Lebesgue almost all x ∈ �. Under the additional assumption

706



that b2 is locally integrable in [0,+∞)×�, existence of a solution to Eq. (1.1) is also

established in [14] and [15].

We now come to some preparations for the proof of the uniqueness in law. For

the formulation of the following lemma, from now on we extend the function b to
[0,+∞]× � by setting b(+∞, x) = +∞ (and hence b−2(+∞, x) = 0).

Lemma 3.1. For every (nonexploding) nonabsorbing and basic solution (X, �)

of Eq. (1.1) starting from x0 ∈ � we have P-a.s.

(3.1)





T ∗t =
∫ t

0
b−2(T ∗s , x0 +W ∗

s ) ds, t � 0,

A∗
t < A∗

∞, t � 0,

where T ∗, W ∗ and A∗ are given by (2.2), (2.4) and (2.1), respectively.

�����. Because (X, �) is basic and nonabsorbing, we get

∫ ∞

0
1{b=0}(s, Xs) ds = 0 P-a.s.

This yields

T ∗t =
∫ T∗t

0
b−2(s, Xs)b2(s, Xs) ds =

∫ T∗t

0
b−2(s, Xs) dA∗

s P-a.s.

and, changing the time in the integral (cf. [8], Lemma 1.6),

T ∗t =
∫ A∗T∗

t

0
b−2(T ∗s , x0 +W ∗

s ) ds =
∫ t∧A∗∞

0
b−2(T ∗s , x0 +W ∗

s ) ds P-a.s.,

the latter equality being valid since A∗
T∗t
= t ∧ A∗

∞ in view of the continuity of A
∗.

Hence the first equation of (3.1) is true on the set {t < A∗
∞} and, moreover,

T ∗t �
∫ t

0
b−2(T ∗s , x0 +W ∗

s ) ds P-a.s.

But on {A∗
∞ � t}, we have T ∗t = +∞, which proves the first equation of (3.1) on

this set, too. Since (X, �) is nonexploding we have A∗
t < +∞ P-a.s. and hence

the inequality in (3.1) on {A∗
∞ = +∞} holds true. Finally, A∗

t < A∗
∞ on the set

{A∗
∞ < +∞} is satisfied, because (X, �) is nonabsorbing. �
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In a second step, we investigate the stochastic equation (3.1). A solution (T, � )

to Eq. (3.1) is a right continuous and increasing process T taking values in [0,+∞],
defined on a (complete) probability space (Ω,F ,P) and adapted to the filtration �
(satisfying the usual conditions), such that there exists a Brownian motion (W, � )

with the property that Eq. (3.1) is satisfied (with T , W , A instead of T ∗, W ∗, A∗).
Here the process A is defined as the right inverse of T :

(3.2) At = inf{s � 0: Ts > t}, t � 0.

Lemma 3.2. The solution (T, � ) to Eq. (3.1) is pathwise unique.

�����. The main idea of the proof is borrowed from [10], Theorem 1.2. Let
(T 1, � ) and (T 2, � ) be two solutions to Eq. (3.1) on the same probability space

(Ω, F ,P), with the same filtration � and with the same Brownian motion (W, � ).
We have to show T 1 = T 2 P-a.s. For this we set τN = A1N ∧ A2N for every N � 1.
In view of

lim
N→∞

T i
Ai

N
= +∞, i = 1, 2, P-a.s.,

as a consequence of Eq. (3.1), it is sufficient to show that

T 1t∧τN
= T 2t∧τN

, t � 0, P-a.s.

for every N � 1. We fix N � 1 and introduce the set

CN =

{
ω ∈ Ω:

∫ t

0
LN(x0 +Wu(ω)) du < +∞, ∀t � 0

}

where LN is the (state-dependent) Lipschitz constant from condition (C.1). The
function LN being locally integrable, Theorem 1 from [6] yields that P(CN ) = 1.

Obviously, we have T i
t∧τN

� N , i = 1, 2, and setting St := T 1t∧τN
− T 2t∧τN

, t � 0, on
the set CN we can estimate

S2t = 2
∫ t

0
Su dSu = 2

∫ t∧τN

0
Su dSu

= 2
∫ t∧τN

0
Su

[
b−2(T 1u , x0 +Wu)− b−2(T 2u , x0 +Wu)

]
du

� 2
∫ t∧τN

0
|Su| |b−2(T 1u , x0 +Wu)− b−2(T 2u , x0 +Wu)| du

� 2
∫ t∧τN

0
|Su|LN (x0 +Wu)|T 1u − T 2u | du

� 2
∫ t

0
S2uLN (x0 +Wu) du.
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Setting

Ht = 2
∫ t

0
LN(x0 +Wu) du, t � 0,

on the set CN , from the above inequality we obtain

S2t exp(−Ht) =
∫ t

0
S2ud exp(−Hu) +

∫ t

0
exp(−Hu) dS2u

�
∫ t

0
S2u exp(−Hu)

(
−2LN(x0 +Wu)

)
du

+ 2
∫ t

0
exp(−Hu)S2uLN (x0 +Wu) du = 0.

This implies S2t = 0 on CN for all t � 0 and hence the assertion. �

First ����� of uniqueness. Now the proof of the uniqueness is easily accom-

plished. If (X, �) is a nonabsorbing and basic solution to Eq. (1.1) then (T ∗, � ∗ ),
defined by (2.2) and (2.4), is a solution to Eq. (3.1) by Lemma 3.1. This solution is

pathwise unique by Lemma 3.2. This implies that the joint distribution of (T ∗, W ∗)
is unique, see [2], Proposition 2 or Theorem 3, for this fact. (This can also be

seen using the existence of an �W ∗
-adapted solution T of Eq. (3.1) which is ensured

by (C.1) and (C.2) (cf. [4], Theorem 3.1). Together with Lemma 3.2 it is now easy
to understand that the joint distribution of (T ∗, W ∗) is unique.) Now, because of

Xt =W ∗
A∗t

, A∗
t = inf{s � 0: T ∗s > t}, t � 0,

X is a measurable functional of (T ∗, W ∗) and, the distribution of (T ∗, W ∗) being

unique, the nonabsorbing and basic solution X of Eq. (1.1) is unique in law. �

Remark 3.3. The uniqueness proof (outside of the parentheses) only uses (C.1)
but not (C.2). A somewhat weaker version of this result was given in [14] (Theo-

rem 4.3.6) under stronger conditions on b, exploiting the representation property of
continuous local martingales. The following lemma prepares this alternative reason-

ing.

Lemma 3.4. Let condition (C.1) be satisfied. If (X, �) is a nonabsorbing and

basic solution to Eq. (1.1) then the continuous local martingale (X, �X ), where �X

is the filtration generated by X , possesses the representation property.

�����. First we recall that a continuous local martingale (X, �X ) is said

to satisfy the representation property if every (local) martingale (M, �X ) can be
represented as

Mt =M0 +
∫ t

0
Hs dXs, t � 0,

709



for some �X -previsible integrand H (cf. [11] or [13]). We know that (T ∗, � ∗ ) defined

by (2.2) and (2.4) satisfies Eq. (3.1). On the other hand, the solution of Eq. (3.1)
is pathwise unique by Lemma 3.2. By a version of the theorem of T. Yamada and
S. Watanabe [16] (also see [2], Theorem 3; [12], Corollaries 14 and 15, where the

equation for A∗ is considered), (T ∗, � ∗ ) is a strong solution to Eq. (3.1), i.e., T ∗ is
�W∗
-adapted. Consequently, the process A∗ defined by (2.1), just being the right

inverse of T ∗ defined by (3.2) (replacing T by T ∗), is a (strictly increasing) �W∗
-time

change and the assertion follows from [3], Theorem 5.

Remark 3.5. If we assume that, additionally to (C.1), condition (C.2) is satisfied
then Theorems 3.1 and 3.2 of [4] ensure the existence of an �W -adapted solution T to
Eq. (3.1) for any given Brownian motion W . Together with the pathwise uniqueness

stated in Lemma 3.2, this again yields that the solution (T ∗, � ∗ ) in the proof of
Lemma 3.4 is �W ∗

-adapted, giving a direct proof of Lemma 3.4 without referring to

the theorem of T. Yamada and S. Watanabe.

Second ����� of uniqueness. For the proof of uniqueness based on the repre-
sentation property and Lemma 3.4 we assume that X1 and X2 are two nonabsorbing

and basic solutions to Eq. (1.1). By Lemma 3.4, X1 and X2 possess the representa-
tion property. We consider their distributions Q1 and Q2 on the space of continuous

functions C([0,+∞)) and set Q = 1
2 (Q

1+Q2). It is easy to verify that the canonical
process on C([0,+∞)) with respect to Q is again a nonabsorbing and basic solu-

tion of Eq. (1.1) and hence possesses the representation property. It is well-known
(cf. [11] or [13]) that then Q must be an extremal point in the set of continuous

local martingale measures. But this is only possible if Q1 = Q2, which proves the
claim. �

����� of (R). Let (X, �) be an arbitrary solution to Eq. (1.1) starting from

x0 �= 0 and introduce A∗, T ∗ andW ∗ by (2.1), (2.2) and (2.4), respectively. We then
have the representation

Xt = x0 +W ∗
A∗t

, t � 0.

By τ we denote the first time W ∗ reaches −x0. Obviously, (R) is equivalent to the

assertion

P(τ < A∗
∞) = 0 or 1

in dependence of 1 � β or β < 1. Since

{τ < A∗
∞} = {T ∗τ < +∞}
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we have to explore conditions under which T ∗τ converges P-a.s. (diverges P-a.s.).
However, T ∗τ can be represented as the integral

T ∗τ =
∫ τ

0
b−2(T ∗s , W ∗

s ) ds P-a.s.

This can be verified in the same way as Lemma 3.1 using b(s, x) �= 0 for all x �= 0.
The integrand

b−2(T ∗s , x0 +W ∗
s ) = (|x0 +W ∗

s |β + exp(−αT ∗s ))
−2

is continuous in s < τ and behaves like |x0 +W ∗
s |−2β for s ↑ τ . Therefore, T ∗τ is

finite (infinite) if and only if

∫ τ

0
|x0 +W ∗

s |−2β ds

is finite (infinite). But this integral is finite P-a.s. if and only if

(3.3)
∫ −x0

0
|x0 + y|−2β(−x0 − y) dy < +∞

holds (to be definite, we have assumed x0 < 0 here). Otherwise the above integral
is infinite P-a.s. (cf. [1], Lemma 2). But, obviously, (3.3) is satisfied if and only if
β < 1. This completes the proof of (R). �
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