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Introduction

In this paper we introduce the notion of a half cyclically ordered group generalizing

the notion of half partially ordered group which has been studied by Giraudet and
Lucas [5] (cf. also Giraudet and Rach̊unek [6], Černák [2a], [2b], Ton [19], Černák and

the author [12], and the author [9], [11]). In particular, we deal with half �c-groups
(which generalize the half linearly ordered groups from [5]).

For the terminology, cf. Section 1. Let M be an �-cyclically ordered set with

cardM � 3; we denote by P (M) the system of all monotone permutations on M .
We recall that the idea of dealing with P (M) goes back to Droste, Giraudet and

Macpherson [3].

We introduce in a natural way the group operation and the relation of cyclic order
on the set P (M). In Section 2 we show that if M is finite and cardM � 3, then the
just mentioned structure on P (M) is a half cyclically ordered group. IfM is infinite,
then the analogous result need not be valid in general.

In Section 3 we prove the following result:

(A) Let G be a half �c-group such that
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(i) the decreasing part G↓ of G is nonempty,
(ii) for each y ∈ G↓, y2 = e.

Then the increasing part G↑ of G is abelian.
If G is a half linearly ordered group, then the condition (ii) above is satisfied.

Hence (A) generalizes a result of Giraudet and Lucas [5] concerning half linearly

ordered groups.

In Section 4 we define the notion of lexicographic product decomposition of a
half cyclically ordered group G which fails to be cyclically ordered (i.e., such that

G↓ �= ∅).
The increasing part G↑ of a half cyclically ordered group G is a cyclically ordered

group. To each lexicographic product decomposition α of G there corresponds a
lexicographic product decomposition β of the cyclically ordered group G↑; we say
that β is generated by α.

Let β1 be a lexicographic product decomposition of G↑. In Section 5 we find a
necessary and sufficient condition for the existence of a lexicographic product de-

composition α1 of G such that β1 is generated by α1.

Fundamental results on lexicographic products of linearly ordered groups have
been proved by Mǎlcev [13]. Further, lexicographic product decompositions of some

types of ordered algebraic structures were dealt with in the papers [1], [7], [10], [11].

1. Preliminaries

For the sake of completeness, we start by recalling some notions which will be
systematically used below.

For the following definition cf. Novák and Novotný [14], [15] and Quilot [16]; cf. also

the author’s paper [6].

1.1. Definition. A nonempty set M endowed with a ternary relation C is said
to be cyclically ordered if the following conditions are satisfied:

(I) If (x, y, z) ∈ C, then (y, x, z) /∈ C.
(II) If (x, y, z) ∈ C, then (z, x, y) ∈ C.
(III) If (x, y, z) ∈ C and (x, z, u) ∈ C, then (x, y, u) ∈ C.

The relation C is called a cyclic order on M .

1.2. Definition. Suppose that C is a cyclic order onM satisfying the condition
(IV) whenever x, y and z are mutually distinct elements of M ,

then either (x, y, z) ∈ C or (z, y, x) ∈ C.

Then M is said to be �-cyclically ordered and C is called an �-cyclic order on M .
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We remark that in some papers (cf., e.g., [3] and [17]) a different terminology

was applied; namely “cyclic order” was understood as the above term �-cyclic order.
Further, �-cyclic order is called “complete cyclic order” in [16].

If (M ;C) is a cyclically ordered set and if M1 is a nonempty subset of M , then

we consider M1 as cyclically ordered under the induced cyclic order (i.e., under the
relation C ∩M3

1 ).

1.3. Definition. Let G be a group. Further, suppose that G is at the same
time a cyclically ordered set satisfying the condition

(V) if (x1, x2, x3) ∈ C, a ∈ G, yi = axi, zi = xia (i = 1, 2, 3), then (y1, y2, y3) ∈ C

and (z1, z2, z3) ∈ C.

Then G is called a cyclically ordered group. In particular, if G is an �-cyclically
ordered set, then G is called an �c-group.

1.4. Definition. A cyclically ordered group G is said to be a dc-group if, when-
ever x and y are distinct elements of G, then there exists z ∈ G such that either
(x, y, z) ∈ C or (y, x, z) ∈ C.

It is clear that each �c-group is a dc-group. Lexicographic products of dc-groups
have been investigated in [1].

1.5. Example. Let (G;�) be a partially ordered group with a non-trivial partial
order. We denote by C the set of all triples (x, y, z) of elements of G such that one
of the conditions

x < y < z, y < z < x, z < x < y

is valid. Then (G;C) is a cyclically ordered group. If, moreover, (G;�) is a linearly
ordered group, then (G;C) is an �c-group.

Now suppose that (G, ·) is a group and that, at the same time, (G;C) is a cyclically
ordered set.

We denote byG↑ (and G↓) the set of all x ∈ G such that, whenever (y1, y2, y3) ∈ C,
then (xy1, xy2, xy3) ∈ C (or (xy3, xy2, xy1) ∈ C, respectively).

1.6. Definition. Let (G; ·, C) be as above. G is said to be a half cyclically
ordered group, if the following conditions are satisfied:

1) the system C is nonempty;

2) if x ∈ G and (y1, y2, y3) ∈ C, then (y1x, y2x, y3x) ∈ C;
3) G = G↑ ∪G↓;
4) if (x, y, z) ∈ C, then either {x, y, z} ⊆ G↑ or {x, y, z} ⊆ G↓.
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If, moreover, G↑ is a dc-group (or an �c-group), then G is called a half dc-group (or
a half �c-group, respectively).
G↑ (and G↓) is called the increasing part (or the decreasing part, respectively)

of G.

If (G, ·, C) is a half cyclically ordered group and if G1 is a subgroup of G such
that the induced cyclic order C1 = C ∩ G31 is nonempty, then we call (G1, ·, C1) a
hc-subgroup of (G; ·, C). We often write G1 instead of (G1, ·, C1).
Each cyclically ordered group G is a half cyclically ordered group (we haveG↑ = G

and G↓ = ∅). Hence in view of 1.5 and according to the definitions contained in [5]
we have

(i) the class of all half partially ordered groups is a subclass of the class of all half
cyclically ordered groups;

(ii) the class of all half linearly ordered groups is a subclass of all half �c-groups.
The notion of isomorphism of half cyclically ordered groups is defined in the usual

way.
From 1.6 we immediately obtain

1.7. Lemma. Let G be a half cyclically ordered group and x1, x2 ∈ G↑, y1, y2 ∈
G↓. Then x1x2 ∈ G↑, y1y2 ∈ G↑, x1y1 ∈ G↓, y1x1 ∈ G↓.

2. Monotone permutations on an �-cyclically ordered set

Let (M ;C) be an �-cyclically ordered set with cardM � 3. We denote by P (M)(+)
the system of all permutations p on M such that

(x, y, z) ∈ C ⇒
(
p(x), p(y), p(z)

)
∈ C;

further, let P (M)(−) be the set of all permutations q on M with

(x, y, z) ∈ C ⇒
(
q(z), q(y), q(x)

)
∈ C.

We put P (M) = P (M)(+) ∪ P (M)(−). The elements of P (M) will be called
monotone permutations on (M ;C).

For ϕ1, ϕ2 ∈ P (M) let ϕ be the permutation on M with ϕ(x) = ϕ1(ϕ2(x)) for
each x ∈ M . Then ϕ ∈ P (M). Also, ϕ−11 ∈ P (M). Denote ϕ = ϕ1ϕ2. Then P (M)

turns out to be a group.
We define C to be the set of all triples (ϕ1, ϕ2, ϕ3) of elements of P (M) such that

for each x ∈M the relation
(
ϕ1(x), ϕ2(x), ϕ3(x)

)
∈ C

is valid.
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The following assertion is easy to verify; the proof will be omitted.

2.1. Lemma. (P (M);C) is a cyclically ordered set.

Under the notation as in Section 1 we have

G↑ = P (M)(+), G↓ = P (M)(−), G = G↑ ∪G↓,

where G = P (M).
Let (ϕ1, ϕ2, ϕ3) ∈ C, ϕ ∈ G and let t ∈M . Then

(
ϕ1(ϕ(t)), ϕ2(ϕ(t)), ϕ3(ϕ(t))

)
∈ C,

whence (ϕ1ϕ,ϕ2ϕ,ϕ3ϕ) ∈ C.
Thus in view of 1.6 and 2.1 we have

2.2. Lemma. Let M be an �-cyclically ordered set. Suppose that

(i) the corresponding system C is nonempty;

(ii) if (ϕ1, ϕ2, ϕ3) ∈ C, then either {ϕ1, ϕ2, ϕ3} ⊆ P (M)(+) or {ϕ1, ϕ2, ϕ3} ⊆
P (M)(−).

Under these assumptions (P (M), ·, C) is a half cyclically ordered group.

2.3. Proposition. Let M be a finite �-cyclically ordered set, cardM � 3. Put
G = (P (M), ·, C). Then G is a half cyclically ordered group.

�����. Without loss of generality we can assume that M = {0, 1, 2, . . . , n− 1},
n � 2 and that for x, y, z ∈ M the relation (x, y, z) ∈ C holds if and only if one of
the conditions

x < y < z, y < z < x, z < x < y

is valid, where the symbol < for elements of M has the usual meaning.
Let the operations + and − on M be taken modn.
Let p be a permutation on M . Then p belongs to P (M)(+) if and only if there is

k1 ∈M such that
p(x) = k1 + x for each x ∈M.

Similarly, p is an element of P (M)(−) if and only if there is k2 ∈M such that

p(x) = k2 − x for each x ∈M.

There are k1, k2, k3 ∈ M with k1 < k2 < k3. Put pi(x) = ki + x for each

i ∈ {1, 2, 3} and each x ∈ M . Then (p1, p2, p3) ∈ C, whence C �= ∅. Thus the
condition (i) from 2.2 holds.
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We have to verify that the condition (ii) from 2.2 is valid. By way of contradiction,

assume that this condition fails to hold.
Hence there are ϕi ∈ P (M) (i = 1, 2, 3) such that

(ϕ1, ϕ2, ϕ3) ∈ C, {ϕ1, ϕ2, ϕ3} ∩ P (M)(+) �= ∅ �= {ϕ1, ϕ2, ϕ3} ∩ P (M)(−).

It is easy to verify that without loss of generality we can assume that

ϕ1, ϕ2 ∈ P (M)(+), ϕ3 ∈ P (M)(−).

Thus there are k1, k2, k3 ∈M such that

ϕ1(x) = k1 + x, ϕ2(x) = k2 + x, ϕ3(x) = k3 − x

for each x ∈M .
Then we have (ϕ1(0), ϕ2(0), ϕ3(0)) ∈ C, hence one of the conditions

k1 < k2 < k3, k2 < k3 < k1, k3 < k1 < k2

is satisfied.

a) First suppose that k1 < k2 < k3. If k3 − k1 is even, then there exists t ∈ M

such that k3 − t = k1 + t, yielding that ϕ3(t) = ϕ1(t). Then
(
ϕ1(t), ϕ2(t), ϕ3(t)

)

does not belong to C, which is impossible. Thus k3− k1 is odd. In the same way we
obtain that k3 − k2 is odd.

Therefore k1 + 1 < k2 and k3 − (k1 + 1) is even. Hence there is 0 �= t ∈ M with
2t = k3 − (k1 + 1). Thus

ϕ3(t) = k3 − t = k1 + 1 + t < k2 + t = ϕ2(t),

ϕ1(t) < ϕ3(t).

Then we cannot have (ϕ1, ϕ2, ϕ3) ∈ C, which is a contradiction.
b) Further, suppose that k3 < k1 < k2. Assume that k1 − k3 is even. Hence there

is 0 �= z ∈M with k1− k3 = 2z. Put z1 = −z. (Recall that the operation − is taken
modn, whence z1 = n− z.) We have k1−k3 = −2z1, yielding that k1+ z1 = k3− z1,
thus ϕ1(z1) = ϕ3(z1), which is impossible. Therefore k1 − k2 is odd.

Hence k1 − k3 + 1 is even and there exists t1 ∈ M such that k1 − k3 + 1 = 2t1.
Thus

k1 − t1 + 1 = k3 + t1.

Put t = −t1. Hence k1 + t+ 1 = k3 − t, therefore

(1) ϕ1(t) + 1 = ϕ3(t).
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From (ϕ1, ϕ2, ϕ3) ∈ C we conclude that
(
ϕ1(t), ϕ2(t), ϕ3(t)

)
∈ C is valid, hence one

of the relations

ϕ1(t) < ϕ2(t) < ϕ3(t), ϕ2(t) < ϕ3(t) < ϕ1(t), ϕ3(t) < ϕ1(t) < ϕ2(t)

must hold. In view of (1), all these relations fail to be satisfied. In this way we have
arrived at a contradiction.

c) Finally, suppose that k2 < k3 < k1. Similarly as in the previous cases we verify
that k3 − k2 must be odd. Hence there is t ∈M , t �= 0 such that

k2 � k3 − t < k2 + t � k3,

(k2 + t)− (k3 − t) = 1.(∗)

Hence ϕ3(t) < ϕ2(t).

Further, from the above relations we conclude that either

k1 + t > k1(α)

or

k1 + t < k2 + t.(β)

If (α) is valid, then ϕ2(t) < ϕ1(t), whence (ϕ1, ϕ2, ϕ3) /∈ C, which is impossible.
Suppose that (β) holds. We have ϕ1(t) �= ϕ3(t), hence in view of (∗) we obtain

k1 + t < k3 − t,

thus
(
ϕ1(t), ϕ3(t), ϕ2(t)

)
∈ C, yielding that the relation (ϕ1, ϕ2, ϕ3) ∈ C cannot

hold. Therefore the relation k2 < k3 < k1 cannot be valid. �

If M is an infinite �-cyclically ordered set, then we can ask whether the assertion
analogous to 2.3 is valid for M .

2.4. Example. Let � be the set of all integers with the natural linear order. We
define the �-cyclic order on � as in 1.5.

We can apply for � the same steps as in the proof of 2.3 with the distinctions that
α1) the operations + and − are now not taken modn, but they have the usual

meaning;
α2) part c) of the proof of 2.3 is now to be modified in the sense that only the

condition (α) is taken into account; the condition (β) cannot be valid in the present
case.

Therefore we have:
(∗∗) If G = (P (�), ·, C), then G is a half cyclically ordered group.
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2.5. Example. Let � be the set of all positive integers. The �-cyclic order
on � is defined similarly as in 2.4. Then the only element of P (�) is the identical
permutation. Hence C is the empty set. Thus we obtain:
If G = (P (�), ·, C), then G fails to be a half cyclically ordered group.
The following question remains open: LetM be an infinite �-cyclically ordered set

such that (under the notation as above) the set C is nonempty. Must (P (M), ·, C)
be a half cyclically ordered group? In other words: must the condition (ii) from 2.2
be satisfied?

3. On half �c-groups

In this section we assume that G is an �c-group such that G↓ �= ∅.

3.1. Lemma. Let y ∈ G↓. Then y4 �= e⇒ y2 = e.

�����. Let y4 �= e. By way of contradiction, assume that y2 �= e. Hence

y−1 �= y and clearly y−1 ∈ G↓. Moreover, the relation y4 �= e yields y2 �= y−2.
We also have y−2 �= e. Since G↑ is an �-cyclically ordered set we get that either
(i) (y−2, e, y2) ∈ C, or (ii) (y2, e, y−2) ∈ C.
Assume that (i) is valid. Then

(y−2 · y, y, y2 · y) ∈ C and (y · y2, y, y · y−2) ∈ C,

i.e., (y−1, y, y3) ∈ C and (y3, y, y−1) ∈ C, which is a contradiction.
If (ii) is valid, then we proceed analogously. �

In particular, if G↑ is linearly ordered, then for each x ∈ G↑ with x �= e we have
x2 �= e. Since y ∈ G↓ implies that y2 ∈ G↑, in view of 3.1 we obtain

3.2. Corollary (cf. [5]). If G is a half linearly ordered group and y ∈ G↓, then
y2 = e.

3.3. Example. Let K be the set of all reals x with 0 � x < 1 with the natural

linear order. We define the �-cyclic order on K as in 1.5. We consider the group
operation on K which is defined to be addition mod 1. Then K turns out to be an

�c-group. For each subgroup K1 we take into account the induced �-cyclic order.
Let A be an �c-group with the �-cyclic order C1. Further, let B be a linearly

ordered group; the corresponding �-cyclic order on B (cf. 1.5) will be denoted by C2.
Next, let A×B be the cartesian product of the sets A and B with the group operation
defined componentwise. For (ai, bi) ∈ A×B (i = 1, 2, 3) we put

(
(a1, b1), (a2, b2), (a3, b3)

)
∈ C
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if some of the following conditions is valid:

(i) (a1, a2, a3) ∈ C1;
(ii) a1 = a2 �= a3 and b1 < b2;

(iii) a2 = a3 �= a1 and b2 < b3;

(iv) a3 = a1 �= a2 and b3 < b1;

(v) a1 = a2 = a3 and (b1, b2, b3) ∈ C2.

Then A× B turns out to be an �c-group which will be denoted by A⊗B.

3.4. Theorem (Swierczkowski [18]). Let H be an �c-group and let K be as
in 3.3. Then there exist an �c-subgroup A of K and a linearly ordered group B such

that the �c-group H is isomorphic to the �c-group A⊗B.

3.5. Lemma. Let A and B be as in 3.4, H = A⊗B, e �= h ∈ H , where e is the
neutral element of A; the neutral elements of A and of B will be denoted by eA or

by eB, respectively. The following conditions are equivalent:

(i) There is b ∈ B with b �= eB such that h = (eA, b).

(ii) Either

(ii1) (e, hn1 , hn2) ∈ C for any n1, n2 ∈ � with n1 < n2,

or

(ii2) (hn2 , hn1 , e) ∈ C for any n1, n2 ∈ � with n1 < n2.

�����. Let (i) be valid. In view of the assumption, B is linearly ordered. If
eB < b, then (ii1) holds. If b < eB, then (ii2) is satisfied.

Suppose that (i) fails to hold. Then we have h = (a, b), a �= eA (since the group

operation in A is addition mod 1, we apply for this operation the additive notation).

a) Assume that there is n ∈ � with na = eA. Hence n > 1.

Let b = eB. Then hn = h2n = e, thus neither (e, hn, h2n) nor (h2n, hn, e) belong
to C. Thus (ii) does not hold.

Suppose that b > eB. Then we have

(e, hn, h) ∈ C, (e, hn, h2n) ∈ C.

Thus neither (ii1) nor (ii2) are satisfied and hence (ii) fails to hold. Similarly, if
b < eB, then (ii) is not valid.

b) Assume that na �= eA for each n ∈ �. Then n1a �= n2a whenever n1 and n2
are distinct elements of �.

There exists the least n ∈ � with
(
(n+ 1)a, eA, na

)
∈ C1.
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Then we have (
eA, (n+ 1)a, (n+ 2)a

)
∈ C1.

This yields

(hn+1, e, hn) ∈ C, (e, hn+1, hn+2) ∈ C.
Therefore neither (ii1) nor (ii2) are valid. �

Now let G be a half �c-group. According to 3.4, without loss of generality we can
assume that G↑ = H , where H is as in 3.4. Denote

H1 = {(a, b) ∈ H : a = 0}.

Then H1 is a normal subgroup of H .
Let y ∈ G↓. If an element h of H satisfies the condition (ii1), then the element

yhy−1 satisfies the condition (ii2); similarly, if h fulfils (ii2), then (ii1) holds for
yhy−1. Thus we have

3.6. Lemma. H1 is a normal subgroup of G.

3.7. Lemma. Let y ∈ G↓, y2 = e. Put T = H1 ∪ H1y. Then T is a subgroup
of G.

�����. It suffices to apply the same steps as in the proof of Lemma 2.4 in [12].
�

3.8. Lemma. Let y and T be as in 3.7 and let cardH1 > 1. Then H1 is a half
�c-subgroup of G; moreover, T is a half linearly ordered group.

�����. From the relation cardH1 > 1 and from 3.7 we infer that T is a half
�c-subgroup of G. We have T ↑ = H1 and H1 is linearly ordered; hence T is a half

linearly ordered group. �

3.9. Lemma. Let the assumptions of 3.8 be valid. Let G↓ �= ∅. Then the
group H1 is abelian.

�����. This is a consequence of 3.8 and of [5], Proposition I.2.2. �

����� �� (A). (The statement (A) has been formulated in Introduction.)
Suppose that the assumptions of (A) are satisfied. Then we have y2 = e for each

y ∈ G↓. Thus from 3.9 we conclude that the group H1 is abelian. Hence H = A⊗B
is abelian, because B is isomorphic to H1. Since H = G↑, the group G↑ is abelian.

�

For a related result concerning half lattice ordered groups cf. [9].
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4. Lexicographic products

In this section we introduce the notion of the lexicographic product of half cycli-
cally ordered groups. The method is analogous to that of [11].

Let I be a linearly ordered set and for each i ∈ I let Gi be a half cyclically ordered
group such that there exists y(i) ∈ Gi↓ with (y(i))2 = e. We consider the element

y(i) to be fixed. The relation of cyclic order on Gi is denoted by Ci.

Let G1 be the cartesian product of the groups Gi (i ∈ I). For g ∈ G1 and i ∈ I

we denote by gi the component of g in Gi. Next, let y(1) be the element of G1 such

that (y(1))i = y(i) for each i ∈ I.
If g and g′ are elements of G1, then we put

I(g, g′) = {i ∈ I : gi �= g′i}.

We denote by X the set of all g ∈ G1 such that gi ∈ Gi↑ for each i ∈ I and the set
I(g, e) is either empty or well-ordered.

Further, let Y (y(1)) be the set of all g ∈ G1 such that (i) gi ∈ Gi↓ for each i ∈ I,
and (ii) either g = y(1) or the set I(g, y(1)) is well-ordered. Then both the sets X

and Y (y(1)) are nonempty. Put

G0(y(1)) = X ∪ Y (y(1)).

By a method analogous to that in the proof of 2.1 in [11] we can verify

4.1. Lemma. G0(y(1)) is a subgroup of the group G1.

4.2. Notation. We denote by C the set of all triples (a, b, c) of elements of
G0(y(1)) such that there exists i1 ∈ I which has the following properties:
(i) (ai1 , bi1 , ci1) ∈ Ci1 ;

(ii) if i ∈ I and i < i1, then ai = bi = ci.

4.3. Lemma. The group G0(y(1)) with the relation C is a half-cyclically ordered
group.

�����. We have to verify that the conditions 1)–4) from 1.6 are valid.

1) Let i ∈ I. There exist h(1), h(2) and h(3) in Gi↑ such that (h(1), h(2), h(3)) ∈ Ci.

For j ∈ {1, 2, 3} let h(j) be the element of G0(y(1)) such that for each k ∈ I,

h
(j)
k =

{
h(j) if k = i,

e if k ∈ I \ {i}.
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Then h
(j) ∈ G0(y(1)) for each j = 1, 2, 3. Moreover, according to the definition of C,

the relation (h
(1)
, h
(2)
, h
(3)
) ∈ C is valid. Hence C �= ∅.

2) The validity of the condition 2) in 1.6 is an immediate consequence of the

definition of C.
3) We have G0(y(1))↑ = X , G0(y(1))↓ = Y (y(1)), whence the condition 3) of 1.6 is

satisfied.
4) From 4.2 we conclude that the condition 4) of 1.6 holds. �

Let y(2) be an element of G1 such that y(2)i ∈ Gi↓ and (y(2)i )
2 = e for each i ∈ I.

Then we can construct the half cyclically ordered group G0(y(2)) in the same way as
we did above for G0(y(1)).

For each b(1) ∈ Y (y(1)) there is a uniquely determined element a(1) ∈ X such that

a(1)y(1) = b(1).

Let us put ϕ(b(1)) = a(1)y(2). Further, for each a ∈ X we set ϕ(a) = a.

4.4. Proposition. The mapping ϕ is an isomorphism of the half cyclically
ordered group G0(y(1)) onto the half cyclically ordered group G0(y(2)).

�����. The same method as in the proof of 2.3 in [11] yields that ϕ is an
isomorphism of the group G0(y(1)) onto the group G0(y(2)).

Let C(2) be the corresponding cyclic order on G0(y(2)). The definitions of C and
C(2) imply

(x, y, z) ∈ C ⇔
(
ϕ(x), ϕ(y), ϕ(z)

)
∈ C(2).

�

In what follows we write G0 and Y instead of G0(y(1)) or Y (y(1)), respectively.
Under the assumptions as above we denote

G0 = Γi∈IGi;

G0 is said to be the lexicographic product of half cyclically ordered groups Gi, and

the structures Gi’s are called lexicographic factors of G0.
If the role of y(1) is to be emphasized, then we write also

G0 = (y(1))Γi∈IGi.

Let G be a half cyclically ordered group and let

(1) ϕ : G −→ Γi∈IGi
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be an isomorphism of G onto G0. Then (1) is called a lexicographic product decom-

position of G. For g ∈ G and i ∈ I we denote gi = (ϕ(g))i.

5. Condition (C0)

Again, let G be a half cyclically ordered group with G↓ �= ∅.
For the definition of the lexicographic product decomposition of a cyclically or-

dered group H cf. [10]. Below we will apply this definition to the case when H = G↑.
We want to investigate the relations between the lexicographic product decompo-

sitions of the half cyclically ordered group G and the lexicographic product decom-

positions of the cyclically ordered group G↑.
Let the element y(1) be as in Section 4.

As an immediate consequence of the definition of the lexicographic product de-
composition of G we obtain

5.1. Lemma. Let the relation (1) from Section 4 be valid. For each g ∈ G↑ we
put ϕ0(g) = ϕ(g). Then the relation

(1’) ϕ0 : G↑ →
∏

i∈I

Gi↑

is a lexicographic product decomposition of the cyclically ordered group G↑.

We say that the lexicographic product decomposition (1’) is generated by (1). In
such case we also say that the lexicographic product decomposition ϕ0 of G↑ can be
extended onto G.

Under the assumption as in (1’) let I1 be a nonempty subset of I and H = G↑.
We put

H(I1) = {h ∈ H : hj = e for each j ∈ I \ I1}.

Further, for i ∈ I we set Hi = H(I1), where I1 = {i1}.
Let i ∈ I, and let h(1) be any element of Hi. We put ϕi(h(1)) = h

(1)
, where h

(1)

is as in Section 4.

Then we obviously have

5.2. Lemma. H(I1) is a subgroup of the group H . The mapping ϕi is an

isomorphism of the cyclically ordered group Hi onto Gi↑.

5.3. Lemma. Let ∅ �= I1 ⊆ I. Assume that (1) holds. Then

y(1)H(I1)y(1) = H(I1).
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�����. Let z ∈ y(1)H(I1)y(1). There is t ∈ H(I1) with z = y(1)ty(1). Let

j ∈ I \ I1. Then tj = e. Thus

zj = y
(1)
j ey

(1)
j = (y(1)j )

2 = e.

Therefore

(∗) y(1)H(I1)y(1) ⊆ H(I1).

The relation (∗) yields

H(I1) = (y
(1))2H(I1)(y

(1))2 ⊆ y(1)H(I1)y
(1).

�

5.4. Corollary. For each i ∈ I, y(1)Hiy
(1) = Hi.

Now let us assume that the cyclically ordered group G↑ = H is represented as

(β1) ϕ : H → Γi∈IHi.

For ∅ �= I1 ⊆ I let H(I1) be defined analogously as above. Consider the following
condition (C0) concerning the lexicographic product decomposition (β1) of H :

(C0) There exists y(1) ∈ G↓ such that (y(1))2 = e and

y(1)H(I1)y(1) = H(I1)

whenever ∅ �= I1 ⊆ I.
According to 5.3 we have

5.5. Lemma. Assume that there exists a lexicographic product decomposition
α1 of G such that β1 is generated by α1. Then β1 satisfies the condition (C0).

5.6. Lemma. Let H1 be a subgroup of the group G↑ and let y be an element
of G↓ such that y2 = e and yH1 = H1y. Then H1 ∪H1y is a subgroup of G.

�����. Let h1, h2 ∈ H1. Then h1h2 ∈ H1 and h−11 ∈ H1. Further, there exists
h′2 ∈ H1 such that yh2 = h′2y. Thus

(h1y)h2 = h1h′2y ∈ H1y, h2(h1y) = (h2h1)y ∈ H1y,
(h1y)(h2y) = h1h′2y

2 = h1h′2 ∈ H1.

Also, (h1y)−1 = yh
−1
1 = h

′′y for some y′′ ∈ H1. �

288



Suppose that the condition (C0) is valid for (β1). We need some auxiliary results.

For each i ∈ I we put
Ki = Hi ∪Hiy

(1),

where y(1) is as in (C0).
In view of (C0) and according to 5.6 we conclude that Ki is a subgroup of G.

Moreover, under the induced cyclic order, Ki is a half cyclically ordered group with

Ki↑ = Hi, Ki↓ = Hiy
(1).

We define a mapping ψi of G into Ki as follows.
a) Let g ∈ G↑. There exists hi ∈ Hi (under consideration of (β1)) such that

(hi)i = gi.

We put ψi(g) = hi.
In fact, if we take β1 instead of (1’), then under the notation as above we have

ψi(g) = (ϕ(g))i.

b) Further, let g′ ∈ G↓. There exists a uniquely defined element g ∈ G↑ with
g′ = gy(1). Then (under the notation as in a)) we set ψi(gy(1)) = hiy

(1).

5.7. Lemma. For each g ∈ G, ψi(gy(1)) = ψi(g)y(1).

�����. For g ∈ G↑, this is a consequence of the definition of ψi. Let g ∈ G↓.
There is g1 ∈ G↑ with g = g1y(1). Then

ψi(gy
(1)) = ψi(g1(y

(1))2) = ψi(g1),

ψi(g)y(1) = ψi(g1y(1))y(1) = ψi(g1)(y(1))2 = ψi(g1).

�

5.8. Lemma. Let g ∈ G↑, y(1)gy(1) = z. Then ψi(z) = y(1)ψi(g)y(1).

�����. In view of (C0) we have

y(1)ψi(g)y
(1) ∈ Hi.

There exists t ∈ G↑ such that

tj =

{
e if j = i,

gj if j ∈ I \ {i}
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Hence g = hit, where hi = ψi(g). We have

z = y(1)hity
(1) = (y(1)hiy

(1))(y(1)ty(1)).

From the definition of t and from (C0) we conclude that

(y(1)ty(1))i = e,

whence
zi = (y(1)hiy

(1))i = (y(1)ψi(g)y(1))i.

Therefore ψi(z) = y(1)ψi(g)y(1). �

5.9. Lemma. ψi is a mapping of G onto Ki. Moreover, ψi is a homomorphism

with respect to the group operation and ψi(Ki) = Ki for each i ∈ I.

�����. Let h0i be any element of Hi. Then

ψi(h
0
i ) = h

0
i , ψi(h0i y

(1)) = h
0
i y
(1).

Thus ψi is surjective. Also ψi(Ki) = Ki for each i ∈ I.
Let g1, g2 ∈ G, g1g2 = g. We distinguish the following cases.
a1) Let g1, g2 ∈ G↑. Then under notation analogous to a) we have

ψi(g) = hi = h1ih2i = ψi(g1)ψi(g2).

a2) Let g1 ∈ G↑, g2 ∈ G↓. There is g3 ∈ G↑ with g2 = g3y(1). Then in view of 5.7
and a) we get

ψi(g) = ψi(g1g3y(1)) = ψi(g1g3)y(1) = ψi(g1)ψi(g3)y(1)

= ψi(g1)ψi(g3y
(1)) = ψi(g1)ψi(g2).

a3) Let g1 ∈ G↓, g2 ∈ G↑. There is g3 ∈ G↑ with g1 = g3y
(1). Further, there is

z ∈ G↑ such that y(1)g2 = zy(1). Then y(1)zy(1) = g2, whence according to 5.8,

y(1)ψi(z)y(1) = ψi(g2).

By applying 5.7 and a) we obtain

ψi(g) = ψi(g3y(1)g2) = ψi(g3zy(1)) = ψi(g3)ψi(z)y(1)

= (ψi(g3)y(1))(y(1)ψi(z)y(1)) = ψi(g3y(1))ψi(g2) = ψi(g1)ψi(g2).
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a4) Let g1 ∈ G↓, g2 ∈ G↓. There is g3 ∈ G↑ with g2 = g3y
(1). Then a3) and 2.7

yield

ψi(g) = ψi(g1g3y(1)) = ψi(g1g3)y(1) = ψi(g1)ψi(g3)y(1)

= ψi(g1)ψi(g3y(1)) = ψi(g1)ψi(g2).

�

We denote by K0 the cartesian product of the groups Ki (i ∈ I). For each g ∈ G
we put

ψ(g) = (ψi(g))i∈I .

Thus ψ is a mapping of G into K0; moreover, in view of 5.9, ψ is a homomorphism

with respect to the group operation.

Denote ψ(y(1)) = y(01).

5.10. Lemma. (y(01))2 = e.

�����. We have to verify that ψi((y(1))2) = e for each i ∈ I. Lemma 5.7 yields

ψi(y(1)) = ψi(ey(1)) = ψi(e)y(1) = y(1),

ψi((y(01))2) = ψi(y(1)y(1)) = ψi(y(1))y(1) = y(1)y(1) = e.

�

According to 5.10 and in view of the definition of the lexicographic product of half
cyclically ordered groups we can construct the lexicographic product

(2) K = (y(01))Γi∈IKi.

Then K is a subgroup of K0.

The relation of cyclic order in K will be denoted by CK .

We have already remarked above that Ki↑ = Hi, Ki↓ = Hiy
(1) for each i ∈ I.

From these relations and from the construction of K we conclude

5.11. Lemma.
(i) K↑ is the set of all elements k of K such that ki ∈ Hi for each i ∈ I.
(ii) K↓ is the set of all elements k′ of K such that k′i ∈ Hiy

(1) for each i ∈ I.

5.12. Lemma. ψ(G↑) = K↑ and ψ(G↓) = K↓.
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�����. Let g ∈ G↑. If i ∈ I, then in view of the definition of ψi we have

ψi(g) = hi, (hi)i = gi (under the notation as above). Moreover, according to (1’)
the set

I(g, e) = {i ∈ I : gi �= e}
is either empty or well-ordered. Since

(∗) gi �= e⇔ hi �= e

we infer that ψ(g) belongs to K and then, clearly, ψ(g) ∈ K↑. By analogous steps
we verify that if ψ(g) is an element of K↑, then g must belong to G↑. Hence

ψ(G↑) = K↑.

From this relation and from

G↓ = G↑y(1), K↓ = K↑y(1)

we obtain (by applying 5.9 and 5.10) the relation ψ(G↓) = K↓. �

From 5.12 and from the relation (∗) we conclude

5.13. Lemma. Let g1, g2, g3 ∈ G↑. Then

(+) (g1, g2, g3) ∈ C ⇔
(
ψ(g1), ψ(g2), ψ(g3)

)
∈ CK .

5.14. Lemma. Let g1, g2, g3 ∈ G↓. Then the relation (+) is valid.

�����. We have

(g1, g2, g3) ∈ C ⇔ (g1y(1), g2y(1), g3y(1)) ∈ C.

In view of 5.13,

(g1y(1), g2y(1), g3y(1)) ∈ C ⇔
(
ψ(g1y(1)), ψ(g2y(1)), ψ(g3y(1))

)
∈ CK .

According to 5.7

ψ(giy
(1)) = ψ(gi)y(01) (i = 1, 2, 3).

Therefore

(
ψ(g1y

(1)), ψ(g2y
(1)), ψ(g3y

(1))
)
∈ CK

⇔
(
ψ(g1)y(01), ψ(g2)y(01), ψ(g3)y(01)) ∈ CK ⇔ (ψ(g1), ψ(g2), ψ(g3)

)
∈ CK .

�
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5.15. Lemma. ψ is an isomorphism with respect to the group operation.

�����. We have already remarked above that ψ is a homomorphism with

respect to the group operation. Let g ∈ G, ψ(g) = e. Then in view of 5.12, g ∈ G↑.
We have ψi(g) = e for each i ∈ I, whence gi = e for each i ∈ I, yielding that

g = e. �

From 5.11–5.15 we conclude

5.16. Lemma. ψ is an isomorphism of the half cyclically ordered group G onto
the half cyclically ordered group K.

From (2) we obtain

(2’) K↑ = Γi∈IKi.

The lexicographic product decomposition (2’) is generated by (2). Thus (2’) can be
extended onto K.

Then in view of 5.15 and of the fact that ψ is constructed by means of the mappings
ψi (i ∈ I) (cf. also 5.12 and 5.9) we conclude

5.17. Lemma. The lexicographic product β1 of G↑ can be extended onto G.

5.18. Theorem. Let G be a half cyclically ordered group with G↓ �= ∅ and let
β1 be a lexicographic product decomposition of G↑. Then the following conditions
are equivalent:

(i) There exists a lexicographic product decomposition α1 of G such that β1 is

generated by α1.

(ii) β1 satisfies the condition (C0).

�����. This is a consequence of 5.5 and 5.17. �
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