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CONGRUENCE MODULARITY AT 0
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Abstract. We introduce a weakened form of regularity, the so called semiregularity, and
we show that if every diagonal subalgebra of A × A is semiregular then A is congruence
modular at 0.
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Recall that an algebra A is regular if for every two congruences Θ,Φ ∈ ConA

the following holds

if [a]Θ = [a]Φ for some a ∈ A then Θ = Φ.

Note that this condition can be rewritten in the form:

if [a]Θ = [a]Φ for some a ∈ A then [b]Θ = [b]Φ for each b ∈ A.

This formulation was used in [2] for introducing local regularity. At first we say
that an algebra A has 0 if 0 is a nullary (term) operation of A . An algebra A

with 0 is locally regular if for each Θ,Φ ∈ ConA the following holds:

if [a]Θ = [a]Φ for some a ∈ A then [0]Θ = [0]Φ.

The paper [2] contains examples of locally regular algebras and two characterizations
of varieties of these algebras.

It was shown in [1] that if every subalgebra of the direct power A ×A is regular
then A is congruence modular, i.e. the congruence lattice ConA is modular.
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The concept of congruence modularity was weakened in [3] as follows:

An algebra A with 0 is congruence modular at 0 if for each Θ,Φ,Ψ ∈ ConA with

Ψ ⊆ Φ the following holds

[0]Φ∩(Θ∨Ψ) = [0](Φ∩Θ)∨Ψ.

Let A = (A, F ) be an algebra. Denote by ωA = {〈a, a〉; a ∈ A } the so called
diagonal of A , i.e. the least congruence on A . A subalgebra B of the direct square
A ×A is called a diagonal subalgebra whenever ωA ⊆ B.

Let us consider the conditions

(i) Every diagonal subalgebra of A ×A is regular.

(ii) Every diagonal subalgebra of A × A is locally regular (with respect to the

term (0, 0)).

We can ask whether there exists an intermediate property between the condi-

tions (i) and (ii) which ensures the congruence modularity at 0 for A .

Definition. Let A be an algebra with 0. We say that a diagonal subalgebra B

of A ×A is semiregular if for every α, β ∈ ConB the following holds: if [(a, a)]α =

[(a, a)]β for some a ∈ A then [(0, a)]α = [(0, a)]β whenever (0, a) ∈ B.

Now let us deal with the condition

(iii) Every diagonal subalgebra of A ×A is semiregular.

Then we have

(i)⇒ (iii)⇒ (ii)

(since the element (0, 0) is contained in each diagonal subalgebra).

Applying an approach similar to that of [1] for regularity, we will show the con-

nection between semiregularity and modularity at 0. For this, we need the following

Lemma. Let every diagonal subalgebra of A × A be semiregular, let Ψ,Φ ∈
ConA and R be a reflexive and compatible relation on A . If Ψ ⊆ Φ and Φ∩R ⊆ Ψ
then

[〈x1, x2〉 ∈ R, 〈0, y2〉 ∈ R, 〈x1, 0〉 ∈ Φ, 〈x2, y2〉 ∈ Ψ]⇒ 〈x1, 0〉 ∈ Ψ.

�����. Let every diagonal subalgebra of A × A be semiregular and Θ,Ψ, R

satisfy the assumptions. Of course, R is a diagonal subalgebra of A ×A . Introduce

the following two congruences α, β on R:

〈(x1, x2), (y1, y2)〉 ∈ α if 〈x1, y1〉 ∈ Θ and 〈x2, y2〉 ∈ Ψ,

〈(x1, x2), (y1, y2)〉 ∈ β if 〈x1, y1〉 ∈ Ψ and 〈x2, y2〉 ∈ Ψ.
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Since Ψ ⊆ Φ, we have β ⊆ α. First we prove [(y2, y2)]α = [(y2, y2)]β . Suppose

(z1, z2) ∈ [(y2, y2)]β for some 〈z1, z2〉 ∈ R. Then 〈y2, z1〉 ∈ Φ, 〈y2, z2〉 ∈ Ψ ⊆ Φ thus
also 〈z1, z2〉 ∈ Φ, i.e. 〈z1, z2〉 ∈ Φ ∩R ⊆ Ψ.
Together with 〈y2, z2〉 ∈ Ψ this gives 〈y2, z1〉 ∈ Ψ thus 〈(y2, y2), (z1, z1)〉 ∈ α

proving our equality. Since R is semiregular, this implies

[(0, y2)]α = [(0, y2)]β .

By the assumption, 〈0, x1〉 ∈ Φ, 〈y2, x2〉 ∈ Ψ, i.e. 〈x1, x2〉 ∈ [(0, y2)]α = [(0, y2)]β
thus also 〈x1, 0〉 ∈ Ψ. �

Theorem. If every diagonal subalgebra of A × A is semiregular then A is

congruence modular at 0.

�����. Let every diagonal subalgebra of A × A be semiregular, Θ,Φ,Ψ ∈
ConA and Ψ ⊆ Φ. To prove congruence modularity at 0 we need only to show that

[0]Φ∩(Ψ∨Θ) ⊆ [0]Ψ∨(Φ∩Θ).

Denote by R0 = Θ and define inductively

Rk+1 = Rk ·Ψ ·Θ for k = 0, 1, 2, . . .

Hence, we need to prove

(∗) [0]Φ∩Rk
⊆ [0]Ψ∨(Φ∩Θ)

for every k = 0, 1, 2, . . ..

For k = 0 this holds trivially. Suppose that (∗) holds for some k � 0 and let us
prove it for k + 1. Let a ∈ [0]Φ∩Rk+1 . Then there exist b, c ∈ A such that

〈a, 0〉 ∈ Φ, 〈a, b〉 ∈ Rk, 〈b, c〉 ∈ Ψ, 〈c, 0〉 ∈ Θ.

However, Θ ⊆ R gives 〈0, c〉 ∈ Rk.

Set Ψ∗ = Ψ ∨ (Φ ∩ Θ). Then Ψ∗ ⊆ Φ and Φ ∩ Rk ⊆ Ψ∗. Evidently, Rk is a
diagonal subalgebra of A × A . In account of the Lemma, we obtain 〈a, 0〉 ∈ Ψ∗
which proves (∗) for k + 1. By induction, we have shown that A is congruence
modular at 0. �
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