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Abstract. Let IntA be the lattice of all intervals of an MV -algebra A. In the present
paper we investigate the relations between direct product decompositions of A and (i) the
lattice IntA, or (ii) 2-periodic isometries on A, respectively.
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1. Introduction

The system IntL of intervals of a lattice L has been investigated in several papers;
for detailed references cf. [11].

Let A be an MV -algebra with the underlying set A. In view of [13], A can
be constructed by means of an abelian lattice ordered group having a strong unit.

This yields that without loss of generality we can suppose that on the set A lattice
operations ∨ and ∧ (implying a partial order � on A) are defined and that for each

x, y ∈ A with x � y the difference y − x is defined in A.

Let �(A) be the lattice (A;∨,∧); we put Int �(A) = IntA.
We denote by Adual the MV -algebra dual to A (for the terminology, cf. Section 2

below).

Further, we denote by M1(A), M2(A) and M3(A) the systems of allMV -algebras
A1 such that

IntA1 = IntA, �(A1) = �(A), or �(A1) = �(Adual),

respectively.
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We always have

M2(A) ∪M3(A) ⊆ M1(A).

In the present paper we prove:

(∗) Let A be an MV -algebra. The following conditions are equivalent:

(i) M2(A) ∪M3(A) =M1(A).
(ii) The MV -algebra A is directly indecomposable.

The basic papers on isometries in autometrized lattice ordered groups are the

articles [16] and [17]; cf. also [6], [7], [14], [15]. For more detailed references concerning
isometries in some other types of autometrized partially ordered algebraic structures

cf. [10].

Let A and A be as above. For a, b ∈ A we put

�(a, b) = (a ∨ b)− (a ∧ b).

The mapping � : A×A → A will be called the autometrization of A.
A bijection f : A → A is said to be an isometry of A if the relation

�(f(a), f(b)) = �(a, b)

identically holds.

An isometry f is called 2-periodic if f(f(a)) = a for each a ∈ A. Let F be the set

of all 2-periodic isometries on A.
We show that a 2-periodic isometry f is uniquely determined by the element f(0).

Namely, let us denote f(0) = b. Then b has a (uniquely determined) complement c

in �(A). We prove that for each t ∈ A the following formula is valid:

f(t) = (b − (t ∧ b)) ∨ (t ∧ c).

For f1, f2 ∈ F we put f1 � f2 if f1(0) � f2(0). We show that the structure (F ;�)
is a Boolean algebra.

When dealing with isometries on A we shall apply direct product decompositions
of A.
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2. Preliminaries

For definingMV -algebras several equivalent systems of axioms have been applied.

Let us recall the system from [3] (cf. also [2]); this system will be useful for defining
the dual of an MV -algebra.

Suppose that A is a nonempty set, ⊕ and 	 are binary operations, ¬ is a unary
operation, and 0, 1 are nullary operations (i.e., constants) on A. By means of these
operations we define binary operations ∨ and ∧ on A by putting

x ∨ y = (x	 ¬y)⊕ y, x ∧ y = (x⊕ ¬y)	 y.

2.1. Definition. The algebraic structure A = (A;⊕,	,¬, 0, 1) is an MV -

algebra if it satisfies the following axioms:

Ax. 1. x⊕ y = y ⊕ x Ax. 1′. x	 y = y 	 x,

Ax. 2. x⊕ (y ⊕ z) = (x⊕ y)⊕ z, Ax. 2′. x	 (y 	 z) = (x 	 y)	 z,

Ax. 3. x⊕ ¬x = 1, Ax. 3′. x	 ¬x = 0,
Ax. 4. x⊕ 1 = 1, Ax. 4′. x	 0 = 0,
Ax. 5. x⊕ 0 = x, Ax. 5′. x	 1 = x,

Ax. 6. ¬(x ⊕ y) = ¬x	 ¬y, Ax. 6′. ¬(x	 y) = ¬x⊕ ¬y,

Ax. 7. x = ¬(¬x), Ax. 8. ¬0 = 1,
Ax. 9. x ∨ y = y ∨ x, Ax. 9′. x ∧ y = y ∧ x,

Ax. 10. x ∨ (y ∨ z) = (x ∨ y) ∨ z, Ax. 10′. x ∧ (y ∧ z) = (x ∧ y) ∧ z,

Ax. 11. x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z), Ax. 11′. x	 (y ∨ z) = (x	 y) ∨ (x	 z).

Further, let us consider the following system of axioms for an algebraic structure

A = (a,⊕,	,¬, 0, 1) (cf. [5]):

(M1) (x ⊕ y)⊕ z = z ⊕ (y ⊕ z),

(M2) x⊕ 0 = x,

(M3) x⊕ y = y ⊕ x,

(M4) x⊕ 1 = 1,
(M5) ¬¬x = x,

(M6) ¬0 = 1,
(M7) x⊕ ¬x = 1,

(M8) ¬(¬x ⊕ y)⊕ y = ¬(x ⊕ ¬y)⊕ x,

(M9) x	 y = ¬(¬x ⊕ ¬y).

2.2. Proposition (cf. [12]). Assume that the algebraic structure A =
(A;⊕,	,¬, 0, 1) satisfies the axioms (M1)–(M9). Then A is an MV -algebra.
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In some papers (cf., e.g., [5], [8]) the axioms (M1)–(M9) are applied under a slightly

modified notation (instead of 	 the symbol ∗ is used).
A simplified system of axioms for an MV -algebra was given in [2]; moreover, it

was shown that the axioms of this system are independent.

If A1 is another MV -algebra then we sometimes use the notation

(1) A1 = (A1;⊕1,	1,¬1, 01, 11)

(e.g., in the case when A1 = A and when the operations from A1 need not coincide
with those of A).

2.3. Lemma. Let A be as in 2.1 and let

A1 = A, ⊕1 = 	, 	1 = ⊕, ¬1 = ¬, 01 = 1, 11 = 0.

Then the algebraic structure A1 from (1) is anMV -algebra. Moreover, if ∨1 and ∧1
are defined analogously as ∨ and ∧ above, then

∨1 = ∧, ∧1 = ∨.

�����. This is an immediate consequence of Definition 2.1. �

We say that the MV -algebra A1 from 2.3 is dual to the MV -algebra A and write

A1 = Adual.

3. The lattice �(A)

For lattice ordered groups we apply the notation and the terminology as in [1]

and [4].

For the following results (∗1) and (∗∗) cf. [13].
(∗1) Let G be an abelian lattice ordered group with a strong unit u. Let A be the

interval [0, u] of G. For a, b ∈ A we put

a⊕ b = (a+ b) ∧ u, ¬a = u− a,

1 = u, a	 b = ¬(¬a ⊕ ¬b).

Then the algebraic system A = (A;⊕,	,¬, 0, 1) is an MV -algebra.
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The MV -algebra from (∗) will be denoted by Γ(G, u) (in [14], the notation

G0(G, u) was applied).

(∗∗) For each MV -algebra A there exists an abelian lattice ordered group G with a
strong unit u such that A = Γ(G, u).

In what follows we assume that A is an MV -algebra and that G is as in (∗∗).
Then the operation ∨ on the set A (induced from G) coincides with the operation ∨
from 2.1; the situation for the operation ∧ is analogous. The partial order � on A

is defined by means of the operations ∨ and ∧. We have 0 � x � u for each x ∈ A.

Further, if x and y are elements of A with x � y, then y − x ∈ A; hence we can
consider—to be a partial binary operation on A. We denote

(A;∨,∧) = �(A).

We remark that if A and A′ are MV -algebras such that

�(A) = �(A′),

then neither A = A′ nor Adual = A′ need be valid.
Let L be a lattice. The corresponding dual lattice will be denoted by Ld.

The direct product of lattices L1 and L2 is defined in the usual way and we denote
it by L1 × L2.

A lattice L is called directly indecomposable if, whenever L is isomorphic to a
direct product L1 × L2, then either L1 or L2 is a one-element set.

An analogous notation and terminology will be applied for direct products of
MV -algebras.

The meaning of IntL is as in Section 1. Further, let CsubL be the set of all convex
sublattices of L. We obviously have

3.1. Lemma. Let L be a lattice. Then IntLd = IntL.

As a corollary we obtain

3.1.1. Corollary. Let L1 and L2 be lattices. Then

Int(L1 × L2) = Int(Ld
1 × L2).

The proof of the following lemma is simple; it will be omitted.

3.2. Lemma. Let L and L′ be lattices defined on the same underlying set M .

Then the following conditions are equivalent:
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(i) IntL = IntL′;

(ii) CsubL = CsubL′.

3.3. Lemma. Let L and L′ be distributive lattices defined on the same under-

lying set M . Then the following conditions are equivalent:

(i) IntL = IntL′;

(ii) There exist lattices L1, L2 and a bijection

ϕ : M → L1 × L2

such that ϕ is an isomorphism of L onto L1 × L2 and, at the same time, ϕ is

an isomorphism of L′ onto Ld
1 × L2.

�����. This is a consequence of 3.2 and of the results of [9]. �

3.4. Lemma. Let A be an MV -algebra. Then

M2(A) ∪M3(A) ⊆ M1(A).

�����. In view of the definition of the MV -algebra Adual we have

(1) �(Adual) = (�(A))d.

Now it suffices to apply 3.1. �

Now suppose that L1 and L2 are lattices with cardL1 
= 1 
= cardL2. Put L =

L1 × L2 and L′ = Ld
1 × L2. The partial orders on L, Ld and L′ will be denoted by

�1, �2 or �3, respectively.

3.5. Lemma. The partial order �3 coincides neither with �1 nor with �2.

�����. There exist u1, v1 ∈ L1 and u2, v2 ∈ L2 such that the relation ui < vi

is valid in Li (i = 1, 2). Then we have

(v1, u2) <3 (u1, v2),

but the analogous relation fails to hold for both <1 and <2. �
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If A, A1 and A2 are MV -algebras such that A is isomorphic to A1 × A2, then
�(A) is isomorphic to �(A1)× �(A2). Thus 3.5 and (1) yield

3.6. Lemma. Assume that A is a directly decomposable MV -algebra. Then

M2(A) ∪M3(A) 
=M1(A).

Now suppose that A and A′ are MV -algebras such that

(i) A and A′ have the same underlying set A;
(ii) IntA = IntA′.

Denote
�(A) = L, �(A′) = L′.

Then both L and L′ have the same underlying set A and

IntL = IntL′.

Hence the condition (ii) from 3.3 is satisfied. We denote by A1 and A2 the underlying
sets of the lattices L1 and L2, respectively.

In view of [8] there exist MV -algebras A1 and A2 such that
a) �(Ai) = Li for i = 1, 2;

b) the mapping ϕ is an isomorphism of A onto A1 ×A2.
Similarly we obtain that there exist MV -algebras A′

1 and A′
2 such that

a) �(A′
1) = Ld

1, �(A′
2) = L2;

b) the mapping ϕ is an isomorphism of A′ onto A′
1 ×A′

2.

Summarizing, we conclude

3.7. Proposition. Let A and A′ be MV -algebras such that A′ ∈ M1(A). Then
there exist direct product decompositions

A = A1 ×A2, A′ = A′
1 ×A′

2

such that

A′
1 ∈ M3(A1), A′

2 ∈ M2(A2).

����� of (∗) from Section 1. Let the condition (i) from (∗) be valid. Then in
view of 3.6 the MV -algebra A is directly indecomposable.
Conversely, assume that the condition (ii) from (∗) holds. Let A′ ∈ M1(A). We

apply 3.7. Since A is directly indecomposable we infer that either A1 or A2 has a
one-element underlying set. Hence either A = A1 or A = A2. Therefore (i) holds.

�
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4. Autometrization and isometries

Assume that A and G are as above.

Let a, b ∈ A. From the definition of �(a, b) in Section 1 we get

�(a, b) = |a− b|.

Since the autometrization �G on G considered in [16] was given by

�G(x, y) = |x− y|

for each x, y ∈ G, we conclude that the autometrization � on A is induced from that
studied in [6] on the whole G.

This immediately yields
1) �(a, b) = 0 if and only if a = b.

2) �(a, b) = �(b, a).
Further, we have:

3) For any a, b, c ∈ A,
�(a, b) � �(a, c)⊕ �(c, b).

�����. It is well-known that

|a− b| � |a− c|+ |c− b|.

Since |a− b| ∈ A we get |a− b| � u and then

|a− b| � (|a− c|+ |c− b|) ∧ u = |a− c| ⊕ |c− b|.

�

By checking the proofs of Lemmas 1.1–1.7′ in [7] we can verify that all assertions

of these lemmas remain valid if instead of the lattice ordered group G we take the
MV -algebra A. Moreover, the duals of 1.7 and 1.7′ also hold.
Since A = [0, u], we have

4.1. Lemma. Let t1, t2 ∈ A, t2 − t1 = u. Then t1 = 0 and t2 = u.

Let f be an isometry on A. Denote

f(0) = b, f(u) = c.

We have
u = |u− 0| = |f(u)− f(0)| = |b− c| = (b ∨ c)− (b ∧ c).
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Hence in view of 4.1,

b ∧ c = 0, b ∨ c = u.

Thus we obtain

4.2. Lemma. The element c is a complement of b.

Now suppose that f is an element of F . Then

f(b) = 0, f(c) = u.

Let us apply the terminology of Section 1, [7]. Hence we have

[0, b] ∈ M2,(1)

[b, u] ∈ M1.(2)

In view of 1.7′ from [7] and according to (1) we obtain

(3) [c, u] ∈ M2.

Further, in view of the dual of 1.7 from [7] and according to (2), we get

(4) [0, c] ∈ M1.

Remark. The assertion of 4.2 is implied also by (1)–(4) and by Lemma 1.6 of [7].

4.3. Lemma. Let x ∈ [0, b]. Then f(x) = b− x.

�����. In view of (1) we have

f(0) � f(x) � f(b),

hence in view of 1.3 from [7] we get

0 � f(x) � b.

Further,

|x− 0| = |f(x)− f(0)|,

thus x = b− f(x), yielding f(x) = b− x. �
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Let t ∈ A. Denote

t ∧ b = t1, t ∧ c = t2.

Then we easily obtain
t1 ∧ t2 = 0, t1 ∨ t2 = t.

In view of (4) and according to 1.3 from [7] we have [0, t2] ∈ M1, hence according

to 1.7 of [7] we get

(5) [t1, t] ∈ M1.

Further, t− t1 = t2. Thus

|f(t)− f(t1)| = |t− t1| = t2.

In view of (5),

|f(t)− f(t1)| = f(t)− f(t1).

Hence
f(t)− f(t1) = t2.

Then according to 4.3,

f(t) = b − t1 + t2.

Since b− t1 � b and t2 � c, we have

(t− t1) ∧ t2 = 0,

thus (b− t1) + t2 = (b− t1) ∨ t2. Therefore

f(t) = (b− t1) ∨ t2.

Summarizing, we have

4.4. Proposition. Let f be a 2-periodic isometry on A, f(0) = b. Then there

exists a uniquely determined element c ∈ A such that c is a complement of b in �(A).
For each t ∈ A the formula

f(t) = (b− (b ∧ t)) ∨ (t ∧ c)

is valid.
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5. Direct product decompositions

Again, let A and G be as above.
In this section we prove that for each element b ∈ A having a complement in �(A)

there exists f ∈ F with f(0) = b.
The main tool in this investigation are direct product decompositions (of lattices,

MV -algebras and lattice ordered groups, respectively). We apply the results of [14].
Suppose that b, c are elements of A such that

b ∧ c = 0, b ∨ c = u.

Put B = [0, b], C = [0, c]. For each t ∈ A we set

t1 = b ∧ t, t2 = c ∧ t, ϕ(t) = (t1, t2).

Since the lattice L = �(A) is distributive we obtain

5.1. Lemma. ϕ is an isomorphism of L onto the direct product B × C.

From 5.1 and in view of the results of [8] we infer

5.2. Lemma. There exist MV -algebras B and C such that
(i) �(B) = B, �(C) = C,

(ii) the mapping ϕ is an isomorphism of A onto the direct product B × C.

Recall that if t ∈ A and ϕ(t) = (t1, t2), then t = t1 ∨ t2.

Again, let G be as above (i.e., A = Γ(G, u), where u is a strong unit of G).
In view of 5.2 and according to [8] we obtain that there exist abelian lattice ordered

groups G1 and G2 having strong units b and c, respectively, such that
(i) B = Γ(G1, b), C = Γ(G2, c),
(ii) there exists an isomorphism ϕ0 of G onto G1 × G2 such that ϕ0(t) = ϕ(t) for
each t ∈ A.

This yields that for each t, t′ ∈ A we have

|t− t′|i = |ti − t′i| (i = 1, 2).

For each t ∈ A we put

(1) f(t) = (b − (b ∧ t)) ∨ (t ∧ c).

Since
b1 = b, b2 = 0, b ∧ t = t1, t ∧ c = t2
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we get

(f(t))1 = b− t1, (f(t))2 = t2.

We want to verify that f is an isometry on A. It suffices to verify that the relation

|ti − t′i| = |(f(t))i − (f(t′))i|

is valid for i = 1, 2.

The case i = 2 is obvious. Consider the case i = 1. We have

|t1 − t′1| = (t1 ∨ t′1)− (t1 ∧ t′1),

|(f(t))1 − (f(t′)1| = |(b− t1)− (b − t′1)|
= ((b− t1) ∨ (b − t′1))− ((b − t1) ∧ (b − t′1)).

In view of the relation between A and G, and since A ⊆ G, the last expressions can
be calculated in G and we obtain

(b− t1) ∨ (b− t′1) = b+ ((−t1) ∨ (−t′1)) = b− (t1 ∧ t′1),

(b− t1) ∧ (b− t′1) = b+ ((−t1) ∧ (−t′1)) = b− (t1 ∨ t′1),

|(f(t))1 − (f(t′))1| = (b − (t1 ∧ t′1))− (b− (t1 ∨ t′1))

= (t1 ∨ t′1)− (t1 ∧ t′1),

as desired. Therefore f is an isometry.
Now let us verify that f is 2-periodic. Put f(t) = p. Then

(f(p))1 = b− (b− t1)1 = b− (b− t1) = t1,

(f(p))2 = (f(f(t)))2 = t2,

f(p) = f(p)1 ∨ f(p)2 = t1 ∨ t2 = t, f(f(t)) = t.

Hence we obtain

5.3. Proposition. Let b and c be complementary elements of the lattice L =
�(A). Let f be defined by (1). Then f is a 2-periodic isometry on A.
Let us now write fb instead of f (where f is as in 5.3). Let B0 be the set of all

elements b ∈ L which have a complement. Since the lattice L is distributive, B0 is a

Boolean algebra.
Consider the mapping χ : B0 → F defined by

χ(b) = fb

for each b ∈ B0. In view of 4.4 and 5.3, χ is a bijection. Hence under the relation �
from Section 1, F is a Boolean algebra.
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