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Abstract. Let R be an associative ring with identity and let J(R) denote the Jacobson
radical of R. R is said to be semilocal if R/J(R) is Artinian. In this paper we give
necessary and sufficient conditions for the group ring RG, where G is an abelian group, to
be semilocal.
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1. Introduction

All rings considered in this paper are associative with identity. Given a ring R and

a group G, we will denote the group ring of G over R by RG. If H is a subgroup of G
then ωH will denote the right ideal of RG generated by {1−h | h ∈ H}. In particular,
if H is a normal subgroup of G then ωH is an ideal of RG and RG/ωH ∼= R(G/H).
If H = G, then ωG is called the augmentation ideal of RG and is written as ∆. It
is well-known that R ∼= RG/∆. If I is an ideal of R then IG is the ideal of RG

generated by the subset I and (R/I)G ∼= RG/IG. These results and notation may

be found in Connell’s paper (see [2]).
For any ring R, the Jacobson radical of R will be denoted by J(R) and the char-

acteristic of R by char R. By an Artinian ring we mean a ring that is both left and
right Artinian. If R is a ring such that R/J(R) is Artinian then we say that R is

semilocal. By p > 0 we mean that p is a prime number.
Our main result in this paper is as follows:

Theorem 1. Let R be a ring and G an abelian group. Then RG is semilocal if

and only if
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(i) R is semilocal and G is finite, or

(ii) R is semilocal and G ∼= Gp × H , where Gp is an infinite p-group, H is finite,

the order of H is relatively prime to p and R/J(R) is of characteristic p > 0.

We remark that if R is a commutative ring and G is an abelian group, Gulliksen,

Ribenboim and Viswanathan [4] and Renault [8] have shown that conditions (i) and
(ii) in Theorem 1 are necessary and sufficient for RG to be semilocal. Theorem 1

is thus an extension of their result. In the case when R = � is a field and G is an
arbitrary group, the question on whether � G is semilocal implies that G is locally

finite or a finite extension of a p-group (where p = char � > 0) has been of some
interest. Theorem 1 shows that the answer to this question is in the affirmative if

G is abelian. S.M. Woods has in fact shown in [9], Theorem 3.2 that G must be
torsion if RG is semilocal. J.M. Goursaud [3] and D. S. Passman [7] independently

proved that if � G is semilocal and G is finite, then G is a finite extension of a p-group.
J. Lawrence [6] proved that if � is a field transcendental over the algebraic closure
of its prime subfield and � G is semilocal, then G is a finite extension of a p-group
where p = char � .

2. Preliminaries

For the sake of completeness we first deal with some preliminaries of the proof of
Theorem 1.

Theorem 2.1 ([2]). Let R be a ring and G a group. Then RG is Artinian if and

only if R is Artinian and G is finite.

Theorem 2.2 ([2], [1]). Let R be a ring and G a group. Then RG is regular if

and only if

(a) R is regular;

(b) G is locally finite;

(c) the order of every finite subgroup of G is a unit in R.

Proposition 2.3. Let R be a ring and G a group. If R is semilocal and G is

finite then RG is semilocal.
���������

. Since R/J(R) is Artinian and G is finite, so (R/J(R))G is Artinian
(by Theorem 2.1). Since G is locally finite, it follows from [2], Proposition 9 that

J(R)G ⊆ J(RG). Now consider the mapping π : RG/J(R)G → RG/J(RG) defined
as follows:

π(x + J(R)G) = x + J(RG), x ∈ RG.
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The mapping π is well-defined since J(R)G ⊆ J(RG). It is easy to verify that
π is a ring epimorphism. Then since RG/J(R)G ∼= (R/J(R))G is Artinian, so is
RG/J(RG). Hence RG is semilocal. �

The proof of the following proposition is straightforward and will be left to the

reader.

Proposition 2.4. Any homomorphic image of a semilocal ring is semilocal.

Proposition 2.5. Let R be a ring and G a group. If RG is semilocal then R is

semilocal and G is a torsion group.
���������

. Since R ∼= RG/∆ and RG is semilocal, it follows from Proposition 2.4

that R is semilocal. The assertion that G is a torsion group follows from the proof
of Theorem 3.2 in [9]. �

Lemma 2.6. Let R1, . . . , Rn be rings. Then R =
n∏

i=1

Ri is semilocal if and only

if each Ri is semilocal.
���������

. We first note that

(2.1) R/J(R) =
n∏

i=1

Ri

/
J

( n∏

i=1

Ri

)
=

n∏

i=1

Ri

/ n∏

i=1

J(Ri) ∼=
n∏

i=1

Ri

/
J(Ri).

Now if R is semilocal then R/J(R) is Artinian and so is
n∏

i=1

Ri/J(Ri) (by (2.1)).

Therefore Ri/J(Ri) is Artinian and hence Ri is semilocal (i = 1, . . . , n).

Conversely, if each Ri is semilocal, then each Ri/J(Ri) is Artinian. Hence
n∏

i=1

Ri/J(Ri) is Artinian and so is R/J(R) (by (2.1)). Therefore R is semilocal and

this completes the proof. �

Lemma 2.7. Let R be a ring. If R = R/J(R) is semilocal, so is R.
���������

. Since R is semiprimitive and semilocal, so R ∼= R/J(R) is Artinian;
hence R is semilocal. �

For any ring R and positive integer n, we let Mn(R) denote the ring of n × n

matrices over R.

Lemma 2.8. A ring R is semilocal if and only if Mn(R) is semilocal.
���������

. It is well-known that

Mn(R/J(R)) ∼= Mn(R)/Mn(J(R)) = Mn(R)/J(Mn(R)).
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The result then follows immediately from the fact that a ring R is Artinian if and

only if Mn(R) is Artinian (see [5], p. 71). �

Lemma 2.9. Let R be a ring and G a group. Then

Mn(R)G ∼= Mn(RG).

���������
. Let θ : Mn(R)G → Mn(RG) be the mapping defined as follows: For

any A1g1 + . . . + Asgs ∈ Mn(R)G, let

θ(A1g1 + . . . + Asgs) = (bij),

where bij = a
(1)
ij g1 + . . .+a

(s)
ij gs and a

(m)
ij is the entry in the i-th row and j-th column

of Am, m = 1, . . . , s. It may be verified routinely that θ is a ring isomorphism. Hence
Mn(R)G ∼= Mn(RG). �

Remark. It is known that if R is a completely reducible ring, then R is isomorphic

to a finite direct product of full matrix rings over division rings, that is,

R ∼= Mn1(D1)× . . .×Mnk
(Dk)

where Di is a division ring (i = 1, . . . , k). We shall refer to the Di’s (i = 1, . . . , k) as

division rings associated with R.

Proposition 2.10. Let R be a ring and G a group. If RG is semilocal, so is DG

for each division ring D associated with R/J(R).
���������

. Assume that RG is semilocal. By Proposition 2.4 we have that
(R/J(R))G ∼= RG/J(R)G and R ∼= RG/∆ are semilocal. Therefore, R/J(R) is
completely reducible and hence, isomorphic to a finite direct product of full matrix
rings over division rings, that is,

R/J(R) ∼= Mn1(D1)× . . .×Mnk
(Dk) =

k∏

i=1

Mni(Di)

for some division rings D1, . . . , Dk. It follows that

(R/J(R))G ∼=
( k∏

i=1

Mni(Di)
)

G ∼=
k∏

i=1

Mni(Di)G

∼=
k∏

i=1

Mni(DiG) (by Lemma 2.9).
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Since (R/J(R))G is semilocal, so is
k∏

i=1

Mni(DiG) (by Proposition 2.4). It follows

from Lemma 2.6 that each Mni(DiG) is semilocal and hence by Lemma 2.8, DiG is

semilocal (i = 1, . . . , k). �

Proposition 2.11. If D is a division ring of characteristic p > 0 and G is an

abelian group which is a finite extension of a p-group, then DG is semilocal.

���������
. By assumption we have that G/Gp is finite for some p-subgroup Gp

of G. If Gp = {1}, then G is finite and it follows easily that DG is semilocal. Now

assume that Gp 6= {1} and let g ∈ Gp, g 6= 1. Then gpn

= 1 for a positive integer n

and therefore, (1− g)pn

= 0. It follows that 1− g is a nilpotent element. Since 1− g

lies in the centre of DG, so the ideal generated by 1 − g is nilpotent (hence nil).
Then, since all nil ideals of DG are contained in J(DG), so 1− g ∈ J(DG). It thus
follows that ωGp ⊆ J(DG). Now consider the mapping π : DG/ωGp → DG/J(DG)
defined as follows:

π(x + ωGp) = x + J(DG), x ∈ DG.

Since ωGp ⊆ J(DG), π is well-defined. It is easily verified that π is a ring epimor-
phism. Note that D(G/Gp) is Artinian since D is Artinian and G/Gp is finite. Then

since DG/ωGp
∼= D(G/Gp) is Artinian, so is DG/J(DG). Hence DG is semilocal.

�

3. Proof of Theorem 1

We are now ready for the proof of the main theorem.
���������

of Theorem 1. (⇒): Suppose that RG is semilocal. Since R ∼= RG/∆,
it follows from Proposition 2.4 that R is semilocal. By Proposition 2.10 we have that
DG is semilocal for each division ring D associated with R/J(R). Let D be one of

those division rings and let p = charD. We consider the following cases:

Case 1 : p = 0. In this case, the order of every finite subgroup of G is a unit in D.

By Proposition 2.5 we know that G is torsion. Then, since G is abelian, it follows
that G is locally finite. Since D is regular, it follows from Theorem 2.2 that DG is

regular. Hence J(DG) = {0} and therefore DG ∼= DG/J(DG) is Artinian. We thus
have that G is finite, that is (i) occurs.

Case 2 : p > 0. Since G is an abelian torsion group we may write G ∼= Gp ×H

where Gp is the Sylow p-subgroup of G and the order of every element of H is prime
to p. Clearly, the order of every finite subgroup of H is a unit in D. Furthermore,
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H is locally finite (since G is locally finite) and D is regular. It follows that DH is

regular (by Theorem 2.2); hence J(DH) = {0}. Since

DH ∼= D(G/Gp) ∼= DG/ωGp

is semilocal (by Proposition 2.4), so DH ∼= DH/J(DH) is Artinian and hence H is
finite. If Gp is finite, then (i) occurs.

Now suppose that Gp is infinite. We show that each of the division rings associated

with the completely reducible ring R/J(R) has the characteristic p. Suppose that
there exists a division ring D′ associated with R/J(R) such that char D′ = q and

q 6= p. If q = 0, then by the same argument as in Case 1 we have that G is finite.
But this is impossible since Gp ⊆ G and Gp is infinite. If q > 0, then since G is an

abelian torsion group, we may write G ∼= Gq×H ′, where Gq is the Sylow q-subgroup
of G and the order of every element of H ′ is prime to q. By the same argument as

in the preceding paragraph we can show that H ′ is finite. But since Gp ⊆ H ′, this
implies that Gp is finite; a contradiction. Hence if Gp is infinite, then each of the

division rings associated with R/J(R) is of the characteristic p > 0. It follows then
that char R/J(R) = p and hence, (ii) occurs.

(⇐): Suppose that (i) occurs. It follows readily from Proposition 2.3 that RG is

semilocal.

Now suppose that (ii) occurs. Then R/J(R) is a completely reducible ring and
therefore it is isomorphic to a finite direct product of full matrix rings over division
rings, that is,

R/J(R) ∼= Mn1(D1)× . . .×Mnk
(Dk) =

k∏

i=1

Mni(Di)

for some division rings D1, . . . , Dk. Therefore,

RG/J(R)G ∼= (R/J(R))G ∼=
k∏

i=1

Mni(Di)G(3.1)

∼=
k∏

i=1

Mni(DiG) (by Lemma 2.9).

Since charR/J(R) = p > 0, so each Di is a division ring of the characteristic p > 0.
Then since G is a finite extension of a p-group, it follows from Proposition 2.11 that

each DiG is semilocal. From Lemma 2.8 we have that Mni(DiG) is semilocal for

each i. Therefore
k∏

i=1

Mni(DiG) is semilocal (by Lemma 2.6) and it follows from (3.1)

754



that RG/J(R)G is semilocal. Now since G is locally finite, so J(R)G ⊆ J(RG)
(by [2], Proposition 9). Consider the mapping π : RG/J(R)G → RG/J(RG) defined
as follows:

π(α + J(R)G) = α + J(RG), α ∈ RG.

By routine verification, π is a well-defined ring epimorphism. Since RG/J(R)G is
semilocal, so is RG/J(RG) (by Proposition 2.4). It then follows from Lemma 2.7
that RG is semilocal.

This completes the proof of the theorem. �
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