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 LUKASIEWICZ TRIBES ARE ABSOLUTELY

SEQUENTIALLY CLOSED BOLD ALGEBRAS

��� ��� � � � 	 

, Košice

(Received December 29, 1999)

Dedicated to the memory of my teacher Professor Josef Novák.

Abstract. We show that each sequentially continuous (with respect to the pointwise
convergence) normed measure on a bold algebra of fuzzy sets (Archimedean MV -algebra)
can be uniquely extended to a sequentially continuous measure on the generated  Lukasiewicz
tribe and, in a natural way, the extension is maximal. We prove that for normed measures
on  Lukasiewicz tribes monotone (sequential) continuity implies sequential continuity, hence
the assumption of sequential continuity is not restrictive. This yields a characterization
of the  Lukasiewicz tribes as bold algebras absolutely sequentially closed with respect to
the extension of probabilities. The result generalizes the relationship between fields of sets
and the generated σ-fields discovered by J. Novák. We introduce the category of bold
algebras and sequentially continuous homomorphisms and prove that  Lukasiewicz tribes
form an epireflective subcategory. The restriction to fields of sets yields the epireflective
subcategory of σ-fields of sets.

Keywords: MV -algebra, bold algebra, field of sets,  Lukasiewicz tribe, sequential conver-
gence, sequential continuity, measure, extension of measures, sequential envelope, absolute
sequentially closed bold algebra, epireflective subcategory
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In Section 1 we discuss continuity of measures on rings of sets. Since the usual
sequential convergence in a ring of sets can be approximated by the monotone sequen-

tial convergence in the generated σ-ring, the measure extension theorem for rings of
sets yields a simple proof of the fact (cf. [14]) that each bounded σ-additive measure

on a ring of sets is sequentially continuous. In Section 2 we deal with sequentially
continuous measures on bold algebras. Finally, in Section 3 we give a categorical
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characterization of the  Lukasiewicz tribes as absolutely sequentially closed bold al-

gebras.

1.

In measure theory and its applications, the monotone (sequential) continuity of a
measure amounts to the σ-additivity. Indeed, let � be a ring of subsets of X and let

m be an additive (finite) measure on � . Then the following are equivalent:

(i) m is σ-additive, i.e., if 〈An〉 is a mutually disjoint sequence in � such that
∞⋃

n=1
An belongs to � , then m

( ∞⋃
n=1

An

)
=

∞∑
n=1

m(An);

(ii) m is sequentially continuous from above, i.e., if A ∈ � and 〈An〉 is a decreasing

sequence in � such that A =
∞⋂

n=1
An, then m(A) = lim

n→∞
m(An);

(iii) m is sequentially continuous from below, i.e., if A ∈ � and 〈An〉 is an increasing

sequence in � such that A =
∞⋃

n=1
An, then m(A) = lim

n→∞
m(An).

Monotone (sequential) continuity appears in various generalizations of measures:

states on quantum logics, tribes, D-posets, MV -algebras, etc., see [20], [21], [9], [19],
[18], [13], [8], [11], and the references therein.

Observe that, barring trivial cases, the monotone convergence on a ring of sets �
is too fine to match the natural algebraic and topological structures of � : if 〈An〉 and
〈Bn〉 are convergent monotone sequences, then the sequence 〈An ÷Bn〉 of the sym-

metric differences An ÷ Bn = (An \ Bn)
⋃

(Bn \ An), n ∈ � , need not be monotone
and the monotone convergence is strictly finer than the initial (or weak) conver-

gence with respect to all σ-additive {0, 1}-valued measures (there is a sequence 〈An〉
in � such that 0 = lim

n→∞
m(An) for each σ-additive {0, 1}-valued measure m and

〈An〉 fails to be decreasing to ∅). Hence the monotone convergence is not suitable

in case we employ topological and categorical methods. We shall show that the
usual convergence (〈An〉 converges to A in � iff A = lim sup An = lim inf An, where

lim sup An =
∞⋂

k=1

∞⋃
n=k

An and lim inf An =
∞⋃

k=1

∞⋂
n=k

An; this is equivalent to the point-

wise convergence of the sequence 〈χAn〉 of characteristic functions to χA) is exactly

what is needed. It turns rings of sets and their generalizations into continuous alge-
bras (algebraic operations are sequentially continuous) and, which is more important,

σ-additivity (and measurability, cf. [4]) can be characterized in terms of sequential
continuity.

J. Novák proposed to study the extension of probabilities from a field � of sets

over the generated σ-field σ( � ) from the topological viewpoint. He developed the
theory of sequential envelopes—a theory resembling the Čech-Stone compactification
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and the Hewitt realcompactification (all are epireflections in the categorical language)

and showed that σ( � ) is the sequential envelope of � with respect to the extension of
probabilities (cf. [15], [16], [17]). The crucial point was to show that each probability
(bounded σ-additive measure) on � is sequentially continuous with respect to the

pointwise sequential convergence. A rather involved proof of this fact (attributed to
M. Jiřina) appeared in [14]. We provide a simple proof based on the relationships

between the monotone and the pointwise convergence.

Proposition 1.1. Let X 6= ∅ be a set and let � be a σ-ring of subsets of X .

A sequence 〈Bn〉 of elements of � converges to B ∈ � iff in � there are sequences

〈An〉 and 〈Cn〉 such that

(c1) 〈An〉 is nondecreasing and 〈Cn〉 is nonincreasing,

(c2) An ⊆ Bn ⊆ Cn, n ∈ � ,

(c3) B =
∞⋃

n=1
An =

∞⋂
n=1

Cn.

��������
. Necessity. Assume that 〈Bn〉 converges in � to B. Put An =

∞⋂
k=n

Bk,

Cn =
∞⋃

k=n

Bk. Since � is a σ-ring, 〈An〉 and 〈Cn〉 are sequences in � and it is easy

to verify that conditions (c1), (c2), (c3) are satisfied.

Sufficiency. Let B ∈ � and let 〈Bn〉 be a sequence in � . Assume that 〈An〉 and

〈Cn〉 are sequences in � satisfying conditions (c1), (c2), (c3). Clearly, lim inf An ⊆
lim inf Bn ⊆ lim sup Bn ⊆ lim sup Cn. Since lim inf An =

∞⋃
n=1

An and lim sup Cn =
∞⋂

n=1
Cn, it follows that B = lim inf Bn = lim sup Bn. This completes the proof. �

Corollary 1.2. Let X 6= ∅ be a set and let � be a σ-ring of subsets of X . Then

the usual sequential convergence in � is the finest of all sequential convergences �
in � such that each nondecreasing sequence 〈An〉 converges under � to

∞⋃
n=1

An,

each nonicreasing sequence 〈Cn〉 converges under � to
∞⋂

n=1
Cn, and a sequence 〈Bn〉

converges under � to B whenever in � there are sequences 〈An〉 and 〈Cn〉 satisfying

conditions (c1), (c2), (c3) in Proposition 1.1.

Corollary 1.3. Let X 6= ∅ be a set, let � be a ring of subsets of X , and let σ( � )
be the generated σ-ring. A sequence 〈Bn〉 converges to B in � iff in σ( � ) there are

sequences 〈An〉 and 〈Cn〉 satisfying conditions (c1), (c2), (c3) in Proposition 1.1.

Let X 6= ∅ be a set, let � be a ring of subsets of X , and let m be a finite unbounded

finitely additive measure on � . Then m fails to be sequentially continuous. Indeed
(cf. [13]), in � there is a mutually disjoint sequence 〈An〉 such that m(An) > 1, n ∈ � .
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But 〈An〉 converges in � to ∅ and hence m fails to be sequentially continuous. Thus

only a bounded finite measure on � can be sequentially continuous.

Proposition 1.4. Let X 6= ∅ be a set, let � be a ring of subsets of X , and let

m be a bounded σ-additive measure on � . Then m is sequentially continuous.

��������
. 1. Assume that � is a σ-ring. Let 〈Bn〉 be a sequence converging in �

to B. According to Proposition 1.1, in � there are a nondecreasing sequence 〈An〉
and a nonincreasing sequence 〈Cn〉 such that An ⊆ Bn ⊆ Cn, n ∈ � , B =

∞⋃
n=1

An =
∞⋂

n=1
Cn. Then m(An) 6 m(Bn) 6 m(Cn), n ∈ � , and since σ-additivity implies

monotone continuity, necessarily m(B) = lim
n→∞

m(Bn).

2. Let � be a ring and let σ( � ) be the generated σ-ring. Then there is a σ-
additive measure mσ on σ( � ) which extends m. It is known that mσ is bounded and

it is uniquely determined. It follows from the previous case that mσ is sequentially
continuous on σ( � ). Since the convergence in � is the restriction of the convergence

in σ( � ), m is sequentially continuous on � . This completes the proof. �

Corollary 1.5. Let X 6= ∅ be a set, let � be a ring of subsets of X , and let

m be a bounded finitely additive measure on � . If m is sequentially continuous from

above (from below), then m is sequentially continuous.

2.

Information about MV -algebras, bold algebras of fuzzy sets, T -norms and T -tribes
can be found in [1], [13], [21], [10], [2], [3]. Sequential convergence on MV -algebras

has been studied in [7]. For the reader’s convenience we recall here some basic facts.

Let I be the closed unit interval [0, 1] carrying the usual MV -algebra operations

and order and the usual convergence of sequences:

x⊕ y = min{1, x + y},
x∗ = 1− x,

x� y = max{0, x + y − 1} = (x∗ ⊕ y∗)∗,

x ∨ y = max{x, y} = (x∗ ⊕ y)∗ ⊕ y,

x ∧ y = min{x, y} = (x∗ ∨ y∗)∗,

lim
n→∞

xn = x.
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Observe that both ⊕ and � are commutative and associative.

Further, let X be a set and let IX be the set [0, 1]IX of all functions on X

into I carrying the pointwise MV -algebra operations and order and the pointwise
convergence of sequences, i.e., for each x ∈ X put:

(f ⊕ g)(x) = f(x)⊕ g(x),
f∗(x) = (f(x))∗,
(f � g)(x) = f(x)� g(x),
(f ∨ g)(x) = f(x) ∨ g(x),
(f ∧ g)(x) = f(x) ∧ g(x), and
Limn→∞fn = f iff lim

n→∞
fn(x) = f(x) for each x ∈ X .

If A is a subalgebra of IX (A contains the constant functions 1X and 0X and it is
closed with respect to all operations and order and carries the pointwise convergence

of sequences), then A is said to be a bold algebra. A bold algebra A such that for each

sequence 〈fn〉 in A also min
{
1X ,

∞∑
n=1

fn

}
belongs to A is said to be a  Lukasiewicz

tribe or, simply, a tribe. We shall additionally utilize operations 	 and 4 defined as

follows:

(f 	 g)(x) = max{0, f(x)− g(x)} = (f � g∗)(x),

(f4g)(x) = max{(f 	 g)(x), (g 	 f)(x)}.

It is known that each σ-complete MV -algebra is Archimedean (or semisimple) and
each Archimedean MV -algebra can be represented by a bold algebra (the elements
of which are fuzzy subsets of the underlying set of the bold algebra). If for each

element f in a bold algebra A ⊆ IX we have f(x) ∈ {0, 1}, x ∈ X , then A becomes
a field of subsets of X (via characteristic functions).

Let A ⊆ IX be a bold algebra. A map m : A −→ [0, 1] is said to be a measure if
it is normed and subtractive, i.e., m(1X) = 1 and m(g	f) = m(g)−m(f) whenever

f, g ∈ A, f 6 g. This definition is not quite standard, but suites our purpose.
The main result of Section 2 is the following

Proposition 2.1. Let A ⊆ IX be a bold algebra, let σ(A) ⊆ IX be the gener-

ated  Lukasiewicz tribe, and let m : A −→ [0, 1] be a sequentially continuous measure.

Then m can be extended to a sequentially continuous measure mσ : σ(A) −→ [0, 1]
and the extension is uniquely determined.

Remark 2.2. The proof of Proposition 2.1 is based on Theorem 1 in [8]. It is
a general measure extension theorem for MV -algebras. Let F be an MV -σ-algebra

(i.e. a σ-complete MV -algebra). Symbol an ↗ a means that 〈an〉 is an increasing

sequence in F and a =
∞∨

n=1
an and, similarly, bn ↘ b means that 〈bn〉 is a decreasing
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sequence in F and b =
∞∧

n=1
bn. Let A be a MV -subalgebra of F and let m be a map

of A into [0, 1]. We say that m is a measure if

(m1) m(1A) = 1,

(m2) if a, b ∈ A, a 6 b, then m(a) 6 m(b) and m(b 	 a) = m(b � a∗) =
m(b)−m(a).

If, in addition, m satisfies

(m3) if 〈an〉 is an increasing sequence in A such that an ↗ a and a ∈ A, then
lim

n→∞
m(an) = m(a),

then m is said to be sequentially continuous from below. Sequential continuity from

above is defined analogously. Recall that F is σ-continuous if an ↗ a and bn ↘ b

implies (an ∨ bn) ↗ (a ∨ b), and an ↗ a and bn ↘ b implies (bn 	 an) ↘ (b 	 a),
(an 	 bn) ↗ (a	 b). Finally, consider the following condition

if 〈an〉 and 〈bn〉 are sequences in A such that an ↘ a, bn ↗ b, and a 6 b,(∗)

then lim
n→∞

m(bn 	 an) = lim
n→∞

m(bn)− lim
n→∞

m(an).

Measure extension theorem (M. Jurečková). Let F be a σ-continuous MV -

σ-algebra, let A be an MV -subalgebra of F , and let m : A −→ [0, 1] be a measure

sequentially continuous from below. Let S(A) be the generated MV -σ-algebra. If

m satisfies (∗), then m can be uniquely extended to a measure mσ : S(A) −→ [0, 1]
sequentially continuous from below.

Remark 2.3. Since IX is a MV -σ-algebra, to prove Proposition 2.1 it suffices to

show that:

(a) IX is σ-continuous,

(b) σ(A) = S(A),
(c) m satisfies (∗),

(d) mσ : σ(A) −→ [0, 1] is sequentially continuous.

Remark 2.4. We shall prove that on a  Lukasiewicz tribe each measure sequen-
tially continuous from below is sequentially continuous (with respect to the pointwise

convergence). Hence the restriction to the generating bold algebra is sequentially
continuous, too. Consequently, the assumption that m : A −→ [0, 1] is sequentially

continuous is not restrictive.

Before the proof of Proposition 2.1, we present a series of lemmas, some of them

interesting on their own.

Lemma 2.5. Let A ⊆ IX be a bold algebra. Then the following are equivalent:
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(i) A is a  Lukasiewicz tribe;

(ii) If 〈fn〉 is a nondecreasing (nonincreasing) sequence in A and f = Lim
n→∞

fn, then

f ∈ A.
��������

. (i) ⇒ (ii). The assertion follows from Proposition 8.13 in [21].

(ii) ⇒ (i). Assume (ii) and let 〈gn〉 be a sequence in A. Put f1 = g1 and,
inductively, fn+1 = fn ⊕ gn+1, n > 1. Then 〈fn〉 is a nondecreasing sequence in A.

Since min
{ ∞∑

n=1
gn, 1

}
=

∞∨
n=1

fn, it follows that A is a  Lukasiewicz tribe. �

Lemma 2.6. Let A ⊆ IX be a  Lukasiewicz tribe. Let 〈gn〉 be a sequence in A
and let g ∈ A. Then Lim

n→∞
gn = g iff in A there are sequences 〈fn〉 and 〈hn〉 such

that

(C1) 〈fn〉 is nondecreasing and 〈hn〉 is nonincreasing,

(C2) fn 6 gn 6 hn, n ∈ � ,

(C3) g =
∞∨

n=1
fn =

∞∧
n=1

hn.

��������
. Necessity. Assume that 〈gn〉 converges to g in A. Put fn =

∞∧
k=n

gk,

hn =
∞∨

k=n

gk. Since A is closed with respect to monotone limits, 〈fn〉 and 〈hn〉 are

sequences in A and it is easy to see that conditions (C1), (C2), (C3) are satisfied.

Sufficiency. Assume that (C1), (C2), (C3) hold true. It is easy to verify that
lim

n→∞
gn(x) = g(x) for each x ∈ X . Hence Lim

n→∞
gn = g and the proof is complete. �

Corollary 2.7. Let A ⊆ IX be a  Lukasiewicz tribe. Then the pointwise con-

vergence Lim in A is the finest of all sequential convergences � in A such that

each nondecreasing sequence 〈fn〉 converges under � to
∞∨

n=1
fn, each nonicreasing

sequence 〈hn〉 converges under � to
∞∧

n=1
and a sequence 〈gn〉 converges under � to g

whenever in A there are sequences 〈fn〉 and 〈hn〉 satisfying conditions (C1), (C2),
(C3) in Lemma 2.6.

Corollary 2.8. Let A ⊆ IX be a bold algebra. Then A is a  Lukasiewicz tribe iff

A is a sequentially closed subset of IX (with respect to the pointwise convergence).

Corollary 2.9. Let A ⊆ IX be a  Lukasiewicz tribe and let m : A −→ [0, 1] be

a measure sequentially continuous from below. Then m is sequentially continuous

(with respect to the pointwise convergence).
��������

. Let Lim
n→∞

gn = g in A. According to Lemma 2.6, inA there are sequences

〈fn〉 and 〈hn〉 satisfying conditions (C1), (C2), (C3). Clearly, fn 6 gn 6 hn implies
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m(fn) 6 m(gn) 6 m(hn), n ∈ � . Since m is sequentially continuous both from below

and from above, lim
n→∞

m(fn) = lim
n→∞

m(hn) = m(g) implies lim
n→∞

m(gn) = m(g). �

Lemma 2.10. Let A ⊆ IX be a bold algebra, let S(A) be the generated MV -

σ-algebra and let m : A −→ [0, 1] be a sequentially continuous measure.

(i) Let 〈vn〉 and 〈wn〉 be sequences in A such that Lim
n→∞

(vn4wn) = 0. Then

lim
n→∞

|m(vn)−m(wn)| = 0.

(ii) Let 〈vn〉 be a sequence in A such that for any two subsequences 〈v′n〉, 〈v′′n〉 of

〈vn〉 we have Lim
n→∞

(v′n4v′′n) = 0X . Then 〈m(vn)〉 is a Cauchy sequence.

(iii) Let 〈an〉, 〈bn〉 be sequences in A such that 〈an〉 is decreasing, 〈bn〉 is increasing,

and
∞∧

n=0
an 6

∞∨
n=0

nbn in S(A). Then lim
n→∞

m(bn 	 an) = lim
n→∞

m(bn)− lim
n→∞

m(an).

��������
. (i) From vn 	 wn 6 (vn 	 wn)∗ we get m(vn4wn) = m((vn 	 wn) ⊕

(wn	vn)) = m(vn	wn)+m(wn	vn). From the sequential continuity of m it follows

that lim
n→∞

m(vn 	 wn) = 0, lim
n→∞

m(wn 	 vn) = 0. Observe that if v, w ∈ A, then

v = (v 	w)	min{v, w} and v 	w 6 (min{v, w})∗. Hence lim
n→∞

|m(vn)−m(wn)| =
lim

n→∞
|m(vn 	 wn) + m(min{vn, wn})−m(wn 	 vn) + m(min{vn, wn})| = 0.

(ii) Clearly, (ii) is a straightforward consequence of (i).
(iii) It follows from (ii) that 〈m(an)〉 and 〈m(bn)〉 are Cauchy sequences. Clearly,

Lim
n→∞

(an 	 bn) = 0X and hence Lim
n→∞

(max{bn, an} 	 bn) = 0X . Then

lim
n→∞

m(max{bn, an}) = lim
n→∞

(m(max{bn, an})−m(bn)) = 0

and hence

lim
n→∞

m(max{bn, an}) = lim
n→∞

m(bn).

Further, m(max{bn, an} 	 an) = m(max{bn, an})−m(an) and hence

lim
n→∞

m(max{bn, an} 	 an) = lim
n→∞

m(bn)− lim
n→∞

m(an).

Finally, Lim
n→∞

((max{bn, an} 	 an)4(bn 	 an)) = 0X and hence lim
n→∞

m(bn 	 an) =

lim
n→∞

m(bn)− lim
n→∞

m(an). This completes the proof. �
��������

(of Proposition 2.1). We shall proceed according to Remark 2.2 and
Remark 2.3.

(a) Since all usual pointwise operations and the order on RX are sequentially con-
tinuous with respect to the pointwise convergence, also the MV -algebra operations

and the order on a bold algebra A ⊆ IX are sequentially continuous. In particular,
IX is σ-continuous.
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(b) Let A ⊆ IX be a bold algebra. Then σ(A) is the intersection of all  Lukasiewicz

tribes containing A and S(A) is the intersection of all MV -σ-algebras containing A.
It follows from Lemma 2.5 that σ(A) = S(A).

(c) According to Lemma 2.10 (iii), each sequentially continuous measure on a bold
algebra satisfies condition (∗).

(d) It follows from the previous points that m : A −→ [0, 1] can be extended to a
measure mσ on σ(A) and since mσ is sequentially continuous from below, according

to Corollary 2.9, mσ is sequentially continuous. This completes the proof. �

Remark 2.11. Since it is natural to define a probability on bold algebras in such
a way that each probability on a bold algebra A ⊆ IX can be uniquely extended to

the generated  Lukasiewicz tribe σ(A) and each restriction of a probability on σ(A)
to A is a probability on A, we propose the following

Definition 2.12. Let A ⊆ IX be a bold algebra. A probability on A is a map
p : A −→ [0, 1] such that

(p1) p(1X) = 1,

(p2) if f, g ∈ A, f 6 g, then p(g 	 f) = p(g)− p(f),
(p3) p is sequentially continuous (with respect to the pointwise convergence on A).

Symbol prob(A) will denote the set of all probabilities on A.

Remark 2.13. If I and A ⊆ IX are considered as D-posets, then probabilities

on bold algebras are exactly sequentially continuous D-morphisms of A into I.

We end this section with a useful characterization of the generated  Lukasiewicz

tribe σ(A) ⊆ IX .

Proposition 2.14. Let A ⊆ IX be a bold algebra and let σ(A) be the generated

 Lukasiewicz tribe. Then σ(A) is the smallest sequentialy closed (with respect to the

pointwise sequential convergence) subset of IX which contains A.
��������

. For B ⊆ IX , let clB be the set of all f ∈ IX such that in B there exists

a sequence 〈fn〉 converging to f (in the pointwise sequential convergence). For each
ordinal number α define clα B as follows: cl0 B = B, clα B = cl(clα−1 B) if α is an

isolated ordinal number and clα B = cl
( ⋃

β<α

clβ B
)

if α is a limit ordinal number. It is

known (cf. [16] that each clα is a closure operator, cl(clω1 B) = clω1 B, clω1 is a topo-
logical (idempotent) closure operator, and clω1 B is the smallest sequentially closed

subset of IX which contains B. We know (cf. (a) in the proof of Proposition 2.1)
that the MV -algebra operations and the order in IX are sequentially continuous.

It follows that clA ⊆ IX is a bold algebra, too. Since
⋃

β<β

clαA is always a bold
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algebra, it follows from Corollary 2.8 that clω1 A is the smallest  Lukasiewicz tribe in

IX which contains A. This completes the proof. �

Remark 2.15. If � is a field of subsets of X , then the generated σ-field σ( � ) is

the smallest sequentially closed subset in the field of all subsets of X which contains �
or, in terms of characteristic functions, the smallest sequentially closed subset (with

respect to the pointwise convergence) in {0, 1}X which contains the characteristic
functions of sets in � (cf. [17]).

3.

In this section we describe the relationship between bold algebras and  Lukasiewicz
tribes. We will try to avoid the categorical formalism as much as possible but, at the

same time, we will utilize the categorical machinery which makes the relationship
transparent. Standard references on MV -algebras and category theory are [2] and

[6], respectively.

Let BD be the category whose objects are bold algebras carrying the point-

wise sequential convergence and whose morphisms are sequentially continuous MV -
homomorphisms. If A and B are bold algebras, then hom(A,B) will denote the set

of all morphisms of A into B. Clearly, if X is a singleton, then IX is isomorphic
to I. In general, a bold algebra A ⊆ IX is a subobject of the product of the family

{Ix; Ix = I, x ∈ X}, and each x ∈ X defines a morphism x : A −→ I by putting
x(f) = f(x), f ∈ A; hom(A) will denote the set of all morphisms of A into I and
fix(A) will denote its subset defined by the points of X (“fixing” A).

Definition 3.1. Let A ⊆ IX , B ⊆ IX be bold algebras. Let C ⊆ B be a bold

subalgebra and let ϕ be an isomorphism of A onto C in BD. We say that ϕ is a

(i) fix(A)-embedding if for each h ∈ fix(A) there exists h ∈ hom(B) such that

h = h ◦ ϕ;

(ii) hom(A)-embedding if for each h ∈ hom(A) there exists h ∈ hom(B) such that

h = h ◦ ϕ;

(iii) prob(A)-embedding if for each p ∈ prob(A) there exists p ∈ prob(B) such that
h = p ◦ ϕ;

in such case we say that A is fix(A)-embedded, hom(A)-embedded, prob(A)-embedded,

respectively, in B. If C = ϕ(A) is sequentially closed in B for each fix(A)-embedding,
hom(A)-embedding, prob(A)-embedding, respectively, ϕ : A −→ B, then A is said

to be absolutely sequentially closed with respect to the extension of fix(A), hom(A),
prob(A), respectively.
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Lemma 3.2. Let A ⊆ IX be a bold algebra and let h ∈ hom(A). Then there

exists a unique hσ ∈ hom(σ(A)) such that hσ � A = h.
��������

. Since h is a sequentially continuous measure on A, according to Propo-
sition 2.1 there exists a unique sequentially continuous measure hσ : σ(A) −→ [0, 1]
such that hσ � A = h. It suffices to prove that hσ is an MV -homomorphism
into I. By Proposition 2.14, σ(A) = clω1 A. Assume that α is an ordinal num-

ber, 1 6 α 6 ω1, and hσ � clβ A is an MV -homomorphism for each β < α. Let
α be isolated. If f, g ∈ clαA, then in clα−1A there are sequences 〈fn〉, 〈gn〉 such

that Lim
n→∞

fn = f and Lim
n→∞

gn = g. Since hσ is sequentially continuous, we have

lim
n→∞

hσ(fn) = hσ(f), lim
n→∞

hσ(gn) = hσ(g) and hσ(f ⊕ g) = lim
n→∞

hσ(fn ⊕ gn) =

lim
n→∞

(hσ(fn)⊕hσ(gn). Hence, in I, lim
n→∞

(hσ(fn)⊕hσ(gn) = lim
n→∞

hσ(fn)⊕ lim
n→∞

hσ(gn)

= hσ(f)⊕hσ(g). Clearly, hσ � clαA is an MV -homomorphism. If α is a limit ordinal
number, we proceed analogously. The details are left out. Since hσ � cl0A = h is an

MV -homomorphism, it follows that hσ is an MV -homomorphism of clω1 A = σ(A)
into I. �

Proposition 3.3. Let A ⊆ IX be a bold algebra. Then the following are

equivalent:

(i) A is a  Lukasiewicz tribe;

(ii) A is absolutely sequentially closed with respect to the extension of fix(A);
(iii) A is absolutely sequentially closed with respect to the extension of hom(A);
(iv) A is absolutely sequentially closed with respect to the extension of prob(A).
��������

. (i) ⇒ (ii). Assume that A = σ(A). Let ϕ : A −→ B be a fix(A)-
embedding. Let 〈fn〉 be a sequence in A such that the sequence 〈ϕ(fn)〉 converges

in B. Then for each h ∈ fix(A) there exists h ∈ hom(B) such that h(fn) = h(ϕ(fn)),
n ∈ � , and the sequence 〈h(fn)〉 converges in I. Since fix(A) can be identified

with X , the sequence 〈fn(x)〉 converges in I for each x ∈ X . But A = σ(A) ⊆ IX

means that there exists f ∈ A such that Lim
n→∞

fn = f . Thus Lim
n→∞

ϕ(fn) = ϕ(f) in

ϕ(A) = C and C is sequentially closed in B. Hence (ii) holds true.
(ii) ⇒ (iii). Assume (ii). Let ϕ : A −→ B be a hom(A)-embedding. From

fix(A) ⊆ hom(A) it follows that ϕ is a fix(A)-embedding, too. Thus ϕ(A) = C is
sequentially closed in B and (iii) holds true.

(iii) ⇒ (iv). Assume (iii). Let ϕ : A −→ B be a prob(A)-embedding. Put B′ =
σ(ϕ(A)) ⊆ IX . Let h ∈ hom(A). Then there exists h ∈ prob(B) such that h = h ◦ϕ

and clearly h ∈ hom(ϕ(A)). According to Lemma 3.2, h can be uniquely extended
to hσ ∈ hom(B′). Thus ϕ is a hom(A)-embedding of A into B′ and hence C = ϕ(A)
is sequentially closed in B′. Finally, since C is sequentially closed in IX , it is also
sequentially closed in B.
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(iv) ⇒ (i). Assume (iv). Since each probability p ∈ prob(A) can be uniquely

extended to a probability pσ ∈ prob(σ(A)), the identity id : A −→ σ(A) is a prob(A)-
embedding. Thus A is sequentially closed in σ(A) and hence A = σ(A). This
completes the proof. �

Remark 3.4. Let A ⊆ IX be a bold algebra. Then σ(A) is, in a natural way, a
maximal bold algebra in which A is prob(A)-embedded in the following sense.

On the one hand, A is topologically dense in σ(A) = clω1 A ⊆ IX and, due
to the sequential continuity of probabilities, the values on A determine the values

on σ(A). Further, each p ∈ prob(A) has a unique extension pσ ∈ prob(σ(A))
and if ϕ : σ(A) −→ B, B ⊆ IX is a prob(σ(A))-embedding, then the value of pσ,

pσ = pσ ◦ ϕ, at f ∈ ϕ(σ(A)) is determined by the values of p on A. On the other
hand, let f ∈ IY \ϕ(σ(A)). Then f is sequentially remote from ϕ(σ(A)), i.e., f is not

a limit of any sequence in ϕ(σ(A)) or any multisequence (cf. [12]) in ϕ(A). Hence
for each sequence in ϕ(σ(A)), or a multisequence in ϕ(A), there exists y ∈ Y at

which the sequence, or the multisequence, fails to converge to f . Consider the point
probability py ∈ fix(B), py(g) = g(y). Its restriction to ϕ(A) defines a probability

p ∈ prob(A) by putting p(g) = py(ϕ(y)), g ∈ A. Then, for p and its extension py,
the “topologically remote” element f is also “py-remote” (relative to the sequence,

or the multisequence, in question). �

Remark 3.5. Let {At; t ∈ T} be a family of bold algebras. Then the product

bold algebra A in BD is the usual product, i.e., the set of all families {at ∈ At; t ∈
T}, considered as mappings a = {at ∈ At; t ∈ T} of the disjoint union X =⊎

t∈T Xt into I defined by a(x) = at(x), x ∈ Xt, t ∈ T , carrying the pointwise
MV -operations and the pointwise sequential convergence, together with the family

{prt : A −→ At; t ∈ T} of projections, where prs({at ∈ At; t ∈ T}) = as, s ∈ T .
In particular, if Ax = I, for each x ∈ X , then IX is the product bold algebra. Recall

that each projection is a sequentially continuous MV -homomorphism and A has the
following characteristic property. If A′ is a bold algebra and for each t ∈ T there

exists (in BD) a morphism ϕt : A′ −→ At, then there exists a unique morphism
ϕ : A′ −→ A such that prt ◦ϕ = ϕt for each t ∈ T .

Proposition 3.6. Let A be a bold algebra and let ϕ be a sequentially continuous

MV -homomorphism of A into a  Lukasiewicz tribe B. Then ϕ can be uniquely

extended to a sequentially continuous MV -homomorphism ϕσ : σ(A) −→ B.

��������
. Clearly, the natural evaluation ev : B −→ Ihom(B) defined by ev(b) =

{h(b); h ∈ hom(B)} is a hom(B)-embedding. To simplify the notation, we identify B
with its isomorphic image ev(B) ⊆ Ihom(B). Then B is a sequentially closed subset
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of Ihom(B), ϕ can be considered as a sequentially continuous MV -homomorphism

into Ihom(B), and each projection prh : Ihom(B) −→ I, h ∈ hom(B), yields a sequen-
tially continuous MV -homomorphism prh ◦ϕ : A −→ I. According to Lemma 3.2,
prh ◦ϕ can be uniquely extended to a sequentially continuous MV -homomorphism

(prh ◦ϕ)σ : σ(A) −→ I. Since Ihom(B) is a product, there exists a unique sequen-
tially continuous MV -homomorphism ϕσ : σ(A) −→ Ihom(B) such that prh ◦ϕσ =

(prh ◦ϕ)σ for each h ∈ hom(B). Since A is sequentially dense in σ(A), in fact
σ(A) = clω1 A, it follows that the restriction of ϕσ to A is equal to ϕ. Finally,

B = clB in Ihom(B) implies that ϕσ(σ(A)) ⊆ B. This completes the proof. �

Let ABD be the subcategory of BD consisting of absolutely sequentially closed
bold algebras, i.e.,  Lukasiewicz tribes. Lemma 2.5, Corollary 2.8 and Proposition 3.2
provide characterizations of  Lukasiewicz tribes. It follows from Proposition 3.6 that

the embedding A ↪→ σ(A) yields a functor σ from BD to ABD. Since the pointwise
convergence has unique limits and A is sequentially dense in σ(A) = clω1 A, if ϕ, ϕ′ :
σ(A) −→ σ(B) are two morphisms such that ϕ(f) = ϕ′(f) for each f ∈ A, then
ϕ = ϕ′ (cf. [16]).

Corollary 3.7. σ : BD −→ ABD is an epireflector.

Remark 3.8. Fields of sets are special bold algebras. Indeed, if � is a field of
subsets of X , then � ⊆ {0, 1}X can be identified with the corresponding bold algebra

A ⊆ IX and the generated σ-field σ( � ), as the smallest sequentially closed subset of
{0, 1}X containing � , can be identified with the generated  Lukasiewicz tribe σ( � ), as

the smallest sequentially closed subset of IX containing A. It is known (cf. Frič [5])
that a field of sets � is a σ-field iff � is absolutely sequentially closed and the embed-

ding � ↪→ σ( � ) yields an epireflection. The embedding of the category FS of fields
of sets and sequentially continuous (Boolean) homomorphisms into BD preserves

the embedding of σ-fields into  Lukasiewicz tribes, i.e., Corollary 3.7 generalizes the
epireflection of FS into AFS, the subcategory of absolutely sequentially closed fields

of sets.
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