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Abstract. We characterize totally ordered sets within the class of all ordered sets con-
taining at least four-element chains. We use a simple relationship between their isotone
transformations and the so called 1-endomorphism which is introduced in the paper. Later
we describe 1-, 2-, 3-, 4-homomorphisms of ordered sets in the language of super strong
mappings.
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0. Introduction

In [4] new concepts of 2-, 3-, 4-endomorphisms of ordered sets were introduced.
They appeared to be an efficient tool for the determination of chains in the class

of all ordered sets satisfying a certain condition (the existence of a three-element
chain). In this contribution we introduce a 1-endomorphism and demonstrate its

conjunction with the above mentioned results. We declare that the requirement of a
four-element chain is essential.

Let (P,6) be an ordered set, ∅ 6= X ⊆ P . The symbol Ef (X) denotes f−(f(X))
where f−(X) is the preimage of X under a mapping f , i.e. f−(X) = {y | f(y) = x

for some x ∈ X}. By [X)6 = {y ∈ P : y > x for some x ∈ X} we denote the
upper end of an ordered set (P,6) generated by a subset X . Let (P,6), (Q,6) be
ordered sets and let f : P −→ Q be a mapping. The mapping f is isotone if for any

pair of elements a, b ∈ P such that a 6 b we have f(a) 6 f(b). The mapping f is
a strong homomorphism if f(z) > f(x) implies f(z) = f(u), f(x) = f(a) for some
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a, u ∈ P such that u > a. An isotone mapping of an ordered set into itself is called an

endomorphism. The set of all endomorphisms of (P,6) endowed with a composition
forms a monoid which is denoted by End(H,6).

Remark. There exists also another concept of a strong homomorphism. A map-
ping f : P −→ Q between ordered sets (P,6), (Q,6) is called a strong homomor-
phism if for any pair of elements x ∈ P, y ∈ Q we have f(x) 6 y if and only if there
exists an element x′ ∈ P such that x 6 x′ and f(x′) = y (L. L. Esakia: Heyting

algebras I. Duality theory. Mecniereba, 1985, Tbilisi).

Definition 1 ([4]). Let (P,6), (Q,6) be ordered sets. A mapping f : P → Q is

called

(1) a 1-homomorphism if it satisfies the condition

f−([f(x))6) = Ef ([Ef (x))6) for any x ∈ P,

(2) a 2-homomorphism if it satisfies the condition

f−([f(x))6) = f−(f([x)6)) for any x ∈ P,

(3) a 3-homomorphism if it satisfies the condition

f−([f(x))6) = [f−(f(x)))6 for any x ∈ P,

(4) a 4-homomorphism if both the conditions for 2- and 3-homomorphisms are

satisfied

[f−(f(x)))6 = f−([f(x))6) = f−(f([x)6)) for any x ∈ P.

1. 1-endomorphisms

Proposition 1. Let (X,6) be an ordered set containing at least a four-element
chain. Then for any ordered pair (x, y) of 6-incomparable elements x, y ∈ X there

exists an isotone mapping f : (X,6) −→ (X,6) such that

f(x) < f(y) and {x} = Ef (x), {y} = Ef (y).

�����
���
. Suppose (X,6) contains at least a four-element chain C. Consider

C0 ⊆ C such that C0 = {a, b, c, d}, a < b < c < d, and x, y ∈ X are incomparable
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elements. Now let Xxy, Xxy be subsets of X such that

Xxy = {z : z > x or z > y} = [{x, y})6 \ {x, y},
Xxy = {z : z < x or z < y} = ({x, y}]6 \ {x, y},

Y = X \ (Xxy ∪Xxy ∪ {x, y}).

Let f(x) = b and f(y) = c, which means f(x) < f(y). Furthermore let f(t) = a for
any t ∈ Xxy, f(s) = d for any s ∈ Xxy and f(r) = d for any r ∈ Y (cf. Fig. 1). Now
f(u) = f(v) for any pair (u, v) ∈ Xxy × Xxy, (u, v) ∈ Xxy × Xxy, (u, v) ∈ Y × Y ,
and f(u) < f(v) for any pair (u, v) ∈ Xxy×Xxy, which implies f is isotone, because

p 6 q implies f(p) 6 f(q) for any p, q ∈ X and {x} = f−(b) = Ef (x), {y} = f−(c) =
Ef (y). Thus the proposition holds. �

a

b

c

d

x y

Xxy

Xxy

Y

Figure 1

Lemma 1. Let f : X1 −→ X2 be a mapping of an ordered set (X1,6) into
another one (X2,6). The following conditions are equivalent:
(1) f is isotone,

(2) Ef ([Ef (x))6) ⊆ f−([f(x))6) for any x ∈ X1.

�����
���
. (1) ⇒ (2): Let x ∈ X1 be an arbitrary element and in addition suppose

z ∈ Ef ([Ef (x))6), which means f(z) ∈ f([Ef (x))6). Then there exists q ∈ [Ef (x))6
such that f(z) = f(q). It follows that there exists r ∈ Ef (x), i.e. f(r) = f(x) such
that r 6 q. Since f(r) 6 f(q) we have f(x) 6 f(z), which implies f(z) ∈ [f(x))6
and consequently z ∈ f−([f(x))6). We have Ef ([Ef (x))6) ⊆ f−([f(x))6).

(2) ⇒ (1): Let x, y be elements from X1 such that x 6 y. Since x ∈ Ef (x) we have
y ∈ [Ef (x))6 and further y ∈ Ef ([Ef (x))6). By the assumption y ∈ f−([f(x))6),
which implies f(y) ∈ [f(x))6 and thus f(x) 6 f(y). Finally, the mapping f is
isotone. �
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Proposition 2. Let (X,6) be an ordered set containing at least a four-element
chain. Then (X,6) is a chain if and only if any isotone selfmap f of the poset (X,6)
satisfies the following condition:

(∗) Ef ([Ef (x))6) = f−([f(x))6) for any x ∈ X.

�����
���
. ⇒: Let (X,6) be a chain and f : (X,6) −→ (X,6) an isotone map-

ping. Let x ∈ X be an arbitrary element and suppose z ∈ f−([f(x))6), which means
f(z) ∈ [f(x))6, i.e. f(x) 6 f(z). If f(x) = f(z) then z ∈ Ef (x) and as

Ef (x) ⊆ [Ef (x))6 ⊆ Ef ([Ef (x))6),

we have z ∈ Ef ([Ef (x))6). If f(x) < f(z) then x 6 z (since the mapping f is isotone
and (X,6) is a chain). Further, from [Ef (x))6 = {t : ∃u ∈ X : f(u) = f(x), u 6
t} we obtain z ∈ [Ef (x))6, which implies f(z) ∈ f([Ef (x))6) and consequently
z ∈ Ef ([Ef (x))6). We have f−([f(x))6) ⊆ Ef ([Ef (x))6). Since Ef ([Ef (x))6) ⊆
f−([f(x))6) (Lemma 1) we have finally f−([f(x))6) = Ef ([Ef (x))6).
⇐: Let (X,6) be a poset containing at least a four-element chain, let x, y ∈ X

be incomparable (x ‖ y) and suppose f−([f(x))6) = Ef ([Ef (x))6) for any isotone
mapping f : (X,6) −→ (X,6). Let f0 be a mapping from Proposition 1, i.e. f0(x) <
f0(y) and {x} = Ef0(x), {y} = Ef0(y). Since f0(x) < f0(y), then f0(y) ∈ [f0(x))6,
which implies y ∈ f−0 ([f0(x))6). Now y ∈ Ef0([Ef0 (x))6) by the assumption (∗). We
get y ∈ Ef0([{x})6), which implies f0(y) ∈ f0([{x})6). Then there exists z ∈ [{x})6
such that f0(z) = f0(y). We get

z ∈ Ef0(z) = Ef0 (y) = {y},

which implies z = y and therefore y ∈ [{x})6, which means x 6 y. This is a
contradiction to the assumption of incomparability of x and y. Thus (X,6) is a
chain. �

Remark. It can be easily proved that the condition (∗) can be replaced by the
dual one:

f−((f(x)]6) = Ef ((Ef (x)]6) for any x ∈ X.

In the proof it is useful again to consider such an isotone mapping that f(x) < f(y)
and {x} = Ef (x), {y} = Ef (y) whose existence was stated in Proposition 1.

Theorem 1. Let (X,6) be an ordered set containing at least a four-element
chain. Then the following conditions are equivalent:
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(1) (X,6) is a totally ordered set,
(2) End(X,6) ⊆ 1-End(X,6),
(3) End(X,6) = 1-End(X,6).
�����
���

. (1) ⇒ (2): It follows from Proposition 2.
(2) ⇒ (3): Let f ∈ 1-End(X,6) be an arbitrary mapping and suppose x, y ∈ X ,

x 6 y are arbitrary elements. Since x 6 y and x ∈ Ef (x) hence y ∈ [Ef (x))6
and further y ∈ Ef ([Ef (x))6). Now y ∈ f−([f(x))6) by the assumption of 1-
endomorphism. This implies f(y) ∈ [f(x))6 and we get f(x) 6 f(y), thus the
mapping f : (X,6) −→ (X,6) is isotone. Finally, End(X,6) ⊇ 1-End(X,6), which
implies End(X,6) = 1-End(X,6).

(3) ⇒ (1): It follows from Proposition 2. �

Proposition 3. Let (P,6), (Q,6) be ordered sets and f : P −→ Q a mapping.

Then the following conditions are equivalent:

(1) f is a 1-homomorphism,

(2) a) f is isotone,
b) for any z, x ∈ P the inequality f(z) > f(x) implies f(z) = f(u), f(x) = f(a)
for some a, u ∈ P such that u > a,

i.e. f is an isotone strong homomorphism.
�����
���

. (1) ⇒ (2): b) Suppose (1) is satisfied and f(z) > f(x) for some
x, z ∈ P . We have f(z) ∈ [f(x))6 thus z ∈ f−([f(x))6) = Ef ([Ef (x))6). Now
f(z) ∈ f([Ef (x))6), which means that there exists u ∈ P such that f(z) = f(u)
and u ∈ [Ef (x))6, therefore there exists a ∈ P such that a 6 u and a ∈ f−(f(x)),
i.e. f(a) = f(x). The condition a) follows from Lemma 1.

(2) ⇒ (1): Assume (2) and z ∈ f−([f(x))6), i.e. f(z) ∈ [f(x))6, which is f(z) >
f(x). By (2) we have f(z) = f(u), f(a) = f(x) for some a, u ∈ P such that u > a,
which means f(u) > f(a). Consequently u ∈ [Ef (a))6 = [Ef (x))6 and f(z) =
f(u) ∈ f([Ef (x))6, i.e. z ∈ Ef ([Ef (x))6). The converse inclusion Ef ([Ef (x))6) ⊆
f−([f(x))6) follows from (2) a) by Lemma 1. �

2. Super-strong mappings

Proposition 4. Let (P,6), (Q,6) be ordered sets and f : P −→ Q a mapping.

Then the following conditions are equivalent:

(1) f is a 2-homomorphism,
(2) a) f is isotone,

b) for any z, x ∈ P the inequality f(z) > f(x) implies f(z) = f(u) for some
u > x, u ∈ P .
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�����
���
. (1) ⇒ (2): b) Suppose (1) is satisfied and f(z) > f(x) for some

x, z ∈ P . Then f(z) ∈ [f(x))6, which means z ∈ f−([f(x))6) = f−(f([x)6)),
i.e. f(z) ∈ f([x)6). Thus there exists u ∈ [x)6, i.e. u > x such that f(u) = f(z).
a) Suppose x, y ∈ P , x 6 y are arbitrary elements. Then y ∈ [x)6, which implies

f(y) ∈ f([x)6) and y ∈ f−(f(y)) ⊆ f−(f([x)6)) = f−([f(x))6), thus f(y) ∈
[f(x))6, which means f(x) 6 f(y).

(2) ⇒ (1): Suppose (2) holds and z ∈ f−([(f(x))6), which is f(z) ∈ [(f(x))6,
i.e. f(z) > f(x). Applying (2) we have f(z) = f(u) for some u > x and con-
sequently u ∈ [x)6, which implies f(u) ∈ f([x)6)). Finally f(z) ∈ f([x)6) and
z ∈ f−(f([x)6)). The converse inclusion follows from f([x)6) ⊆ [(f(x))6, which
holds for any isotone mapping f (cf. [4], Lemma 2). �

Proposition 5. Let (P,6), (Q,6) be ordered sets and f : P −→ Q a mapping.

Then the following conditions are equivalent:

(1) f is a 3-homomorphism,

(2) a) f is isotone,

b) for any y, x ∈ P the inequality f(y) > f(x) implies y > z for some z ∈ P

such that f(z) = f(x).
�����
���

. (1) ⇒ (2): b) Suppose (1) and f(y) > f(x) for some x, y ∈ P .
Clearly f(y) ∈ [(f(x))6 and thus y ∈ f−([(f(x))6) = [f−(f(x)))6, hence there
exists z ∈ f−(f(x)), i.e. f(z) = f(x) such that y > z.

a) Suppose x, y ∈ P , x 6 y. Since x ∈ f−(f(x)) we have y ∈ [x)6 ⊆
[f−(f(x)))6 = f−([f(x))6), hence f(y) ∈ [f(x))6. Consequently f(x) 6 f(y).

(2) ⇒ (1): Suppose (2) and let y ∈ f−([(f(x))6), which means f(y) ∈ [(f(x))6,
i.e. f(y) > f(x). We have y > z for some z ∈ P such that f(z) = f(x) by (2) and
consequently y > z ∈ f−(f(z)) = f−(f(x)) and y ∈ [f−(f(x)))6. The converse
inclusion follows from [f−(f(x)))6 ⊆ f−([(f(x))6), which holds for any isotone
mapping f (cf. [4], Lemma 2). �

A mapping satisfying the condition (2) b) of Proposition 4 or 5 is called u-super
strong or l-super strong, respectively. If it satisfies both the conditions, it is called a

super strong mapping.

There is a natural question whether 2-, 3-endomorphisms are closed under com-

position. The answer is negative, which means that 2, 3-End(P,6) is not a sub-
groupoid of End(P,6). Let P = {a, b, c} and a 6 b, a ‖ c ‖ b (cf. Fig. 2). The
mappings f, g : (P,6) → (P,6) (f, g : (P,>) → (P,>)) are 2-endomorphisms (3-
endomorphisms) but for h = g ◦ f we have h 6∈ 2-End(P,6) (h 6∈ 3-End(P,>)).
Now we can extend in a certain sense Theorem 1 from [4] to the case of

4-endomorphisms.
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Theorem 2. Let (P,6) be a totally ordered set. Then

End(P,6) = 4-End(P,6).

�����
���
. The inclusion End(P,6) ⊇ 4-End(P,6) has been proved in [4],

Lemma 3.

Suppose f(z) > f(x). Since (P,6) is a chain we have either z > x, i.e. condi-
tion (2) a) from Proposition 4 is satisfied, or z < x, which implies f(z) 6 f(x) and
consequently f(z) = f(x), i.e. for u = x f is also a 2-homomorphism. Similarly we
can prove condition (2) a) from Proposition 5. �

There is a natural question how to construct 2-, 3-, 4-homomorphisms.
Let (P,6) be a poset, θ ∈ EqvP . Further, let us define two relations C, J on P/θ

in the following way:

[x]θ J [y]θ iff for any q ∈ [x]θ there exists p ∈ [y]θ such that q 6 p,

[x]θ C [y]θ iff for any p ∈ [y]θ there exists q ∈ [x]θ such that q 6 p.

It is easy to see that they are both reflexive and transitive but not antisymmetric in

general.

Lemma 2. If the equivalence blocks of P/θ are convex then C ∩ J is an order
relation on P/θ.

�����
���
. It has been proved in [2].

Corollary 1. Let (P,6) be a poset, θ ∈ EqvP such that J is an order relation
on P/θ. Then the canonical mapping ψ : P → P/θ, x 7→ [x]θ is a 2-homomorphism.

�����
���
. It is enough to verify the validity of conditions (2) a), b) from Proposi-

tion 4. The definition of the relation J yields
(i) [x]θ J [y]θ implies [y]θ = [z]θ for some x 6 z,

(ii) z 6 y implies [z]θ J [y]θ
and the corollary holds. �
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Corollary 2. Let (P,6) be a poset, θ ∈ EqvP such that C is an order relation
on P/θ. Then the canonical mapping ψ : P → P/θ, x 7→ [x]θ is a 3-homomorphism.

�����
���
. The definition of the relation C yields

(i) [x]θ C [y]θ implies z 6 y for some z ∈ [x]θ ,
(ii) z 6 y implies [z]θ C [y]θ
and the corollary holds. �

Corollary 3. Let (P,6) be a poset, θ ∈ EqvP such that the equivalence blocks
are convex. Let us order P/θ by C ∩ J. Then the canonical mapping ψ : P → P/θ,

x 7→ [x]θ is a 4-homomorphism.

�����
���
. It follows immediately from Corollary 1 and Corollary 2. �

Theorem 3. Let (P,6) be a poset. Then the following conditions are equivalent:
(1) a) (P,6) is an antichain or
b) there exists an element a ∈ P such that (P,6) = X ⊕ {a} where X 6= ∅ is
an antichain or

c) (P,6) is at least a three element chain,
(2) End(P,6) ⊆ 2-End(P,6),
(3) End(P,6) = 2-End(P,6).

�����
���
. Conditions (2) and (3) are equivalent due to [4] Lemma 3 (this also

follows from Proposition 4). It is enough to demonstrate the equivalence of (1) and
(2). It has been recently proved in [4] that if P has at least a three-element chain it

has to be a chain, i.e. (1) c) holds. Thus we can study only the cases where (P,6) is
of length one, i.e. it contains two-element chains only.

(1) ⇒ (2): This follows immediately from Proposition 4.
(2) ⇒ (1): Suppose that any isotone mapping is a 2-homomorphism, i.e. condition

(2) b) from Proposition 4 is satisfied. This is clear if (P,6) is an antichain or (P,6)
is a two-element chain. Suppose (P,6) contains at least one two-element chain b < a

and incomparable elements. Then for any pair of incomparable elements x, y ∈ P we
can construct an isotone mapping f such that f(x) > f(y), f(z) = a for any z ∈ Xxy,

f(z) = b for any z ∈ Xxy (Xxy, Xxy were defined in the proof of Proposition 1) and
f(z) = a otherwise. The mapping f has to be a 2-homomorphism, i.e there exists an

element z > y such that f(z) = f(x). If x ‖ z then we can again construct a similar
mapping but for elements x and z. This leads to the existence of a three-element

chain and consequently (P,6) is a chain. Thus x 6 z, which means that P is up
directed and must be of the form X ⊕ {a} for a ∈ P , X an antichain. �
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Theorem 4. Let (P,6) be a poset. Then the following conditions are equivalent:
(1) a) (P,6) is an antichain or
b) there exists an element a ∈ P such that (P,6) = {a} ⊕X where X 6= ∅ is
an antichain or

c) (P,6) is at least a three element chain,
(2) End(P,6) ⊆ 3-End(P,6),
(3) End(P,6) = 3-End(P,6).
�����
���

. Dually to the proof of the previous Theorem 3. �

Theorem 5. Let (P,6) be a poset. Then the following conditions are equivalent:
(1) a) (P,6) is an antichain or
b) (P,6) is at least a three element chain,

(2) End(P,6) ⊆ 4-End(P,6),
(3) End(P,6) = 4-End(P,6).
�����
���

. It follows from Theorem 3 and Theorem 4. �
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