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Abstract. The present work gives some characterizations of R-modules with the direct
summand sum property (in short DSSP), that is of thoseR-modules for which the sum of any
two direct summands, so the submodule generated by their union, is a direct summand, too.
General results and results concerning certain classes of R-modules (injective or projective)
with this property, over several rings, are presented.
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1. Preliminaries

In [11] we have proposed the following open problem for solving: “Characterize the

R-modules (the abelian groups) in which the sum of two direct summands is again
a direct summand.” This problem is the dual of Kaplansky’s ([6, ex. 51, p. 49]) and

Fuchs’s ([4, problem 9, p. 96]) problems. The first solutions to this problem were
obtained in [11]. The present work gives other solutions of this problem, that is, other

characterizations of R-modules with the direct summand sum property (in short
DSSP), that is of those R-modules for which the sum of any two direct summands,

so the submodule generated by their union, is a direct summand, too. Throughout
this paper we will denote by R an associative ring with unity, the modules, when not

specified, will be considered left over these rings. Other (supplementary) conditions
about the ring R or the R-modules will be imposed when needed.

The paper is structured in two sections: in this first section we present the defi-
nitions and the results obtained in [11] concerning the R-modules with DSSP that

we need here, while in the second section the results of general character and results
concerning certain classes of R-modules with DSSP are presented.
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Definitions. If M is an R-module, we say that M has

1) the direct summand intersection property (in short DSIP) if the intersection of
any two direct summands of M is a direct summand, too;

2) the strong direct summand intersection property (in short SDSIP) if the inter-
section of any number of direct summands of M is again a direct summand of M ;

3) the direct summand sum property (in short DSSP) if the sum (that is the
submodule of M generated by the union) of any two direct summands of M is a

direct summand, too;

4) the strong direct summand sum property (in short SDSSP) if the sum (that

is the submodule of M generated by the union) of any number of direct summands
of M is again a direct summand of M .

Remark 1.1. If an R-module has SDSIP, it also has DSIP; the converse is gen-
erally false (see [12, p. 32]).

Remark 1.2. If an R-module has SDSSP, it also has DSSP; the converse is

generally false.

���������
. Let R be a left hereditary non-Noetherian ring. Then there is an infinite

family {Mi}i∈I of injective R-modules such that
⊕
i∈I

Mi is not injective. By Zorn’s

Lemma, choose such an independent family. Then the R-module M =
∏
i∈I

Mi is

injective and has DSSP (see (2.11)), but
∑
i∈I

Mi =
⊕
i∈I

Mi is not a direct summand

in M . It follows that M does not have SDSSP. �

We will present further on the principal results obtained in solving the problem of

the R-modules with DSSP, results published in [11], and those needed here.

(1.3) LetM be an R-module and let SM = {T 6 M | T is a direct summand in M}.
If M has both DSIP and DSSP then SM is a lattice, that is SM is a sublattice of the
lattice S(M) of all submodules of M . If M has either SDSIP or SDSSP then SM is

a complete lattice, that is SM is a complete sublattice of S(M).

(1.4) Let R be a principal ideal ring, in particular a local Dedekind domain, and let
M be an R-module which has a non-null divisible submodule. If M has DSIP then

SM is a complete lattice.

(1.5) Let R be an Artinian ring. Then the following statements are equivalent:

a) All injective R-modules have DSIP.

b) The ring R is (left) hereditary.

c) All injective R-modules have DSSP.
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(1.6) The statement from (1.5) is not valid for all Noetherian rings; for example:

the ring � of integers is a hereditary Noetherian ring and there are divisible abelian
groups which do not have DSIP.

(1.7) Let R be an Artinian domain. Then the following statements are equivalent:

a) All injective R-modules have SDSIP.

b) All injective R-modules have DSIP.

c) The ring R is (left) hereditary.

d) For all injective R-modules M , SM is a complete lattice.

e) All injective R-modules have DSSP.

f) Every injective R-module M is either

i) torsion-free, or

ii) of torsion, and every indecomposable direct summand of M is fully invari-

ant.

2. Modules (and rings) with DSSP

In this section we will present a series of results of general character, concerning
the R-modules with DSSP. We begin our investigations with a few results analogous

to those for R-modules with DSIP presented in [2], [5] and/or [12].

Remark 2.1. If the R-moduleM has DSSP (SDSSP), then every direct summand

of M also has DSSP (respectively SDSSP).

���������
. Let M be an R-module with DSSP and let A be a direct summand

in M . If T and S are two direct summands in A, then T + S is a direct summand
in M , but contained in A. It follows that T +S is a direct summand in A and A has

DSSP. The proof for SDSSP is similar. �

Proposition 2.2. Let M be an R-module. Then M has DSSP if and only if for

every pair of direct summands T and S, π−1(π(T )) is a direct summand ofM , where
π : M → S is the canonical projection of M along S.

���������
. We suppose that M has DSSP. If T and S are direct summands of M

and π : M → S is the canonical projection of M along S, then π−1(π(T )) = T + S′

is a direct summand in M , where S ′ is a complement of S in M . Conversely, if
M = S ⊕ S′ = T ⊕ T ′ and % : M → S′ is the canonical projection of M along S ′,

then %−1(%(T )) = T + S is a direct summand in M and thus M has DSSP. �

The converse of (2.1) is true for fully invariant direct summands.
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Lemma 2.3. Let M =
⊕
i∈I

Mi be an R-module, where for every i ∈ I , Mi is fully

invariant in M . Then M has DSSP (SDSSP) if and only if for every i ∈ I , Mi has

DSSP (respectively SDSSP).
���������

. We suppose that M has DSSP. By virtue of (2.1), for every i ∈ I ,
Mi has DSSP. Conversely, we suppose that for every i ∈ I , Mi has DSSP. Let T

and S be two direct summands in M , M = S ⊕ S ′ = T ⊕ T ′. Then, according to
the hypothesis, Mi = (S ∩Mi)⊕ (S′ ∩Mi) = (T ∩Mi) ⊕ (T ′ ∩Mi) for every i ∈ I .

It follows that M =
⊕
i∈I

[(S ∩ Mi) ⊕ (S′ ∩ Mi)] =
[⊕

i∈I

(S ∩ Mi)
]
⊕

[⊕
i∈I

(S′ ∩ Mi)
]
,

and S =
⊕
i∈I

(S ∩Mi). Analogously we obtain that T =
⊕
i∈I

(T ∩Mi). It follows that

T + S =
[⊕

i∈I

(S ∩Mi)
]

+
[⊕

i∈I

(T ∩Mi)
]

=
⊕
i∈I

[(S ∩Mi) + (T ∩Mi)] =
⊕
i∈I

Di, where

Di = (S ∩Mi) + (T ∩Mi) is, according to the hypothesis, a direct summand in Mi.
Hence T +S is a direct summand inM and thusM has DSSP. The proof for SDSSP

is similar. �

Corollary 2.4. Let R be a principal ideal domain and P the set of all unassociated

prime elements from R. IfM =
⊕
p∈P

Mp is a torsion R-module, decomposed according

to [8, 6.11.3], then M has DSSP (SDSSP) if and only if for every p ∈ P , Mp has

DSSP (respectively SDSSP).
���������

. Let the ring R and the R-module M =
⊕
p∈P

Mp be the same as in the

statement. Since Mp is fully invariant in M for every p ∈ P , we can apply (2.3). �

Proposition 2.5. If the R-module M has DSSP, then the following statements

hold:

1) For every decomposition M = A ⊕ B and every homomorphism f : A → B,

Im f is a direct summand in B.

2) If A and B are indecomposable R-modules and A ⊕ B is a direct summand

in M , then either

i) Hom(A, B) = 0 or
ii) if 0 6= f ∈ Hom(A, B) then f is an epimorphism.

���������
. 1) Let S be the submodule ofM generated by the set {x+f(x) | x ∈ A}.

Then S+B = S⊕B = A⊕B = M , since S∩B = 0. So S+A = A+Im f = A⊕Im f

is a direct summand in M . It follows that Im f is a direct summand of M , which is

contained in B; so Im f is a direct summand in B.
2) Let A and B be the same two R-modules as in the statement and let 0 6=

f ∈ Hom(A, B). Then, according to the hypothesis and to what has been proved in
point 1), Im f = B. �
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Remark 2.6. The converse of (2.5) 1) is generally false.
���������

. Indeed, let R be a Noetherian ring which is not hereditary. Then,

according to (2.11), there is an injective R-module M which does not have DSSP,
but which can satisfy the conditions from (2.5) 1). �

As in [12], using (2.5) we can classify some rings R in terms of which R-modules
have DSSP, and we can improve these results.

Theorem 2.7. The following statements are equivalent for a ring R:

1) R is Artinian semi-simple.

2) All R-modules have SDSSP.

3) All R-modules have DSSP.

4) All projective R-modules have DSSP.
���������

. It is obvious that 1) implies 2) implies 3) implies 4). We are going to

show that 4) implies 1). Let P be a projective R-module and let N be a submodule
of P . Choose a free R-module F and an epimorphism f : F → N . According to the

hypothesis, F ⊕P has DSSP. So N = Im f is a direct summand in P . It follows that
any submodule of P is a direct summand in P . According to [1, 9.6], P and any

quotient R-module of P are semi-simple R-modules, since any homomorphic image
of a semi-simple R-module is again a semi-simple R-module (see [10, 3.6]). Since each

R-module is isomorphic to a quotient module of a projective R-module, it follows
that, in our case, each R-module is isomorphic to a semi-simple R-module; so R is

semi-simple. In this case any R-module is injective; let M be such an R-module and
let T and S be two submodules of M . Then T ∩ S is a submodule of M ; so T ∩ S

is a direct summand in M . It follows that T ∩ S is injective and M satisfies the
conditions from [3, Theorem 8, p. 62]. According to [3, p. 63], R is Artinian. �

Now the result from [12, Proposition 3.b] can be improved:

Corollary 2.8. The following statements are equivalent for a ring R:

1) R is Artinian semi-simple.

2) All R-modules have SDSSP.

3) All R-modules have DSSP.

4) All projective R-modules have DSSP.

5) All R-modules have SDSIP.

6) All R-modules have DSIP.

7) All injective R-modules have DSIP.

8) For all R-modules M , SM (= S(M)) is a complete lattice.
9) For all R-modules M , SM (= S(M)) is a lattice.
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���������
. The equivalence of these statements follows from (2.7), (1.3) and

from [12, Proposition 3.b)]. �

Corollary 2.9. If all projective R-modules have DSSP, then R is left hereditary.
���������

. Any semi-simple ring is left hereditary according to [9, p. 73]. (Oth-
erwise: it follows from the proof of the above theorem that any submodule of a

projective R-module is, in its turn, projective; therefore R is left hereditary accord-
ing to [9, 4.10]). �

Remark 2.10. The converse of (2.9) is generally false, since if R is left hereditary,
then the sum of any two direct summands of a projective R-moduleM is a projective

submodule of M , which is not necessarily a direct summand (in M); in fact not any
left hereditary ring is semi-simple (see � ).
Using [3, Proposition 10, p. 62], for injective R-modules it can be easily proved

that the statements from points (1.5) b) and (1.5) c) are equivalent for any ring R.

So we have the following result:

Theorem 2.11. The following statements are equivalent for a ring R:

a) All injective R-modules have DSSP.

b) R is left hereditary.

For Noetherian rings R, all R-modules have a unique maximal injective direct

summand if and only if R is left hereditary (see [13, Theorem 2]). Now we are going
to show that over any Noetherian ring, modules with DSSP have a unique direct

summand of this kind, a result which is analogous to the one in [12, Proposition 5].

Theorem 2.12. Let M be a module over a Noetherian ring R. If M has DSSP,

then M has a unique maximal injective direct summand.
���������

. According to Zorn’s Lemma, we can choose a maximal independent

set {Ei}i∈I of indecomposable injective submodules of M . Since R is Noetherian,
E =

⊕
i∈I

Ei is injective too and so E is a direct summand in M . We claim that

E contains all injective submodules of M . Let F be an injective submodule of M .

According to the hypothesis, E +F is a direct summand inM . Suppose that F 6⊂ E.
Then E+F = E⊕G with G 6= 0—a direct summand inM . It follows that F \E ⊆ G.

Let x ∈ F \E and let F1 be the least direct summand of F which contains x. Then
F1 is not a direct summand in E, but F1 has a direct summand in G. In this case

the set {Ei}i∈I does not contain all indecomposable direct summands of F1; so we
have obtained a contradiction to the choice of {Ei}i∈I .

It follows that F ⊆ E and E is the unique maximal injective direct summand
of M . �
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Now we prove the following

Proposition 2.13. Let R be a commutative Artinian ring and let E1 and E2

be two indecomposable injective R-modules such that E1 is isomorphic to E2 and

E1⊕E2 has DSSP. Then there is a prime ideal P of R such that for every 0 6= x ∈ E1,

Ann(x) = P . (Ann(x) is the annihilator of x.)
���������

. Let f : E1 → E2 be an isomorphism of R-modules. We suppose that

there are x, y ∈ E1 \ {0} such that Ann(x) 6= Ann(y). We consider a ∈ Ann(x) \
Ann(y) and define g : E1 → E2 by: for every m ∈ E1, g(m) = f(am). It is obvious
that g is a homomorphism of R-modules. According to the hypothesis and to (2.5) 1),
Im g is a direct summand in E2, so either Im g = 0 or Im g = E2. Let us remark

that g(x) = f(ax) = f(0) = 0 and g(y) = f(ay) 6= 0. Hence g is neither null nor a
monomorphism. It follows that Im g = E2, so g is an epimorphism. Then f−1g is an

epimorphism, too. Since R is Artinian, according to [10, p. 120] E1 is a Noetherian
R-module. According to the hypothesis and to [8, 6.5.8] it follows that f−1g is an

automorphism; so g is a monomorphism and ker g = 0, which is impossible, since
ker g 6= 0. Hence all elements of E1 \ {0} have the same annihilator; let it be P . So

P = Ann(E1 \ {0}). Let m ∈ E1 \ {0} and let us suppose that rs ∈ P , and r 6∈ P .
Then rm 6= 0 and P ⊆ Ann(rm) for every m ∈ E1 \ {0}. But Ann(rm) = P and

since rsm = 0, it follows that s ∈ P . Therefore P is a prime ideal of R. �

Now, for Artinian rings, the result from [12, Proposition 6] can be improved in
the following way:

Theorem 2.14. Let R be a commutative Artinian ring and let E be an injective

R-module. The following statements are equivalent:

1) E has DSIP.

2) E has SDSIP.

3) E has SDSSP.

4) E has DSSP.

���������
. According to [10, p. 78], [12, Proposition 6], [7, 1.4.47] and (1.2), we

have that 1) is equivalent to 2) which is equivalent to 3) which implies 4). So we
are going to show only that 4) implies 3). Let E be an injective R-module with

DSSP. Then E =
⊕
i∈I

Ei, where for every i ∈ I , Ei is an indecomposable injective

R-module of E. Let Ji = {k ∈ I | Ek
∼= Ei}. Then we obtain the following

equivalence relationship over I , denoted by “≈”: i1 ≈ i2 if and only if Ei1
∼= Ei2 ,

and {Ji}i∈I is the partition corresponding to “≈” over I . So E =
⊕
i∈I

E∗
i , where E∗

i =
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⊕
k∈Ji

Ek. Since Hom(E∗
i1

, E∗
i2

) = Hom
( ⊕

k∈Ji1

Ek,
⊕

l∈Ji2

E1

)
is isomorphically embedded

in Hom
( ⊕

k∈Ji1

Ek,
∏

l∈Ji2

El

)
=

∏
k∈Ji1

∏
l∈Ji2

Hom(Ek, E1) = 0, according to [4, 43.1],

[4, 43.2] and (2.5) 2) we obtain that for every i1 and i2 which are not equivalent,
E∗

i1
and E∗

i2
are fully invariant. According to (2.3), it suffices to show that each E∗

i

has SDSSP. So, for every i ∈ I , E∗
i is a direct sum of isomorphic indecomposable

injective submodules. If E∗
i is indecomposable, then it has SDSSP. If E∗

i is not

indecomposable, then there is a prime ideal P of R such that Ek = E(R/P ) for
every k ∈ Ji and Ann(x) = P for every x ∈ Ek \ {0} according to [10, Theorem 2.32,
Corollary] and (2.13). Then, for every k ∈ Ji, Ek is a torsion-free injective module
over the domain R/P . It follows that for every k ∈ Ji, Ek is isomorphic to the

quotient field of R/P . Under these conditions E∗
i =

⊕
k∈Ji

Ek =
⊕

k∈Ji

E(R/P ) is a

vector space over this field and thus E∗
i has SDSSP, too. �

Remark 2.15. Let M be an indecomposable R-module and let M ∗ = M ⊕M .

Then the following statements hold:
i) If M∗ has DSIP, then each 0 6= f ∈ End(M) is a monomorphism.
ii) If M∗ has DSSP, then each 0 6= f ∈ End(M) is an epimorphism.
iii) If M∗ has both DSIP and DSSP, then End(M) is a division ring.
���������

. Let M be an R-module as in the statement.
i) If M∗ has DSIP, then, according to [5, 1.4], for every endomorphism f of M ,

ker f is a direct summand in M . So, either ker f = 0 or ker f = M , that is either
f is a monomorphism or f = 0.
ii) We can apply (2.5) 2) for A = B = M .
iii) The statement of this point follows from what we have proved in points i) and

ii).
�

From (1.7), (2.14) and (2.15) we obtain

Corollary 2.16. The following statements are equivalent for a commutative Ar-
tinian ring R:

1) R is semi-simple.

2) All R-modules have SDSSP.
3) All R-modules have DSSP.

4) All projective R-modules have DSSP.

5) All R-modules have SDSIP.

6) All R-modules have DSIP.
7) All injective R-modules have DSIP.
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8) All injective R-modules have SDSIP.

9) All injective R-modules have DSSP.

10) All injective R-modules have SDSSP.

11) The ring R is left hereditary.

12) For all R-modules M , SM is a complete lattice.

13) For all R-modules M , SM is a lattice.

14) For all injective R-modules M , SM is a complete lattice.

15) For all injective R-modules M , SM is a lattice.

16) Every injective R-module M is either

i) torsion-free and for every indecomposable direct summand A ofM , End(A)
is a division ring, or

ii) of torsion, and every indecomposable direct summand of M is fully invari-

ant.

At the end of this section we are going to see under what conditions the ring
E = End(M) of all endomorphisms of an R-module M has DSSP. To this aim, we

will first prove the following technical result:

Lemma 2.17. If π1, π2 and π are three idempotent endomorphisms of an R-

moduleM such that π1M+π2M = πM , then π1E+π2E = πE, where E = End(M).
���������

. First, we remark that for every idempotent α ∈ E, α(M) = (αE)M .
Since π1M + π2M = πM , it follows that π1M ⊆ πM and π2M ⊆ πM . Then
(π1E)M ⊆ (πE)M and (π2E)M ⊆ (πE)M . It follows that π1E ⊆ πE and π2E ⊆
πE; therefore

(1) π1E + π2E ⊆ πE.

Since (π1E)M + (π2E)M = (πE)M , it follows that

(2) πE ⊆ π1E + π2E.

From the relationships (1) and (2) we obtain the desired equality.

�

Now, we can prove a result analogous to [2, Theorem].

Theorem 2.18. An R-module M has DSSP if and only if

(i) E = End(M) has DSSP, as a right E-module, and

(ii) for all idempotents π and % in E, πM + %M = (πE + %E)M .
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���������
. We suppose that M has DSSP. Then, for every π1 and π2-idempotents

in E, there is a π-idempotent in E such that π1M + π2M = πM . Then, according
to (2.17), π1E + π2E = πE and π1M + π2M = πM = (πE)M = (π1E + π2E)M .
Conversely, we suppose that the statements (i) and (ii) hold and let T and S be two

direct summands ofM . If π1 : M → T and π2 : M → S are the canonical projections
of M along T and S respectively, then π1E and π2E are direct summands in E.

According to the hypothesis, there is an idempotent π ∈ E such that π1E + π2E =
πE. Then πM = (πE)M = (π1E + π2E)M = π1M + π2M = T + S is a direct

summand in M . Therefore M has DSSP. �

For the rings with DSSP we have

Proposition 2.19. If a ring R has DSSP as a right R-module, then the following

statements hold:

(i) For every idempotent e ∈ R and every r ∈ (1 − e)Re, the right ideal rR is

projective.

(ii) For every idempotent e ∈ R and every r, s ∈ (1− e)Re, rR+ sR = (r + s)R⊕L,

where L is a direct summand in R with the property that rL = sL = 0.

���������
. (i) We observe that in this case R = EndR(RR). If e = e2 ∈ R and

r ∈ (1− e)Re, then r2 = 0 (which can be checked immediately) and there is a direct
decomposition of R which assumes the form R = I ⊕ J with rR = rI ⊆ J and

rJ = 0. According to the hypothesis and to (2.5) 1), rI is a direct summand in J . If
R = I ⊕ rI ⊕K, where K is a direct summand in J with the property that rK = 0,
then rR is a direct summand in R. It follows that rR is a projective ideal of R.

(ii) According to what we have proved in point (i), for every e ∈ R and every

r, s ∈ (1 − e)Re, the ideals rR and sR are direct summands in R. It can be easily
proved that then r + s ∈ (1− e)Re and

(3) rs = sr = 0;

so (r+s)R is a direct summand, too (in R), contained in the direct summand rR+sR.
It follows that

(4) rR + sR = (r + s)R⊕ L,

where L is a direct summand in R. From the relationships (3) and (4) we obtain

that rL = sL = 0.
�
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Let M and N be two R-modules. If we denote by SM (N) the M -socle of N , that

is the sum of all homomorphic images of M in N , then (2.19) and [2, p. 523] yield

Corollary 2.20. Let M be an R-module. If the ring E = EndR(M) has DSSP
as a right E-module, then the following statements hold:

(i) For every π = π2 ∈ E and every ε ∈ (1− π)Eπ, SM (ker ε) is a direct summand
in M .

(ii) For every π = π2 ∈ E and every σ, τ ∈ (1 − π)Eπ, σE + τE = (σ + τ)E ⊕ L,

where L is a direct summand in E with the property that σL = τL = 0.

Acknowledgement. I use the opportunity to express my gratitude to Profes-
sors G. Călugăreanu (from Babeş-Bolyai University of Cluj-Napoca, Romania) and
R. Wisbauer (from Heinrich Heine University of Düsseldorf, Germany) for useful

suggestions they gave me at revision of this paper.

References

[1] F.W. Anderson and K.R. Fuller: Rings and Categories of Modules. Springer-Verlag,
Berlin-Heidelberg-New York, 1974.

[2] D.M. Arnold and J. Hausen: A characterization of modules with the summand inter-
section property. Comm. Algebra 18 (1990), 519–528.

[3] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Notes in Math.
49. Springer-Verlag, Berlin-Heidelberg-New York, 1967.

[4] L. Fuchs: Infinite Abelian Groups, vol. I–II. Pure Appl. Math. 36. Academic Press,
1970–1973.

[5] J. Hausen: Modules with the summand intersection property. Comm. Algebra 17 (1989),
135–148.

[6] I. Kaplansky: Infinite Abelian Groups. Univ. of Michigan Press, Ann Arbor, Michigan,
1954, 1969.

[7] I. Purdea and G. Pic: Treatise of Modern Algebra, vol. I. Editura Academiei R.S.R.,
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