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Abstract. In this paper we deal with the (α, β)-distributivity of anMV -algebra A , where
α and β are nonzero cardinals. It is proved that if A is singular and (α, 2)-distributive,
then it is (α, α)-distributive. We show that if A is complete then it can be represented as
a direct product of MV -algebras which are homogeneous with respect to higher degrees of
distributivity.
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Introduction

For MV -algebras, several equivalent systems of axioms have been applied in the

literature. We use the axioms as in the forthcoming monograph [2]. The definition
is recalled in Section 1 below.

If A is anMV -algebra, then by means of the basic operations defined in A we can
introduce a partial order 6 on A; it turns out that (A,6) is a bounded distributive
lattice. We denote it by `(A).
Let α and β be nonzero cardinals. In the present paper we deal with the condition

of (α, β)-distributivity in the lattice `(A). (We often speak about (α, β)-distributivity
of A meaning the corresponding condition for the lattice `(A).)
The condition of (α, β)-distributivity has been studied in several papers in Boolean

algebras (for references, cf. [14]) and in lattice ordered groups (cf. [1], [3], [6], [7],

[12], [16], [17]).
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EachMV -algebra A can be constructed by means of an appropriate abelian lattice

ordered group G with a strong unit u; we put A = Γ(G, u) (cf. [2]); in [8], [9], [10]
the notation A0(G, u) was used instead of Γ(G, u).
We prove that if A = Γ(G, u), then the lattice `(A) is (α, β)-distributive if and

only if the lattice ordered group G is (α, β)-distributive.
Assume that A is an archimedean MV -algebra. If A is (α, β)-distributive and

each nontrivial interval of `(A) has a nontrivial subinterval whose cardinality is less
than or equal to β, then the Dedekind completion of A is (α, β)-distributive. This
yields, in particular, that A is completely distributive if and only if the Dedekind
completion of A is completely distributive.

An MV -algebra A is called singular if for each 0 < a ∈ A there exists 0 < a1 6 a

such that the interval [0, a1] of `(A) is complemented. If A is singular and (α, 2)-
distributive, then it is (α, α)-distributive.
Let A be an MV -algebra and a ∈ A. There exists a convex sublattice L(a, α, β)

of `(A) such that a ∈ L(a, α, β) and L(a, α, β) is maximal with respect to the property
of being (α, β)-distributive. If A is a complete MV -algebra, then we can introduce

in a natural way the MV -structure on the lattice L(0, α, β); we prove that the
corresponding MV -algebra is a direct factor of the MV -algebra A.

We show that each complete MV -algebra can be represented as a direct prod-
uct of MV -algebras which are homogeneous with respect to the higher degrees of

distributivity.

1. Preliminaries

We recall that a lattice L is called infinitely distributive if it satisfies the following

condition (a1) and the condition (a2) which is dual to (a1).
(a1) Whenever (xi)i∈I is an indexed system of elements of L such that

∨
i∈I

xi exists

in L and y ∈ L, then ∨
i∈I

(y ∧ xi) exists in L and

y ∧
(∨

i∈I

xi

)
=

∨

i∈I

(y ∧ xi).

Let α and β be nonzero cardinals. Consider the following condition for the lat-

tice L:
(b1) Whenever T , S are nonempty sets of indices with cardT 6 α, cardS 6 β and

(xt,s)t∈T,s∈S is an indexed system of elements of L such that

∧

t∈T

∨

s∈S

xt,s and
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t)
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exist in L, then ∧

t∈T

∨

s∈S

xt,s =
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t).

We denote by (b2) the condition which is dual to (b1).
The lattice L is called (α, β)-distributive if it satisfies both conditions (b1) and

(b2).
L is said to be α-distributive if it is (α, α)-distributive. L is called completely

distributive if it is α-distributive for every nonzero cardinal α.
It is obvious that any interval of an (α, β)-distributive lattice is (α, β)-distributive

as well.
An interval of L is called nontrivial if it has more than one element.

For lattice ordered groups we use the notation as in [4]. In particular, the group
operation in a lattice ordered group G is denoted by +. The underlying lattice of G
is denoted by `(G), but often we say lattice G rather than lattice `(G).
It is well-known that the lattice `(G) is infinitely distributive. Further, the map-

ping ϕ(x) = −x is a dual automorphism of `(G); hence `(G) is (α, β)-distributive if
and only if it satisfies the condition (b1).

1.1. Lemma. Let G be a lattice ordered group, 0 < u ∈ G. The following

conditions are equivalent:

(i) The interval [0, u] is (α, β)-distributive.
(ii) The interval [0, u] satisfies the condition (b1).

������

. Clearly (i) ⇒ (ii). Assume that (ii) is valid. For x ∈ [0, u] put
ϕ(x) = −x. Then ϕ is a dual isomorphism of [0, u] onto the interval [−u, 0]. Hence
[−u, 0] satisfies the condition (b2).
Further, for each y ∈ [−u, 0] we set ψ(y) = y + u. Then ψ is an isomorphism of

[−u, 0] onto [0, u]. Thus the condition (b2) is satisfied in [0, u]. �

An MV -algebra A is defined to be an algebraic structure (A;⊕,¬, 0), where A is
a nonempty set, ⊕ is a binary operation, ¬ a unary operation and 0 a constant in A
such that the following identities are satisfied:

MV 1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
MV 2) x⊕ y = y ⊕ x;

MV 3) x⊕ 0 = x;
MV 4) ¬¬x = x;

MV 5) x⊕ ¬0 = ¬0;
MV 6) ¬(¬x ⊕ y) = ¬(¬y ⊕ x)⊕ x.

(Cf. [2].)
We often use the symbol A in place of A .
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Let A be an MV -algebra. For any x, y ∈ A we write x 6 y if ¬x ⊕ y = ¬0. Then
(A; 6) is a distributive lattice with the least element 0 and the greatest element ¬0.
(Cf. [2, Chapter 1].) Hence without loss of generality we can consider also the lattice
operations ∧ and ∨ as belonging to the basic operations on A.
Let G be an abelian lattice ordered group and 0 < u ∈ G. For each x, y ∈ [0, u]

we put

x⊕ y = u ∧ (x+ y), ¬x = u− x.

The structure ([0, u];⊕,¬, 0) will be denoted by Γ(G, u). Then (cf. [2, 2.1.2]), Γ(G, u)
is anMV -algebra with u = ¬0. Conversely, for everyMV -algebra A there exists an

abelian lattice ordered group G with a strong unit u such that A = Γ(G, u) (cf. [2,
Section 7.1]).

From these results and from 1.1 we conclude:

1.2. Lemma. LetA be anMV -algebra. The following conditions are equivalent:

(i) The lattice `(A ) is (α, β)-distributive.
(ii) The lattice `(A ) satisfies the condition (b1).

Hence when considering the condition of (α, β)-distributivity in lattice ordered
groups or in MV -algebras it suffices to take the condition (b1) into account.

2. Infinite distributivity and (α, β)-distributivity

2.1. Lemma (Cf. [6, 1.3].). Let L be a lattice. The following conditions are
equivalent:

(i) L does not satisfy (b1).

(ii) There exist nonempty sets T , S with cardT 6 α, cardS 6 β, elements u, v ∈ L
and an indexed system (xt,s)t∈T,s∈S of elements of L such that the relations

v =
∧

t∈T

∨

s∈S

xt,s, u =
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t), u < v

are valid.

2.2. Lemma. Let L be an infinitely distributive lattice. The following conditions
are equivalent:

(i) L does not satisfy the condition (b1).

(ii) There exists a nontrivial interval in L which does not satisfy the condition (b1).
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������
. The implication (ii) ⇒ (i) is obviously valid. Suppose that (i) holds.

Then there exists an indexed system (xt,s)t∈T,s∈S with the properties as in the con-
dition (ii) of 2.1. Denote

x′t,s = (xt,s ∧ v) ∨ u for each t ∈ T, s ∈ S.

Then we have

(1) v =
∧

t∈T

∨

s∈S

x′t,s, u =
∨

ϕ∈ST

∧

t∈T

x′t,ϕ(t), u < v

and x′t,s ∈ [u, v] for each t ∈ T and each s ∈ S. Hence in view of 2.1, [u, v] does not
satisfy (b1). �

2.3. Lemma. Let L be an infinitely distributive lattice. Suppose that the
condition (ii) of 2.1 is valid. Let (under the notation as in 2.1) u1, v1 ∈ L, u 6 u1 <

v1 6 v. Then the interval [u1, v1] of L does not satisfy (b1).

������

. For each t ∈ T and s ∈ S we put

x′′t,s = (xt,s ∧ v1) ∨ u1.

Then, by using infinite distributivity, we obtain

v1 =
∧

t∈T

∨

s∈S

x′′t,s, u1 =
∨

ϕ∈ST

∧

t∈T

x′′t,ϕ(t).

Since x′′t,s ∈ [u1, v1] for each t ∈ T and each s ∈ S, the interval [u1, v1] does not
satisfy (b1). �

2.4. Lemma. Let G be a lattice ordered group with the strong unit u0. The

following conditions are equivalent:

(i) G is (α, β)-distributive.
(ii) The interval [0, u0] of G is (α, β)-distributive.

������

. The implication (i) ⇒ (ii) obviously holds. Assume that (ii) is valid.
By way of contradiction, suppose that G is not (α, β)-distributive. Then the condi-
tion (ii) from 2.1 is valid. Thus according to 2.3, each subinterval of [u, v] having more
than one element fails to be (α, β)-distributive. Denote b1 = v − u. The intervals

[u, v] and [0, b1] are isomorphic, hence for each b2 ∈ G with 0 < b2 6 b1, the interval
[0, b2] is not (α, β)-distributive. Consider the interval [0, b2] where b2 = b1 ∧ u0.

We have b1 > 0, hence 0 < b2 6 u0. According to (ii), the interval [0, b2] must be
(α, β)-distributive. We have arrived at a contradiction. �
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Now let A be an MV -algebra. In view of Section 1 there exists an abelian lattice

ordered group G with a strong unit u such that A = Γ(G, u).
From 2.4 and from the relation between A and G we immediately obtain

2.5. Proposition. Let A be an MV -algebra, A = Γ(G, u). The following
conditions are equivalent:

(i) G is (α, β)-distributive.
(ii) `(A ) is (α, β)-distributive.

2.6. Lemma. Let A be anMV -algebra, A = Γ(G, u). Let β be a cardinal. The
following conditions are equivalent:

(i) Each nontrivial interval in G has a nontrivial subinterval whose cardinality is

less than or equal to β.

(ii) The same condition as in (i) with G replaced by `(A ).

������

. The relation (i) ⇒ (ii) is obvious. The converse implication is a
consequence of the fact that u is a strong unit in G. �

The Dedekind completion of an archimedean lattice ordered group G will be de-
noted by D(G); cf., e.g., Fuchs [5]. The definition of D(G) yields:

2.7. Lemma. Let 0 < x ∈ D(G). Then there exists a subset X of G+ such that

(i) X is upper bounded in G;

(ii) the relation supX = x is valid in D(G).
Moreover, G is a regular `-subgroup of D(G) (in the sense that if x1 ∈ G is a

supremum in G of a subset X1 of G, then this remains valid in D(G), and dually).

2.8. Proposition (Cf. [7]). Let G be an archimedean (α, β)-distributive lattice
ordered group, β > ℵ0. Assume that for each 0 < a there is b ∈ G such that 0 < b 6 a

and card[0, b] 6 β. Then the lattice ordered group D(G) is (α, β)-distributive.

For the notion of archimedean MV -algebra cf., e.g., [10] (in [2], the term ‘semi-

simple’ was used).

Let A be an archimedeanMV -algebra. Assume thatB is a completeMV -algebra
such that

(i) A is a subalgebra of B,

(ii) the lattice `(B) is the Dedekind completion of the lattice A .

Then B is called the Dedekind completion of A .

Let A1 be any archimedean MV -algebra. There exists an abelian lattice ordered
group G1 with a strong unit u1 such that A1 = Γ(G1, u1). Then G1 is archimedean
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(see [1]). In [9] it was proved that A1 is complete if and only if G1 is a complete

lattice ordered group.
From this we immediately conclude that if A is as above and A = Γ(G, u), then

the MV -algebra B = Γ(D(G), u) is the Dedekind completion of A . We denote

B = D(A ).
It is well-known that there exists a canonical embedding of the lattice L = `(A )

into its Dedekind completion D(L) and that D(L) is defined uniquely up to isomor-
phisms leaving all elements of L fixed. By applying 2.7 we can verify that the same

is valid for D(A ).
(We remark that in [11] the notion of the maximal completion M(A ) of an MV -

algebra A was investigated without assuming the archimedean property; if A is
archimedean, then M(A ) = D(A ).)
Thus from 2.5 and 2.8 we obtain

2.9. Proposition. Let A be an archimedean (α, β)-distributive MV -algebra,

β > ℵ0. Assume that for each 0 < a ∈ A there is b ∈ A with 0 < b 6 a such that

card[0, b] 6 β. Then the MV -algebra D(A ) is (α, β)-distributive.

Now let G be an archimedean lattice ordered group. Put D(G) = H . If {hi}i∈I

is an upper-bounded subset of H , then there exists sup{hi}i∈I in H ; we denote this

element by
H∨

i∈I

hi. For a lower-bounded subset {h′j}j∈J , the meaning of
H∧

j∈J

h′j is

analogous.

2.10. Proposition. Let G be an archimedean lattice ordered group, H = D(G).
The following conditions are equivalent:

(i) G is (α, β)-distributive.
(ii) Whenever T , S are nonempty sets of indices with cardT 6 α, cardS 6 β, and

{xt,s}t∈T,s∈S is an indexed system of elements of G which is bounded in G then

H∧

t∈T

H∨

s∈S

xt,s =
H∨

ϕ∈ST

H∧

t∈T

xt,ϕ(t).


������
. Assume that (i) fails to hold. Then in view of 1.1 and 2.1 the condi-

tion (ii) from 2.1 is satisfied. Since G is a regular `-subgroup of H we obtain

(2) v =
H∧

t∈T

H∨

s∈S

xt,s > u =
H∨

ϕ∈ST

H∧

t∈T

xt,ϕ(t),

whence (ii) is not valid.
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Further suppose that (i) holds. By way of contradiction, assume that (ii) is not

satisfied. Hence there are u, v ∈ H , {xt,s}t∈T,s∈S ⊆ G, cardT 6 α, cardS 6 β such
that (2) is valid in H .
Each element of H+ is a join (in H) of some elements of G+. Since u < v, there

is a ∈ G such that a 6 v, 0 < a � u. For each t ∈ T and s ∈ S we put
x′t,s = xt,s ∧ a.

In view of the infinite distributivity of H we obtain

a = v ∧ a =
H∧

t∈T

H∨

s∈S

x′t,s,(3)

u ∧ a =
H∨

ϕ∈ST

H∧

t∈T

x′t,ϕ(t)(4)

and u ∧ a < a. Since x′t,s, a and u ∧ a are elements of G, from (3), (4) we infer that

a =
∧

t∈T

∨

s∈S

x′t,s,

u ∧ a =
∨

ϕ∈ST

∧

t∈T

x′t,ϕ(t).

Thus G is not (α, β)-distributive, which is a contradiction. �

Let A be an archimedean MV -algebra and let G be an abelian lattice ordered
group with a strong unit u such that A = Γ(G, u).
Put B = D(A ). The lattice operations in B will be denoted by ∧B and ∨B.
From 2.10 and from the relation between D(G) and D(A ) we conclude

2.11. Proposition. Let A be an archimedean MV -algebra, B = D(A ). The
following conditions are equivalent:

(i) A is (α, β)-distributive.
(ii) Whenever T , S are nonempty sets of indices with card T 6 α, cardS 6 β and

{xt,s} is an indexed system of elements of A, then

B∧

t∈T

B∨

s∈S

xt,s =
B∨

ϕ∈ST

B∧

t∈T

xt,ϕ(t).

Since each Boolean algebra B can be viewed as an archimedean MV -algebra
(i.e., there exists an archimedean MV -algebra A such that `(A ) = B), we obtain
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as a corollary that 2.11 holds in the case when A is a Boolean algebra (cf. also [14,

35.4]).

3. Singular MV -algebras

The notion of singularMV -algebra was defined in the Introduction above. By the
same condition we define also the notion of a singular lattice ordered group (cf. [4]).

Let A = Γ(G, u); it is obvious that A is singular if and only if G is singular.

3.1. Lemma. Let G be a singular lattice ordered group. The following conditions
are equivalent:

(i) G is (α, β)-distributive.
(ii) If 0 < a ∈ G and if the interval [0, a] of G is complemented, then it is (α, β)-
distributive.


������
. The implication (i)⇒ (ii) is obvious. Assume that (ii) is valid. By way

of contradiction, suppose that (i) does not hold. Hence the condition (ii) from 2.1 is

satisfied. Put b = v − u. The intervals [u, v] and [0, b] are isomorphic; thus in view
of 2.3, no nontrivial interval of [0, b] is (α, β)-distributive. Since G is singular, we
have arrived at a contradiction. �

3.2. Proposition. Let G be a singular lattice ordered group. Then the following
conditions are equivalent:

(i) G is α-distributive.
(ii) G is (α, 2)-distributive.

������

. It is obvious that (i)⇒ (ii). Suppose that (ii) is satisfied. Let 0 < a ∈ G
such that the interval [0, a] is complemented. Then [0, a] is a Boolean algebra. Thus
in view of [13] (cf. also [14, 19.1]), the interval [0, a] is α-distributive. Now 3.1 yields
that G is α-distributive. �

From 2.5 and 3.2 we conclude

3.3. Proposition. Let A be a singular MV -algebra. Then A is α-distributive

if and only if it is (α, 2)-distributive.

Another result of this type is

3.4. Proposition. Let A be a complete MV -algebra. The following conditions

are equivalent:

(i) A is α-distributive.

(ii) A is (α, 2)-distributive.
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������
. Clearly (i) ⇒ (ii). Let (ii) be valid. As usual, let A = Γ(G, u).

According to 2.5, G is (α, 2)-distributive. In view of [9], G is complete. Thus [7,
Theorem 3.9] yields that G is α-distributive. By applying 2.5 again we conclude that
A is α-distributive. �

4. The sublattices LA (a, α, β)

Let α and β be as above.
First suppose that G is a lattice ordered group and a ∈ G. We denote by

L G(a, α, β) the system of all convex sublattices X of `(G) such that the element a
belongs to X and X is (α, β)-distributive. Let the system L G(a, α, β) be partially
ordered by the set-theoretical inclusion.
The assertions of the following proposition have been proved in [6].

4.1. Proposition. Let G be a lattice ordered group and a ∈ G.
(i) The system L G(a, α, β) has a greatest element which will be denoted by

LG(a, α, β).
(ii) LG(a, α, β) is a closed sublattice of `(G).
(iii) If b ∈ G, then either LG(a, α, β) = LG(b, α, β) or LG(a, α, β) ∩ LG(b, α, β) = ∅.
(iv) LG(0, α, β) is an `-ideal of G and

LG(a, α, β) = LG(0, α, β) + a.

Now let A be anMV -algebra. Suppose that G is an abelian lattice ordered group
with a strong unit u such that A = Γ(G, u).
For an element a of A we defineL A (a, α, β) analogously as we definedL G(a, α, β)

in the case when a was an element of G.

4.2. Proposition. Let A be an MV -algebra and a ∈ A.
(i) The system LA (a, α, β) has a greatest element which will be denoted by

LA (a, α, β).
(ii) LA (a, α, β) is a closed sublattice of `(A ).
(iii) If b ∈ A, then either LA (a, α, β) = LA (b, α, β) or

LA (a, α, β) ∩ LA (b, α, β) = ∅.

(iv) LA (0, α, β) is closed with respect to the operation ⊕.

������

. The assertions (i), (ii) and (iii) were proved (for any infinitely distribu-
tive lattice) in [6, Section 2].
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From the relations between A and G we conclude that

LA (a, α, β) = LG(a, α, β) ∩ A

is valid for each a ∈ A.
Since x ⊕ y = (x + y) ∧ a holds for each x, y ∈ A, from 4.1 (iv) we obtain that

LA (0, α, β) is closed with respect to the operation ⊕. �

Suppose that the MV -algebra A is complete (i.e., `(A ) is a complete lattice).
Then in view of 4.2 (ii), LA (0, α, β) has a greatest element; let us denote it by u1.

Hence LA (0, α, β) is the interval [0, u1] of the lattice `(A ). We also have

(5) [0, u1] = LG(0, α, β) ∩ A.

Further, in view of [9], G is a complete lattice ordered group. Thus [6, Theorem 7.7]

yields that LG(0, α, β) is a direct factor of the lattice ordered group G.
We denote by G1 the convex `-subgroup of G generated by the element u1. Then

u1 is a strong unit in G1. Put A1 = Γ(G1, u1). Then LA (0, α, β) is the underlying
lattice of A1.

From the fact that LG(0, α, β) is a direct factor of G, from (5) and from [8,
Lemma 3.2] we conclude

4.3. Proposition. Let A be a complete MV -algebra and let A1 be as above.

Then A1 is a direct factor of the MV -algebra A .

5. d-homogeneous MV -algebras

Let L be a distributive lattice having more than one element. If L is completely

distributive, then we put d(L) = ∞.
Suppose that L fails to be completely distributive. Then there exists an infinite

cardinal α such that
(i) L is not α-distributive;
(ii) if β is a nonzero cardinal with β < α, then L is β-distributive.

We put d(L) = α.
A lattice L will be called homogeneous with respect to the higher degrees of

distributivity if either cardL = 1, or cardL > 1 and for each nontrivial interval [a, b]
in L the relation

d([a, b]) = d(L)

is valid.
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We denote by C the class of all infinite cardinals; put C1 = C ∪ {∞}. Let G be
a lattice ordered group. For i ∈ C1 let Hi(0) be the set of all elements x ∈ G such
that either x = 0, or x 6= 0 and

d([x ∧ 0, x ∨ 0]) = i.

Then (cf. [6, 7.2]) Hi(0) is a convex `-subgroup of G. The results of [6, Sections 3
and 4] yield if Hi(0) 6= {0}, then d(Hi(0)) = i and that Hi(0) is d-homogeneous.
The notion of completely subdirect decomposition of a lattice ordered group has

been introduced in [15]; cf. also [6].

Assume that G is a complete lattice ordered group, G 6= {0}. Put

C0
1 = {i ∈ C1 : Hi(0) 6= {0}}.

5.1. Proposition. Each complete MV -algebra A with A 6= {0} can be repre-
sented as a direct product of d-homogeneous MV -algebras.


������
. Let A be a complete MV -algebra, A 6= {0}, A = Γ(G, u). Then G is

a complete lattice ordered group and G 6= {0}. Thus from [6, Theorem 7.9] we infer
that G can be represented as a completely subdirect product of its `-subgroupsHi(0)
(i ∈ C0

1 ). All these Hi(0) are d-homogeneous.
For each i ∈ C0

1 let ui be the component of the element u in Hi(0). Put Ai =
Γ(G, ui). Clearly Ai = Γ(Hi(0), ui). Then the lattice `(Ai) has more than one
element and is d-homogeneous.

According to Theorem 4.2 in [8], the MV -algebra A is a direct product of the
MV -algebras Ai (i ∈ C0

1 ). �

Let α be an infinite cardinal. For the notion of weak α-distributivity in a Boolean
algebra and also for the detailed references to authors and papers dealing with this

notion cf. [14, § 30] (sample names: Banach, Kuratowski, Horn, Tarski, Sikorski).

The above-mentioned definition given in [14] can be applied also for complete
MV -algebras. Similarly as in the case of homogeneity with respect to higher degrees

of distributivity we can introduce the notion of homogeneity with respect to higher
degrees of weak distributivity.

By the same reasoning as above we can prove the result analogous to Proposi-

tion 5.1 where distributivity is replaced by weak distributivity.
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