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Abstract. Assuming that (Ω,Σ, µ) is a complete probability space and X a Banach space,
in this paper we investigate the problem of the X-inheritance of certain copies of c0 or `∞ in
the linear space of all [classes of] X-valued µ-weakly measurable Pettis integrable functions
equipped with the usual semivariation norm.
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1. Introduction

Throughout this paper (Ω,Σ, µ) will be a complete probability space and X a
real or complex Banach space. Our notation is standard [1, 2, 3]. We shall denote
by P(µ,X) the linear space over � ( � or � ) of all [classes of scalarly equivalent]
weakly µ-measurable X-valued Pettis integrable functions f defined on Ω, equipped
with the semivariation norm

‖f‖P(µ,X) = sup
{∫

Ω

|x∗f(ω)| dµ(ω) : x∗ ∈ X∗, ‖x∗‖ 6 1
}
.

The linear subspace of P(µ,X) consisting of all strongly µ-measurable functions
will be denoted by P1(µ,X). As is well known, both P(µ,X) and P1(µ,X) are not
in general Banach spaces, although they are barrelled normed spaces [5]. According
to a result of Pettis, if f : Ω → X is [weakly measurable and] Pettis integrable, the

mapping F : Σ → X defined by F (E) = (P )
∫

E f dµ is a µ-continuous countably
additive X-valued measure and, in addition, if f is strongly measurable, then F (Σ)
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is a relatively compact set in X . A Banach space X is said to have the weak Radon-

Nikodým property (WRNP) with respect to a complete probability space (Ω,Σ, µ) if
every µ-continuous measure F : Σ → X of σ-finite variation has a Pettis µ-integrable
derivative f : Ω → X , i.e. that F (E) = (P )

∫
E
f dµ. If X has the WRNP with

respect to every complete probability space, it is said that X has the WRNP. A
Banach space X is said to have the compact range property (CRP) if any X-valued

countably additive measure F of bounded variation defined on a σ-algebra of subsets
has relatively compact range. These two last definitions have been taken from [9]

and [10]. We shall denote by ca(Σ, X) the Banach space of all countably additive X-
valued measures F on Σ equipped with the semivariation norm ‖F‖, while cca(Σ, X)
will stand for the closed subspace of ca(Σ, X) of all measures of relatively compact
range. We shall denote by bvca(Σ, X) the Banach space of all X-valued countably
additive measures of bounded variation F defined on Σ equipped with the variation
norm |F |. Let us recall that the linear operator S : P(µ,X) → ca(Σ, X) defined by
Sf(E) = (P )

∫
E f(ω) dµ(ω) for each E ∈ Σ is a linear isometry into ca(Σ, X). If X

and Y are two Banach spaces over the same field � and L(X,Y ) denotes the Banach
space of all bounded linear operators fromX into Y equipped with the operator norm,
as usual Kw∗(X∗, Y ) will denote the closed linear subspace of L(X∗, Y ) formed by
the compact weak∗-weakly continuous linear operators. Later on we shall need the
following result due to Drewnowski.

Lemma 1.1. ([4])Kw∗(X∗, Y ) contains a copy of `∞ if and only eitherX contains
a copy of `∞ of Y contains a copy of `∞.

Regarding the space P1(µ,X), it can be shown that P1(µ,X) contains a copy of
c0 if and only if X does (cf. [7, Thm. 5]) and, as far as copies of `∞ in P1(µ,X) is
concerned, due to the fact that P1(µ,X) embeds isometrically into cca(Σ, X) and
cca(Σ, X) is linearly isometric to Kw∗(ca(Σ)∗, X), Lemma 1.1 guarantees that `∞
embeds into P1(µ,X) if and only if X does. In this note we investigate the presence
of certain copies of c0 or `∞ in the wider space P(µ,X). As a first observation
notice that if P(µ,X∗) contains a copy of `∞, then either `∞ embeds into X∗ or
X contains a copy of `1 (if `1 does not embed into X it is well known that X∗

has the CRP, consequently P(µ,X∗) embeds into cca(Σ, X∗) and we are done).
On the other hand, if (Ω,Σ, µ) is a perfect probability space, as a consequence of
Fremlin’s subsequences theorem, for each f ∈ P(µ,X) the weak*-weakly continuous
linear operator Tf : X∗ → L1(µ) defined by x∗ → x∗f is compact [6, Prop. 5.7].

Since ‖Tf‖ = ‖f‖P(µ,X), the map f → Tf embeds P(µ,X) isometrically into
Kw∗(X∗, L1(µ)). Hence, if (Ω,Σ, µ) is a perfect probability space, then P(µ,X)
contains a copy of `∞ if and only if X does. In what follows we shall abbreviate by
‘wuC’ the phrase “weakly unconditionally Cauchy”.
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2. Embedding c0 into P(µ,X)

Let us denote by P1(µ,X) the subspace of P(µ,X) of all those functions f ∈
P(µ,X) for which there exists a scalar function g ∈ L1(µ) such that ‖f(ω)‖ 6 g(ω)
for µ-almost all ω ∈ Ω.

Theorem 2.1. Let (Ω,Σ, µ) be a perfect probability space and X a Banach space
that has the WRNP with respect to (Ω,Σ, µ). If P1(µ,X) contains a copy of c0,
then X contains a copy of c0.
���������

. Let {en : n ∈ � } be the unit vector basis of c0 and let J be a topological
isomorphism from c0 into P1(µ,X). Given ζ ∈ c0, select a sequence {x∗n} in BX∗

such that
∫
Ω
|x∗nJζ(ω)| dµ(ω) → ‖Jζ‖P(µ,X) and set Φζ(ω) := sup

n∈ � |x
∗
nJζ(ω)| for

each ω ∈ Ω. Noting that Φζ(ω) 6 ‖Jζ(ω)‖ for each ω ∈ Ω, according to the
hypotheses there exists hζ ∈ L1(µ) such that Φζ(ω) 6 hζ(ω) for almost all ω ∈ Ω,
which shows that each Φζ belongs to L1(µ). If S denotes the isometrical embedding
of P(µ,X) into ca(Σ, X) defined by (Sf)(E) = (P )

∫
E f dµ for each E ∈ Σ, the

inequality |x∗Jζ(ω)| 6 Φζ(ω) for almost all ω ∈ Ω and each x∗ ∈ BX∗ implies that
‖SJζ(E)‖ 6

∫
E

Φζ dµ, from where it follows that SJζ is an X-valued measure of
bounded variation. Therefore SJ maps c0 into bvca(Σ, X), and since S|J(c0) has
closed graph as may be easily seen, SJ happens to be a bounded linear operator

when considered from c0 into bvca(Σ, X). Moreover, since |SJen| > ‖SJen‖ =
‖Jen‖P(µ,X) � 0, Rosenthal’s c0 theorem guarantees that there exists an infinite
set M of positive integers such that SJ |c0(M) is a topological isomorphism from c0
(M) into bvca(Σ, X). In the sequel we shall identify c0(M) with c0 and we shall
denote SJ |c0(M) by Q, keeping in mind that Qen = SJen � 0 in bvca(Σ, X).
Now assume by contradiction that X contains no copy of c0. Given F ∈

bvca(Σ, X), since F → F (E) is a continuous map for each E ∈ Σ and X does

not contain a copy of c0, the series
∞∑

n=1
Qen(E) converges unconditionally in X for

each E ∈ Σ. This allows us to define the linear operator T : `∞ → ba(Σ, X) by

Tξ(E) =
∞∑

n=1
ξnQen(E) for each E ∈ Σ. If {E1, . . . , En} is a partition of Ω by

elements of Σ, setting ξn := (ξ1, . . . , ξn, 0, . . . , 0) we have

n∑

i=1

‖Tξ(Ei)‖ 6 sup
k∈ �

n∑

i=1

‖Qξk(Ei)‖ 6 sup
k∈ � |Qξ

k| 6 ‖Q‖ ‖ξ‖∞

showing that Tξ has bounded variation and |T | 6 ‖Q‖. Since Qξk � µ for each

k ∈ � , according to the Vitali-Hahn-Saks theorem, Tξ ∈ ca(Σ, X) and Tξ � µ for
each ξ ∈ `∞. Thus T (`∞) ⊆ bvca(Σ, X).
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Given that X is assumed to have the WRNP with respect to (Ω,Σ, µ) and, as
we have seen, Tξ has finite variation and Tξ � µ, there exists fξ in P(µ,X) such
that Tξ(E) = (P )

∫
E
fξ dµ for each ξ ∈ `∞, E ∈ Σ and n ∈ � . But, since (Ω,Σ, µ)

is a perfect finite measure space, Fremlin’s subsequences theorem guarantees that

E → (P )
∫

E fξ dµ has relatively compact range [6], i.e. Tξ ∈ cca(Σ, X) for each
ξ ∈ `∞. This shows that T is a bounded linear operator from `∞ into cca(Σ, X).
As Ten = Qen for each n ∈ � and inf

n∈
‖Qen‖ > 0, Rosenthal’s `∞ theorem allows

us to conclude that cca(Σ, X) contains a copy of `∞. Hence Lemma 1.1 forces X to
contain a copy of `∞, a contradiction. �

Theorem 2.2. If X has a weak∗ sequentially compact dual ball, then P(µ,X)
contains no copy of `∞.
���������

. Given f ∈ (µ,X), the linear operator Tf : X∗ → L1(µ) defined by
(Tfx

∗)(ω) = x∗f(ω) for each ω ∈ Ω is weak∗-weakly continuous and hence Tf ∈
Lw∗(X∗, L1(µ)). Moreover the operator ψ : P(µ,X) → Lw∗(X∗, L1(µ)) defined
by ψ(f) = Tf embeds P(µ,X) isometrically into Lw∗(X∗, L1(µ)) since ‖Tf‖ =
‖f‖P(µ,X). Let us see that the range of ψ is contained in Kw∗(X∗, L1(µ)), which
amounts to each operator Tf being compact. If {x∗n} is a sequence in the closed unit
ball BX∗ of X∗, since BX∗ is weak∗ sequentially compact there exists a subsequence

{x∗nk
} that converges to some x∗ ∈ BX∗ in the weak∗ topology. Considering the

sequence {Tf (x∗nk
− x∗)} in L1(µ), for each E ∈ Σ one has

sup
k∈ �

∫

E

|Tf (x∗nk
− x∗)| dµ 6 2‖χEf‖P(µ,X).

Since lim
µ(E)→0

‖χEf‖P(µ,X) = 0 then lim
µ(E)→0

sup
k∈ �

∫
E |Tf (x∗nk

− x∗)| dµ = 0, which

shows that the sequence {|Tf (x∗nk
− x∗)|} is uniformly integrable. Hence, due to the

fact that
lim

k→∞
Tf (x∗nk

− x∗)(ω) = lim
k→∞

(x∗nk
f(ω)− x∗f(ω)) = 0

for each ω ∈ Ω, Vitali’s lemma [8, Exercise 13.38] allow us to conclude that

lim
k→∞

∫

Ω

|Tf (x∗nk
− x∗)| dµ = 0

Therefore Tfx
∗
nk

→ Tfx
∗ in the norm topology of L1(µ) and, consequently, Tf ∈

Kw∗(X∗, L1(µ)). According to Lemma 1.1, if P(µ,X) contains a copy of `∞, then
X must contain a copy of `∞. This is a contradiction, since X , having a weak∗

sequentially compact dual ball, cannot contain a copy of `∞. �
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Theorem 2.3. If P(µ,X) contains a copy of c0, then either X contains a copy
of c0 or Lw∗(X∗, L1(µ)) contains a copy of `∞.
���������

. Let J be an isomorphism from c0 into P(µ,X) and let {en : n ∈ � }
denote the unit vector basis of c0. Set fn := Jen for each n ∈ � and note that the
series

∞∑
n=1

fn is wuC inP(µ,X). This implies that the series
∞∑

n=1
x∗fn is wuC in L1(µ)

for each x∗ ∈ X∗ and, since L1(µ) contains no copy of c0, that, actually,
∞∑

n=1
x∗fn

is (BM)-convergent in L1(µ). On the other hand, as the series
∞∑

n=1
(P )

∫
E fn dµ

is wuC in X for each E ∈ Σ, assuming that c0 is not embedded into X , then
∞∑

n=1
ξn(P )

∫
E fn dµ converges in X for each ξ ∈ `∞ and each E ∈ Σ. Therefore,

assuming that X does not contain a copy of c0, we may define a bounded linear

operator ϕ : `∞ → Lw∗(X∗, L1(µ)) by (ϕξ)x∗ =
∞∑

n=1
ξnx

∗fn [convergence in L1(µ)]

for each x∗ ∈ X∗. In fact, ϕξ ∈ L(X∗, L1(µ)) for each ξ ∈ `∞ since, given x∗ ∈ X∗
and ε > 0, choosing n ∈ � with

∥∥∥
∑
j>n

ξjx
∗fj

∥∥∥
L1(µ)

< ε and noting that for some

C > 0

‖(ϕξ)x∗‖L1 6
∥∥∥∥

n∑

j=1

ξjx
∗fj

∥∥∥∥
L1(µ)

+ ε 6 C‖x∗‖ ‖ξ‖∞ + ε,

it follows that ‖(ϕξ)x∗‖L1(µ) 6 C‖x∗‖ ‖ξ‖∞ for each ξ ∈ `∞ and x∗ ∈ X∗, which

shows that ϕξ ∈ L(X∗, L1(µ)) for each ξ ∈ `∞ and, besides, that ϕ is bounded. Given
some fixed ξ ∈ `∞, let us show that ϕξ ∈ Lw∗(X∗, L1(µ)). In fact, let {x∗d}d∈D be

a net in X∗ such that x∗d → x∗ under the weak∗ topology of X∗. Choosing some
E ∈ Σ, we have in particular

(2.1)

〈
x∗d − x∗,

∞∑

n=1

ξn(P )
∫

E

fn dµ
〉
→ 0

and hence there is k ∈ D such that
∣∣∣
〈
x∗d − x∗,

∞∑
n=1

ξn(P )
∫

E
fn dµ

〉∣∣∣ < ε for each

d > k. Bearing in mind that
m∑

n=1
ξn(P )

∫
E
fn dµ →

∞∑
n=1

ξn(P )
∫

E
fn dµ in X in the

norm topology, it follows that

(2.2) lim
m→∞

∫

E

m∑

n=1

ξn(x∗d − x∗)fn dµ =
〈
x∗d − x∗,

∞∑

n=1

ξn(P )
∫

E

fn dµ
〉

for each d ∈ D. On the other hand, since for each fixed d ∈ D the sequence{ m∑
n=1

ξn(x∗d−x∗fn

}∞
m=1
converges in L1(µ) in norm, and hence weakly, to the function

1013



∞∑
n=1

ξn(x∗d − x∗)fn, then

(2.3) lim
m→∞

∫

E

m∑

n=1

ξn(x∗d − x∗)fn dµ =
∫

E

∞∑

n=1

ξn(x∗d − x∗)fn dµ.

So, using (2.2) and (2.3), we have

∫

E

∞∑

n=1

ξn(x∗d − x∗)fn dµ =
〈
x∗d − x∗,

∞∑

n=1

ξn(P )
∫

E

fn dµ
〉

for each d ∈ D. Hence equation (2.1) leads to
∣∣∣
∫

E

∞∑
n=1

ξn(x∗d − x∗)fn dµ
∣∣∣ < ε for

each d > k. This implies that
∫

E(ϕξ)x∗d dµ →
∫

E(ϕξ)x∗ dµ. Since this is true for
every E ∈ Σ, it follows that (ϕξ)x∗d → (ϕξ)x∗ in the weak topology of L1(µ). Hence
we have shown that ϕ(`∞) ⊆ Lw∗(X∗, L1(µ)). Finally, since ‖ϕen‖ = ‖fn‖P(µ,X)

for each n ∈ � , then inf
n∈ � ‖ϕen‖ > 0 and Rosenthal’s `∞ theorem guarantees that

Lw∗(X∗, L1(µ)) contains a copy of `∞. �

Corollary 2.4. If X has the Schur property, P(µ,X) contains no copy of c0.

���������
. This is a straightforward consequence of Theorems 2.3 and 1.1 since, if

X has the Schur property, then Kw∗(X∗, L1(µ)) = Lw∗(X∗, L1(µ)). �
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