C. Jayaram Almost π -lattices

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 1, 119-130

Persistent URL: http://dml.cz/dmlcz/127870

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ALMOST π -LATTICES

C. JAYARAM, Gaborone

(Received May 21, 2001)

Abstract. In this paper we establish some conditions for an almost π -domain to be a π -domain. Next π -lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for π -rings.

Keywords: π -domain, almost π -domain, π -ring, d-prime element

MSC 2000: 06F10, 06F05, 13A15

1. INTRODUCTION

By a C-lattice we mean a (not necessarily modular) complete multiplicative lattice, with least element 0 and compact greatest element 1 (a multiplicative identity), which is generated under joins by a multiplicatively closed subset C of compact elements. Throughout this paper L denotes a principally generated C-lattice. Clattices can be localized. For any prime element p of L, L_p denotes the localization at $F = \{x \in C \mid x \nleq p\}$. For details on C-lattices and their localization theory, the reader is referred to [11]. We note that in a C-lattice a = b if and only if $a_m = b_m$ for all maximal prime elements m of L.

Recall that an element $e \in L$ is said to be *principal* [6], if it satisfies the dual identities (i) $a \wedge be = ((a : e) \wedge b)e$ and (ii) $(ae \vee b) : e = (b : e) \vee a$. Elements satisfying the weaker identity (i') $a \wedge e = (a : e)e$ obtained from (i) by setting b = 1 are called *weak meet principal* and elements satisfying the weaker identity (ii') $ae : e = (0 : e) \vee a$ obtained from (ii) by setting b = 0 are called *weak join principal*. Elements satisfying both (i') and (ii') are called *weak principal*. Note that weak principal elements are compact in L [2, Theorem 1.3].

An element $a \in L$ is said to be a *complemented element* if $a \lor b = 1$ and ab = 0 for some $b \in L$ and a is called *invertible* if a is principal and (0:a) = 0. An element

 $a \in L$ is called a σ -element if for every compact element $x \leq a, a \lor (0:x) = 1$ and a is called *nilpotent* if $a^n = 0$ for some positive integer n. Note that a compact element is a σ -element if and only if it is a complemented element. For more information on σ -elements, the reader is referred to [13]. A prime element p of L is said to be *unbranched* if p is the only p-primary element, and p is called an ℓ -prime if the set of all p-primary elements of L is linearly ordered. A prime element p of L is said to be a d-prime [12] if L_p is a discrete valuation lattice (i.e., consists just of the elements 0, 1 and the powers of p all of which are distinct).

L is said to be a principal element lattice if every element is principal. Similarly, L is said to be an almost principal element lattice if L_m is a principal element lattice for every maximal prime element m of L. For various characterizations of almost principal element lattices and principal element lattices, the reader is referred to [4], [9] and [10]. L is said to be a special principal element lattice if it has a unique maximal element which is principal and every element is a power of the maximal element. L is said to be reduced if 0 is the only nilpotent element of L. L is said to be an *M*-normal lattice if every prime element contains a unique minimal prime element. For more information on *M*-normal lattices, the reader is referred to [3] and [13]. It is well known that L is a reduced *M*-normal lattice if and only if L_m is a domain for every maximal prime element m of L [13, Theorem 1].

L is said to be a π -lattice if L is generated by a set S of elements (not necessarily principal) each of which is a finite product of prime elements. L is said to be an almost π -lattice if L_m is a π -lattice for every maximal prime element m of L. L is a π -domain if L is a π -lattice and a domain. L is said to be an almost π -domain if L_m is a π -domain for every maximal prime element m of L. π -lattices and almost π -lattices have been studied in [2], [4] and [10]. Note that if L is a π -domain, then L is an almost π -domain. But the converse need not be true. For example, if L is an almost principal element domain which is not a principal element domain, then L is an almost π -domain. But by Theorem 4 of [10], L is not a π -domain.

The goal of this paper is to establish some conditions for an almost π -domain to be a π -domain. We prove that if L is an almost π -domain satisfying the condition (*) (see Definition 1), then every principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes. Next we show that if L is an almost π -domain in which every prime minimal over a principal element is compact, then every principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes. Using these results, π -lattices which are also locally domains and π -domains are characterized (see Theorem 3 and Theorem 4). Further, we establish some equivalent conditions in terms of almost π -lattices for a lattice L satisfying the union condition on primes to be a π -lattice (see Theorem 5). As a consequence of these results, we obtain some new characterizations for π -rings (see Theorem 6). For general background and terminology, the reader may consult [2] and [11]. We shall begin with the following definition.

Definition 1. A multiplicative lattice L_0 is said to satisfy the condition (*) if there exists a multiplicatively closed set S of (not necessarily principal) elements which generate L_0 under joins such that every element of S is a finite meet of primary elements.

Noether lattices [6], Dedekind domains [4] and one dimensional quasi-local domains are examples of multiplicative lattices satisfying the condition (*). Obviously if R is a Laskerian ring [8] or a Krull domain [15, p. 195, Ex. 2], then L(R), the lattice of all ideals of R, satisfies the condition (*).

Lemma 1. Suppose L satisfies the condition (*). Let x be a principal element of L. Then x has only finitely many minimal primes over x.

Proof. Let S be the set which generates L under joins such that every element of S is a finite meet of primary elements. Let p be a prime minimal over x. Then x_p is p-primary [11, Property 0.5]. Also by Proposition 2 of [5], x_p is completely join irreducible in L_p , so $x_p = y_p$ for some $y \in S$. Therefore p is minimal over y. As x is the join of a finite number of elements of S and every element of S has only finitely many minimal primes, it follows that x has only finitely many minimal primes and the proof is complete.

Lemma 2. Suppose L is a π -lattice. Then every principal element has only finitely many minimal primes.

Proof. The proof of the lemma is similar to that of Lemma 1. \Box

Lemma 3. Suppose L satisfies the condition (*). If $a \in L$ is locally principal, then a is principal.

Proof. Suppose a is locally principal. Let

$$\theta(a) = \bigvee \{ (x:a) \mid x \leqslant a \text{ and } x \text{ is principal} \}.$$

We claim that $\theta(a) = 1$. Let $\theta(a) \leq m$ for some maximal prime element m of L. Since a is locally principal, by [5, Proposition 2(d)], it follows that $a_m = y_m$ for some principal element $y \leq a$. Again $y_m = x_m$ and $x \leq y$ for some $x \in S$, where S is the set which generates L under joins such that every element of S is a finite meet of primary elements. By hypothesis, $x = \bigwedge_{i=1}^{n} q_i$ where q_i are primary elements. Note that $x_m = \bigwedge\{(q_i)_m \mid q_i \leq m\}$. If $q_i \leq m$ for $i = 1, 2, \ldots, n$, then $x = x_m = a_m$, so a = x = y and therefore $\theta(a) = 1 \leq m$, a contradiction. So assume that $q_i \leq m$ for i = 1, 2, ..., k and $q_j \not\leq m$ for j = k + 1, k + 2, ..., n. Choose principal elements $x_j \leq q_j$ such that $x_j \not\leq m$ for j = k + 1, k + 2, ..., n. Note that $x_m = \bigwedge_{i=1}^k (q_i)_m$. Put $z = x_{k+1}x_{k+2}...x_n$. Since $a \leq \bigwedge_{i=1}^k q_i$ and $z \leq \bigwedge_{i=k+1}^n q_i$, it follows that $az \leq \bigwedge_{i=1}^n q_i = x \leq y$ and hence $z \leq (y:a) \leq \theta(a) \leq m$, a contradiction. Therefore $\theta(a) = 1$. Since 1 is compact, it follows that $1 = \bigvee_{i=1}^n \{(y_i:a) \mid y_i \leq a \text{ and } y_i \text{ is principal}\}$. Again $a = a.1 = \bigvee_{i=1}^n (y_i:a)a \leq \bigvee_{i=1}^n y_i \leq a$, so $a = \bigvee_{i=1}^n y_i$ and hence a is compact. As a is compact and locally principal, by [5, Theorem 1], it follows that a is principal and the proof is complete.

Lemma 4. Suppose L is an almost π -domain satisfying the condition (*). If p is a rank one prime, then p is an invertible d-prime.

Proof. As L is an almost π -domain, by [4, Theorem 2.2 and Corollary 2.3], p is locally principal and hence by Lemma 3, p is principal. Obviously, 0: p = 0 and so p is invertible. Again by [4, Lemma 3.2(d)], p is an ℓ -prime. Therefore by [12, Theorem 1 and Theorem 2], p is a d-prime.

Lemma 5. Suppose L is a quasi-local π -domain in which p is a prime minimal over a non zero principal element $a \in L$. Then p is a rank one principal prime.

Proof. By [4, Corollary 2.3], p is principal. Again by [4, Lemma 1.4], there exists a prime q < p such that pq = q and any prime properly contained in p is contained in q. If $q \neq 0$, then by [4, Theorem 2.2 and Corollary 2.3], there exists a non zero principal prime $q_1 \leq q$. Since $q_1 < p$ and p is principal, it follows that $q_1 = q_1 p$, so by [2, Theorem 1.4], $q_1 = 0$, a contradiction. Therefore q = 0 and hence p is a rank one principal prime.

Lemma 6. Let *L* be a π -lattice which is also locally a domain. If *p* is a rank one prime, then *p* is an invertible *d*-prime.

Proof. As L is an M-normal lattice, every prime element contains a unique minimal prime element. Suppose $p_1 < p$ is a minimal prime element contained in p. Choose any principal element $a \leq p$ such that $a \leq p_1$. Let $m \geq p$ be a maximal prime element of L. Then L_m is a π -domain. Since p_m is a prime minimal over a non zero principal element $a_m \in L_m$, by Lemma 5, p_m is principal in L_m . Therefore p is locally principal. It can be easily verified that p is weak join principal. Now we show that p is weak meet principal. Note that $p_1p = p_1$ locally and hence globally. Let S be the set which generates L under joins such that every element of S is a finite product of prime elements. Let $x \leq p$ be any element of S. Again there exist prime elements q_1, q_2, \ldots, q_n such that $x = q_1q_2 \ldots q_n$. As $x \leq p$, it follows that $q_i \leq p$ for some i, say $q_1 \leq p$. Then either $q_1 = p$ or $q_1 = p_1$. In either case x is a multiple of p. As S generates L under joins, it follows that p is weak meet principal and hence weak principal. Again by [2, Theorem 1.3], p is compact and hence by [5, Theorem 1], p is principal. Obviously, 0: p = 0. Again by [4, Lemma 3.2(d)] and [12, Theorem 1 and Theorem 2], p is an invertible d-prime.

Lemma 7. Let L be a π -lattice which is also locally a domain. If p is a prime minimal over a principal element a, then p is either a complemented minimal prime or an invertible d-prime.

Proof. Suppose p is a prime minimal over a principal element a. Note that in a π -lattice, there are only a finite number of minimal primes. As L is a reduced M-normal lattice, it follows that the minimal primes are complemented elements. Therefore if p is a minimal prime, then p is a complemented element. Suppose p is non minimal. Let $m \ge p$ be a maximal prime element of L. As L_m is a π -domain and p_m is minimal over a non zero principal element a_m of L_m , by Lemma 5 and Lemma 6, p is an invertible d-prime.

Lemma 8. Let p_1, p_2, \ldots, p_n be distinct prime elements of L and let q_i be p_i -primary elements. If each q_i is weak meet principal, then $q_1 \wedge q_2 \wedge \ldots \wedge q_n = q_1q_2 \ldots q_n$.

Proof. Rearrange p_1, p_2, \ldots, p_n , if necessary, so that $p_i \not\leq p_j$ for i < j. We prove the result by induction on n. Since $p_1 \not\leq p_2$ and q_1 is weak meet principal, it follows that $q_1 \wedge q_2 = q_1q_2$. Therefore the result is true for n = 2. Now assume that $q_1 \wedge q_2 \wedge \ldots \wedge q_{n-1} = q_1q_2 \ldots q_{n-1}$. Since each q_i is weak meet principal, by [5, Proposition 1(a) and Theorem 6] $q_1q_2 \ldots q_{n-1}$ is weak meet principal. Again since $q_1q_2 \ldots q_{n-1}$ is weak meet principal, it follows that $(q_1q_2 \ldots q_{n-1}) \wedge q_n = q_1q_2 \ldots q_{n-1}x$ for some $x \in L$. As $q_1q_2 \ldots q_{n-1}x \leqslant q_n$ and $q_i \notin p_n$ for $1 \leqslant i \leqslant n-1$, it follows that $x \leqslant q_n$. Therefore $q_1 \wedge q_2 \wedge \ldots \wedge q_n = (q_1 \wedge q_2 \wedge \ldots \wedge q_{n-1}) \wedge q_n = (q_1q_2 \ldots q_{n-1}) \wedge q_n \leqslant q_1q_2 \ldots q_{n-1}q_n$ and hence $q_1 \wedge q_2 \wedge \ldots \wedge q_n = q_1q_2 \ldots q_{n-1}q_n$. This completes the proof of the lemma.

Lemma 9. Let *L* be a π -lattice which is also locally a domain. Then every principal element is a finite product of primes which are either complemented minimal primes or invertible *d*-primes.

Proof. By Lemma 2, every principal element has only finitely many minimal primes. Again by Lemma 7, every prime minimal over a principal element is either a complemented minimal prime or an invertible d-prime. Let a be a principal

element of L. Let p_1, p_2, \ldots, p_n be the minimal primes over a. Without loss of generality, assume that p_1, p_2, \ldots, p_s are the invertible *d*-primes and $p_{s+1}, p_{s+2}, \ldots, p_n$ are the complemented minimal primes. Since p_1, p_2, \ldots, p_s are d-primes, by [4, Lemma 3.2(c)], there exist positive integers n_i for $i = 1, 2, \ldots, s$ such that $a \leq p_i^{n_i}$ and $a \leq p_i^{n_i+1}$. Observe that by [4, Lemma 3.2(d)], the powers of p_i $(1 \leq i \leq s)$ are p_i -primary elements. Let $b = p_1^{n_1} p_2^{n_2} \dots p_s^{n_s} p_{s+1} p_{s+2} \dots p_n$. We claim that a = b. Let m be a maximal prime element of L. If $p_j \leq m$ for some $j \in \{s+1, s+2, \dots n\}$, then $a_m = b_m = 0_m$. Without loss of generality, assume that $p_1, p_2, \ldots, p_t \leq m$ for $(1 \leq t < s)$ and $p_j \leq m$ for $(t+1 \leq j \leq s)$. Note that L_m is a π -domain and a_m is a non zero principal element of L_m . Therefore by [4, Lemma 2.3] and Lemma 5, a_m is a finite product of the rank one principal prime elements minimal over it. Again using Lemma 8, it can be easily shown that $a_m = (p_{1_m})^{n_1} (p_{2_m})^{n_2} \dots (p_{t_m})^{n_t}$. Therefore $a_m = (p_{1_m})^{n_1} (p_{2_m})^{n_2} \dots (p_{t_m})^{n_t} \dots (p_{s_m})^{n_s} p_{s+1_m} p_{s+2_m} \dots p_{n_m} = b_m$ since $(p_{j_m})^{n_j} = 1_m$ for $(t+1 \leq j \leq s)$ and $p_{k_m} = 1_m$ for $(s+1 \leq k \leq n)$. This shows that $a_m = b_m$ for all maximal prime elements m containing a. Further, if $a \leq m$, then $a_m = b_m = 1_m$. Consequently, a = b and the proof is complete. \square

Lemma 10. Let *L* be a π -lattice which is also locally a domain. Then *L* satisfies the condition (*).

Proof. Note that by [1, Lemma 2.2], complemented elements are idempotent principal elements and by [4, Lemma 3.2(d)], powers of invertible prime elements are primary. Now the result follows from Lemma 8 and Lemma 9.

Lemma 11. Let $a \in L$. Suppose every prime minimal over a is compact. Then a has only finitely many minimal primes.

Proof. Note that by [9, Lemma 1], a finite product of compact elements is compact. Therefore by hypothesis and [18, Theorem 3.4], a has only finitely many minimal primes.

Lemma 12. Suppose L is an almost π -domain satisfying the condition (*). Let p be a prime minimal over a principal element $a \in L$. Then p is either a complemented minimal prime or an invertible d-prime.

Proof. Suppose p is minimal. Then p is locally principal and hence by Lemma 3, p is principal. As L is a reduced M-normal lattice, by [13, Theorem 1], p is a principal σ -element and hence complemented. Suppose p is non minimal. Let $m \ge p$ be a maximal prime element of L. As L_m is a π -domain and p_m is minimal over a non zero principal element a_m in L_m , by Lemma 5, rank $p_m = 1$ and hence rank p = 1. Again by Lemma 4, p is an invertible d-prime.

If $\{p_{\alpha}\}_{\alpha \in I}$ is the collection of prime elements minimal over a, then by the isolated primary component of a belonging to p_{β} (or the isolated p_{β} -primary component of a) we mean the meet q_{β} of all p_{β} -primary elements which contain a. The kernel a^* of a is the meet of all q_{β} 's. If p is a prime minimal over a, then a_p is p-primary and contained in any p-primary element which contains a. Hence a_p is the isolated p-primary component of a and $a^* = \bigwedge_{\alpha \in I} a_{p_{\alpha}}$. The kernel of an element was studied in [10].

Lemma 13. Suppose L is an almost π -domain satisfying the condition (*). Then the kernel of a principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes.

Proof. Let a be a principal element of L. Then

 $a^* = \bigwedge \{a_p \mid p \text{ is a prime minimal over } a\}.$

By Lemma 1, *a* has only finitely many minimal primes. Let p_1, p_2, \ldots, p_n be the minimal primes of *a*. By Lemma 12, each p_i is either a complemented minimal prime or an invertible *d*-prime. Without loss of generality, assume that p_1, p_2, \ldots, p_s are the invertible *d*-primes and $p_{s+1}, p_{s+2}, \ldots, p_n$ are the complemented minimal primes. Note that each a_{p_i} $(1 \le i \le n)$ is p_i -primary. Since the minimal primes are complemented, it follows that the minimal primes are unbranched, so $a_{p_i} = p_i$ for $i = s + 1, s + 2, \ldots, n$. As each p_i $(1 \le i \le s)$ is invertible, by [4, Lemma 3.2(d)], each p_i -primary element is a power of p_i . Therefore $a_{p_i} = p_i^{n_i}$ (for $i = 1, 2, \ldots, s$) for some positive integer n_i . Again by Lemma 8, $a^* = p_1^{n_1} \land \ldots \land p_s^{n_s} \land p_{s+1} \land \ldots \land p_n = p_1^{n_1} \ldots p_s^{n_s} p_{s+1} \ldots p_n$. This completes the proof of the lemma.

Lemma 14. Suppose L is an almost π -domain satisfying the condition (*). Then every principal element is equal to its kernel.

Proof. Let *a* be a principal element of *L*. By the proof of Lemma 13, there exist prime elements p_1, p_2, \ldots, p_m minimal over *a* such that $a_{p_i} = p_i^{n_i}$ for some positive integer n_i and $a^* = p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m}$, where each p_i is either a complemented minimal prime or an invertible *d*-prime. Again by imitating the proof of Lemma 9, it can be easily shown that $a = a^*$ and the proof is complete.

Lemma 15. Suppose L is an almost π -domain. If p is a compact prime of rank less than or equal to one, then p is either a complemented minimal prime or an invertible d-prime.

Proof. Suppose p is a compact minimal prime. As L is a reduced M-normal lattice, it follows that p is complemented. If rank p = 1, then by the proof of

Lemma 4, p is locally principal and hence by [5, Theorem 1], p is principal. The remaining proof is similar to that of Lemma 4.

Lemma 16. Suppose L is an almost π -domain. If p is a compact prime minimal over a principal element $a \in L$, then p is either a complemented minimal prime or an invertible d-prime.

Proof. If p is minimal, then by Lemma 15, p is complemented. Suppose p is non minimal. Then by Lemma 5, rank p = 1 and hence by Lemma 15, p is an invertible d-prime.

Lemma 17. Suppose L is an almost π -domain. Let $a \in L$ be a principal element such that every prime minimal over a is compact. Then a^* is a finite product of primes which are either complemented minimal primes or invertible d-primes.

Proof. By Lemma 11, a has only finitely many minimal primes. Again by Lemma 16, each prime minimal over a is either a complemented minimal prime or an invertible d-prime. Now by imitating the proof of Lemma 13, we can get the result.

Lemma 18. Suppose L is an almost π -domain. Let $a \in L$ be a principal element such that every prime minimal over a is compact. Then a is equal to its kernel.

Proof. Using Lemma 17 and by imitating the proof of Lemma 14, we can get the result. $\hfill \Box$

Theorem 1. Suppose L is an almost π -domain satisfying the condition (*). Then every principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes.

Proof. The proof of the theorem follows from Lemma 13 and Lemma 14. $\hfill \square$

Theorem 2. Suppose L is an almost π -domain. Let every prime minimal over a principal element is compact. Then every principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes.

Proof. The proof of the theorem follows from Lemma 17 and Lemma 18. $\hfill \square$

Theorem 3. The following statements on L are equivalent:

- (i) L is a π -lattice which is also locally a domain.
- (ii) L is an almost π -domain satisfying the condition (*).
- (iii) L is a reduced lattice in which every principal element is a finite product of primes which are either complemented minimal primes or invertible d-primes.
- (iv) L is an almost π -domain in which every prime of rank less than or equal to one is compact.
- (v) L is a reduced lattice in which every prime minimal over a principal element is either a complemented minimal prime or an invertible d-prime.

Proof. (i) \Rightarrow (ii) follows from Lemma 10 and (ii) \Rightarrow (iii) follows from Theorem 1. (iii) \Rightarrow (iv). Suppose (iii) holds. By (iii), *L* is a reduced π -lattice and an *M*-normal lattice. Therefore *L* is an almost π -domain. The remaining proof is obvious.

 $(iv) \Rightarrow (v)$. Suppose (iv) holds. Let p be a prime minimal over a principal element $a \in L$. By Lemma 5, rank $p \leq 1$ and hence by Lemma 15, p is either a complemented minimal prime or an invertible d-prime. Thus (v) holds.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$. Suppose (\mathbf{v}) holds. By (\mathbf{v}) , every prime minimal over a principal element is compact. Therefore by Theorem 2, it is enough if we show that L is an almost π -domain. Note that by [13, Theorem 1(\mathbf{v})], L is a reduced M-normal lattice and so every prime element contains a unique minimal prime element. Therefore by (\mathbf{v}) , every non minimal prime contains an invertible d-prime. Now we show that L is an almost π -domain. Let m be a maximal prime element of L. If m is minimal, then L_m is a two element chain. Suppose m is non minimal. Let p_m be a non zero prime element of L_m . Since p is a non minimal prime, there exists an invertible d-prime p_1 such that $p_1 \leq p$. Clearly, p_{1m} is a non zero principal prime element contained in p_m and hence by [4, Theorem 2.3 and Corollary 2.3], L_m is a π -domain. Consequently, L is an almost π -domain and the proof is complete.

Theorem 4. Suppose L is a domain. Then the following statements on L are equivalent:

- (i) L is a π -domain.
- (ii) L is an almost π -domain satisfying the condition (*).
- (iii) Every non zero principal element is a finite product of invertible d-primes.
- (iv) L is an almost π -domain in which every rank one prime element is compact.
- (v) Every prime minimal over a non zero principal element is an invertible d-prime.

Proof. The proof of the theorem follows from Theorem 3. \Box

L is said to satisfy the union condition on primes if for any set p_1, \ldots, p_n of primes in L and any $a \in L$ with $a \notin p_1, \ldots, p_n$ there exists a principal element $e \leqslant a$ with $e \notin p_1, \ldots, p_n$. **Theorem 5.** Suppose L satisfies the union condition on primes. Then the following statements on L are equivalent:

- (i) L is a π -lattice.
- (ii) L is an almost π -lattice in which every principal element is a finite meet of primary elements.
- (iii) L is an almost π -lattice satisfying the condition (*).
- (iv) L is an almost π -lattice in which every prime of rank less than or equal to one is compact.
- (v) Every minimal prime is principal and every non minimal prime contains a non minimal principal prime.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Clearly, L is an almost π -lattice. As L satisfies the union condition on primes, by [4, Corollary 2.1], for every maximal prime element m of L, L_m is either a domain or a special principal element lattice. Therefore every prime contains a unique minimal prime and non maximal minimal primes are unbranched and idempotent. Using these facts and by imitating the proofs of Lemma 5 and Lemma 6, it can be easily shown that every prime minimal over a principal element is either a minimal prime or an invertible d-prime. Let a be a principal element of L. By Lemma 2, a has only finitely many minimal primes. Let p_1, p_2, \ldots, p_m be the primes minimal over a. Without loss of generality, assume that p_1, p_2, \ldots, p_s are the invertible *d*-primes, $p_{s+1}, p_{s+2}, \ldots, p_{s+t}$ are the non maximal minimal primes and $p_{s+t+1}, p_{s+t+2}, \ldots, p_m$ are the minimal primes which are also maximal. Since p_1, p_2, \ldots, p_s are the invertible *d*-primes minimal over a, there exist positive integers n_i for i = 1, 2, ..., s, such that $a \leq p_i^{n_i}$ and $a \notin p_i^{n_i+1}$. Since each L_{p_i} $(s+t+1 \leqslant i \leqslant m)$ is a special principal element lattice, there exist positive integers n_j (for $s + t + 1 \leq j \leq m$) such that $a_{p_j} =$ $(p_j^{n_j})_{p_j}$. Observe that the powers of p_i $(1 \leq i \leq m)$ are p_i -primary elements. Let $b = p_1^{n_1} \wedge p_2^{n_2} \wedge \ldots \wedge p_s^{n_s} \wedge p_{s+1} \wedge \ldots \wedge p_{s+t} \wedge p_{s+t+1}^{n_{s+t+1}} \wedge \ldots \wedge p_m^{n_m}$. Now by imitating the proof of Lemma 9, it can be easily shown that a = b. Therefore (ii) holds.

 $(ii) \Rightarrow (iii)$ is obvious.

(iii) \Rightarrow (iv). Suppose (iii) holds. By [4, Corollary 2.1, Theorem 2.2 and Corollary 2.3], every prime of rank less than or equal to one is locally principal and hence by Lemma 3, principal.

 $(iv) \Rightarrow (v)$. Suppose (iv) holds. Observe that the rank of every prime minimal over a principal element is less than or equal to one and every prime of rank less than or equal to one is locally principal. Therefore by (iv), every prime minimal over a principal element is a principal prime of rank less than or equal to one. Therefore (v) holds.

 $(v) \Rightarrow (i)$. Suppose (v) holds. We show that L is an almost π -lattice. Let m be a maximal prime element of L. If m is minimal, then L_m is a special principal element

lattice. Suppose *m* is non minimal. By (v), there exists a non minimal principal prime $p \leq m$. Let q < p be a principal minimal prime. As *p* is principal, it follows that pq = q. Therefore by [2, Theorem 1.4], $q_m = 0_m$ in L_m and hence L_m is a domain. Again since by (v), every non zero prime element of L_m contains a non zero principal prime element, by [4, Theorem 2.2 and Corollary 2.3], L_m is a π -domain. This shows that *L* is an almost π -lattice. Note that by (v) and by Lemma 5, every prime minimal over a principal element is a principal prime of rank less than or equal to one. Therefore every principal element has only finitely many minimal primes. Now by using [4, Lemma 1.4] and Lemma 8 and by imitating the proof of (i) \Rightarrow (ii) (or Lemma 9), it can be easily shown that every principal element is a finite product of principal primes of rank less than or equal to one. Therefore *L* is a π -lattice and the proof is complete.

Let R be a commutative ring with identity and let L(R) be the lattice of all ideals of R. An ideal M of R is called a *quasi-principal ideal* [15, p. 147] (or a *principal element* of L(R) [17]) if it satisfies the following identities (i) $(A \cap (B : M))M =$ $AM \cap B$ and (ii) (A + BM) : M = (A : M) + B, for all $A, B \in L(R)$. It should be mentioned that every quasi-principal ideal is finitely generated and also a finite product of quasi-principal ideals of R is again a quasi-principal ideal [15, Exercise 10, p. 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated and locally principal [17, Theorem 2].

R is said to be a π -ring [7, p. 572] if every principal ideal is a finite product of prime ideals. For various characterizations of π -rings which are also domains, the reader is referred to [14] and [16]. We call a ring R an *almost* π -ring if R_M is a π -ring, for every maximal ideal M of R. The following Theorem 6 gives some new characterizations for π -rings in terms of almost π -rings.

Theorem 6. The following statements on R are equivalent:

- (i) R is a π -ring.
- (ii) R is an almost π-ring in which every quasi-principal ideal is a finite intersection of primary ideals.
- (iii) R is an almost π -ring in which every principal ideal is a finite intersection of primary ideals.
- (iv) R is an almost π -ring in which every prime ideal of rank less than or equal to one is finitely generated.
- (v) Every minimal prime ideal is quasi-principal and every non minimal prime ideal contains a non minimal quasi-principal prime ideal.

Proof. The proof of the theorem follows from Theorem 5 and the fact that the lattice of all ideals of R is a principally generated C-lattice and satisfies the union condition on prime ideals.

References

- F. Alarcon, D. D. Anderson and C. Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26.
- [2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145.
- [3] D. D. Anderson, C. Jayaram and P. A. Phiri: Baer lattices. Acta. Sci. Math. (Szeged) 59 (1994), 61–74.
- [4] D. D. Anderson and C. Jayaram: Principal element lattices. Czechoslovak Math. J. 46(121) (1996), 99–109.
- [5] D. D. Anderson and E. W. Johnson: Dilworth's principal elements. Algebra Universalis 36 (1996), 392–404.
- [6] R. P. Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498.
- [7] R. W. Gilmer: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972.
- [8] W. Heinzer and D. Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114.
- C. Jayaram and E. W. Johnson: Almost principal element lattices. Internat. J. Math. Math. Sci. 18 (1995), 535–538.
- [10] C. Jayaram and E. W. Johnson: Some results on almost principal element lattices. Period. Math. Hungar. 31 (1995), 33–42.
- [11] C. Jayaram and E. W. Johnson: s-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208.
- [12] C. Jayaram and E. W. Johnson: Dedekind lattices. Acta. Sci. Math. (Szeged) 63 (1997), 367–378.
- [13] C. Jayaram and E. W. Johnson: σ-elements in multiplicative lattices. Czechoslovak Math. J. 48(123) (1998), 641–651.
- [14] B. G. Kang: On the converse of a well known fact about Krull donains. J. Algebra 124 (1989), 284–299.
- [15] M. D. Larsen and P. J. McCarthy: Multiplicative Theory of Ideals. Academic Press, New York, 1971.
- [16] K. B. Levitz: A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380.
- [17] P. J. McCarthy: Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45.
- [18] N. K. Thakare, C. S. Manjarekar and S. Maeda: Abstract spectral theory. II. Minimal characters and minimal spectrums of multiplicative lattices. Acta. Sci. Math. (Szeged) 52 (1988), 53–67.

Author's address: University of Botswana, P/Bag 00704, Gaborone, Botswana, e-mail: chillumu@mopipi.ub.bw.